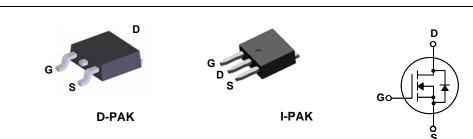


# FQD1N60C / FQU1N60C N-Channel QFET<sup>®</sup> MOSFET 600 V, 1.0 A, 11.5 Ω

### Description

This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor®'s proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.


### Features

+ 1 A, 600 V,  ${\rm R}_{\rm DS(on)}$  = 11.5  $\Omega$  (Max.) @ V\_{\rm GS} = 10 V,  ${\rm I}_{\rm D}$  = 0.5 A

April 2013

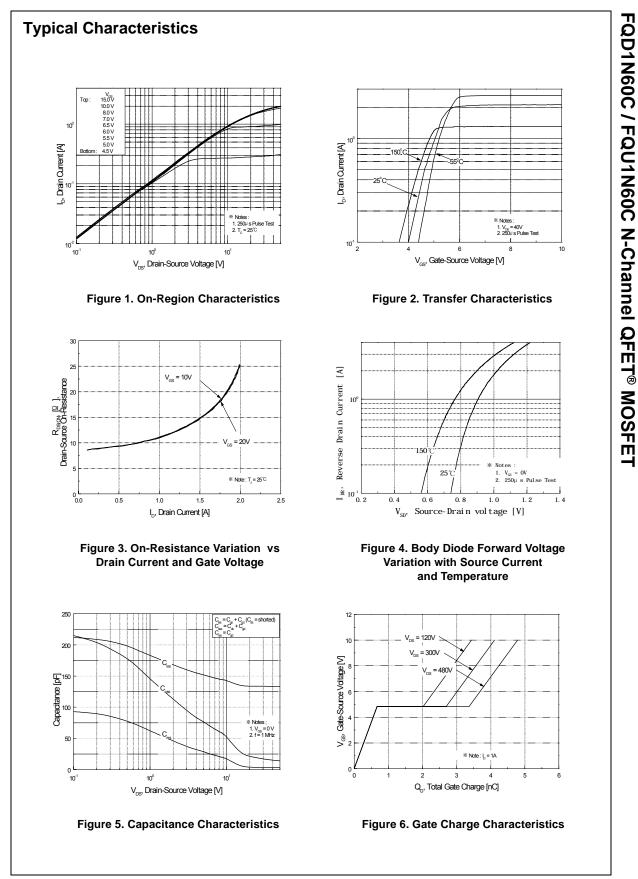
FQD1N60C / FQU1N60C N-Channel QFET<sup>®</sup> MOSFET

- Low Gate Charge (Typ. 4.8 nC)
- Low Crss (Typ. 3.5 pF)
- 100% Avalanche Tested
- RoHS Compliant

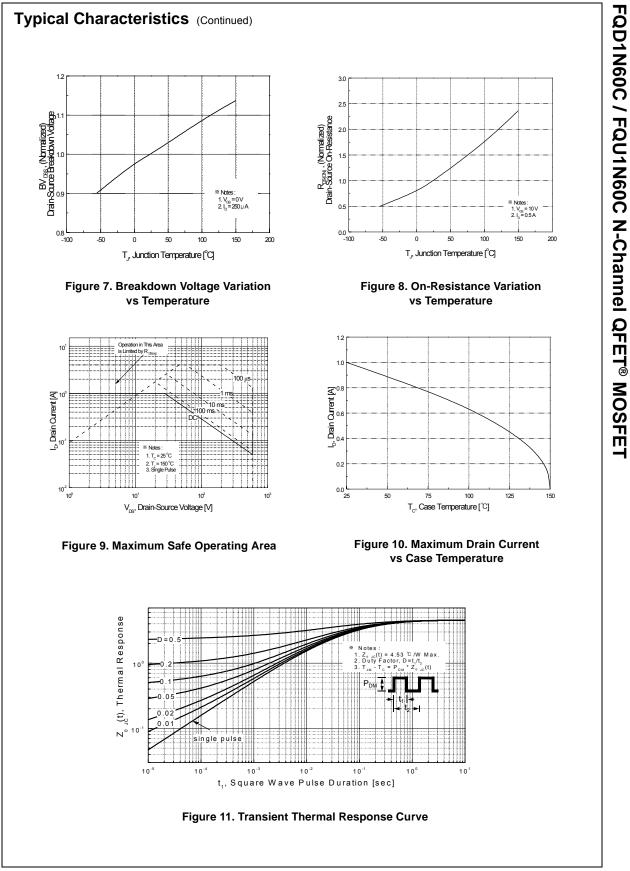


## Absolute Maximum Ratings T<sub>C</sub> = 25°C unless otherwise noted

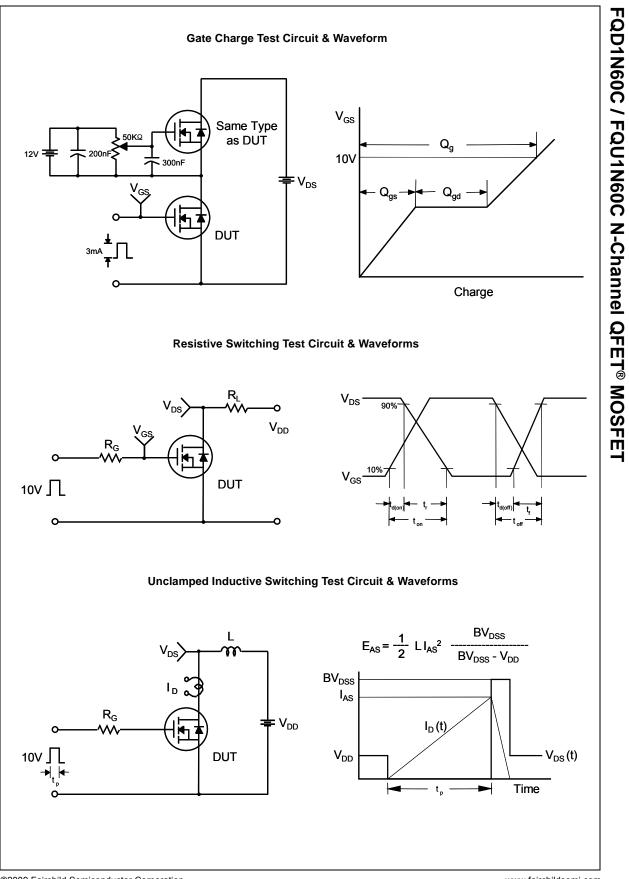
| Symbol                            | Parameter                                                                     |          | FQD1N60C / FQU1N60C | Unit |
|-----------------------------------|-------------------------------------------------------------------------------|----------|---------------------|------|
| V <sub>DSS</sub>                  | Drain-Source Voltage                                                          |          | 600                 | V    |
| I <sub>D</sub>                    | Drain Current - Continuous (T <sub>C</sub> = 25°C)                            |          | 1                   | А    |
|                                   | - Continuous (T <sub>C</sub> = 100°C)                                         |          | 0.6                 | А    |
| I <sub>DM</sub>                   | Drain Current - Pulsed                                                        | (Note 1) | 4                   | А    |
| V <sub>GSS</sub>                  | Gate-Source Voltage                                                           |          | ± 30                | V    |
| E <sub>AS</sub>                   | Single Pulsed Avalanche Energy                                                | (Note 2) | 33                  | mJ   |
| I <sub>AR</sub>                   | Avalanche Current                                                             | (Note 1) | 1                   | А    |
| E <sub>AR</sub>                   | Repetitive Avalanche Energy                                                   | (Note 1) | 2.8                 | mJ   |
| dv/dt                             | Peak Diode Recovery dv/dt                                                     | (Note 3) | 4.5                 | V/ns |
|                                   | Power Dissipation (T <sub>A</sub> = 25°C)*                                    |          | 2.5                 | W    |
| PD                                | Power Dissipation (T <sub>C</sub> = 25°C)                                     |          | 28                  | W    |
|                                   | - Derate above 25°C                                                           |          | 0.22                | W/°C |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Range                                       |          | -55 to +150         | °C   |
| TL                                | Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds |          | 300                 | °C   |


## **Thermal Characteristics**

| Symbol          | Parameter                                     | FQD1N60C / FQU1N60C | Unit |
|-----------------|-----------------------------------------------|---------------------|------|
| $R_{\theta JC}$ | Thermal Resistance, Junction-to-Case, Max.    | 4.53                | °C/W |
| $R_{\thetaJA}$  | Thermal Resistance, Junction-to-Ambient*      | 50                  | °C/W |
| $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient, Max. | 110                 | °C/W |


www.fairchildsemi.com

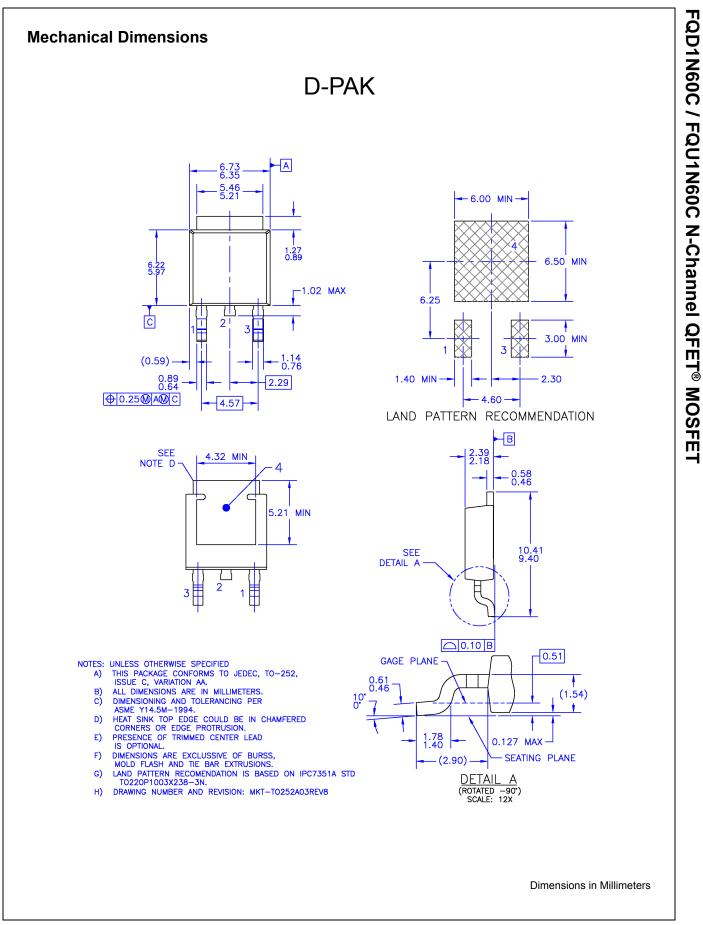
| ristics<br>Source Breakdown Voltage<br>down Voltage Temperature<br>icient<br>Gate Voltage Drain Current<br>Body Leakage Current, Forward<br>Body Leakage Current, Reverse<br>ristics<br>Threshold Voltage<br>Drain-Source<br>esistance<br>ard Transconductance | $V_{GS} = 0 \text{ V}, \text{ I}_{D} = 250 \mu\text{A}$ $I_{D} = 250 \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = 600 \text{V}, \text{V}_{GS} = 0 \text{V}$ $V_{DS} = 480 \text{V}, \text{T}_{C} = 125^{\circ}\text{C}$ $V_{GS} = 30 \text{V}, \text{V}_{DS} = 0 \text{V}$ $V_{GS} = -30 \text{V}, \text{V}_{DS} = 0 \text{V}$ $V_{DS} = V_{GS}, \text{I}_{D} = 250 \mu\text{A}$ $V_{GS} = 10 \text{V}, \text{I}_{D} = 0.5 \text{A}$ | 600<br><br><br><br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>0.6<br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br>1<br>10<br>100<br>-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V<br>V/°C<br>μA<br>μA<br>nA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source Breakdown Voltage<br>down Voltage Temperature<br>cient<br>Gate Voltage Drain Current<br>Body Leakage Current, Forward<br>Body Leakage Current, Reverse<br>ristics<br>Threshold Voltage<br>Drain-Source<br>esistance                                     | $I_{D} = 250 \ \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C}$ $V_{DS} = 600 \ \text{V}, V_{GS} = 0 \ \text{V}$ $V_{DS} = 480 \ \text{V}, T_{C} = 125^{\circ}\text{C}$ $V_{GS} = 30 \ \text{V}, V_{DS} = 0 \ \text{V}$ $V_{GS} = -30 \ \text{V}, V_{DS} = 0 \ \text{V}$ $V_{DS} = V_{GS}, I_{D} = 250 \ \mu\text{A}$                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6<br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>1<br>10<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V/°C<br>μA<br>μA<br>nA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| idown Voltage Temperature<br>icient<br>Gate Voltage Drain Current<br>Body Leakage Current, Forward<br>Body Leakage Current, Reverse<br>ristics<br>Threshold Voltage<br>Drain-Source<br>esistance                                                               | $I_{D} = 250 \ \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C}$ $V_{DS} = 600 \ \text{V}, V_{GS} = 0 \ \text{V}$ $V_{DS} = 480 \ \text{V}, T_{C} = 125^{\circ}\text{C}$ $V_{GS} = 30 \ \text{V}, V_{DS} = 0 \ \text{V}$ $V_{GS} = -30 \ \text{V}, V_{DS} = 0 \ \text{V}$ $V_{DS} = V_{GS}, I_{D} = 250 \ \mu\text{A}$                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V/°C<br>μA<br>μA<br>nA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Body Leakage Current, Forward<br>Body Leakage Current, Reverse<br>ristics<br>Threshold Voltage<br>Drain-Source<br>esistance                                                                                                                                    | $V_{DS} = 480 \text{ V},  \text{T}_{C} = 125^{\circ}\text{C}$ $V_{GS} = 30  \text{V},        $                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μA<br>nA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Body Leakage Current, Forward<br>Body Leakage Current, Reverse<br>ristics<br>Threshold Voltage<br>Drain-Source<br>esistance                                                                                                                                    | $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$<br>$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$<br>$V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Body Leakage Current, Reverse ristics Threshold Voltage Drain-Source esistance                                                                                                                                                                                 | $V_{GS}$ = -30 V, $V_{DS}$ = 0 V<br>$V_{DS}$ = $V_{GS}$ , $I_D$ = 250 $\mu$ A                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ristics<br>Threshold Voltage<br>Drain-Source<br>esistance                                                                                                                                                                                                      | V <sub>DS</sub> = V <sub>GS</sub> , I <sub>D</sub> = 250 μA                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Threshold Voltage<br>Drain-Source<br>esistance                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Threshold Voltage<br>Drain-Source<br>esistance                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Drain-Source<br>esistance                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| esistance                                                                                                                                                                                                                                                      | $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 0.5 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ard Transconductance                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                | $V_{DS} = 40 \text{ V}, \text{ I}_{D} = 0.5 \text{ A}$ (Note 4)                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| aracteristics                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۶E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| •                                                                                                                                                                                                                                                              | 20 00                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pF<br>pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                | f = 1.0 MHZ                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| On Delay Time<br>On Rise Time                                                                                                                                                                                                                                  | $V_{DD} = 300 \text{ V}, \text{ I}_{D} = 1.1 \text{ A},$                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ns<br>ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| On Rise Time                                                                                                                                                                                                                                                   | 55 5                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Off Delay Time                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Off Fall Time                                                                                                                                                                                                                                                  | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Gate Charge                                                                                                                                                                                                                                                    | $V_{DS} = 480 \text{ V}, \text{ I}_{D} = 1.1 \text{ A},$                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ū.                                                                                                                                                                                                                                                             | V <sub>GS</sub> = 10 V                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Drain Charge                                                                                                                                                                                                                                                   | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Diode Characteristics a                                                                                                                                                                                                                                        | nd Maximum Ratings                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| num Pulsed Drain-Source Diode F                                                                                                                                                                                                                                | Forward Current                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                | $V_{GS} = 0 V, I_{S} = 0.5 A$                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -Source Diode Forward Voltage                                                                                                                                                                                                                                  | 163 0 1,13 010 11                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -Source Diode Forward Voltage                                                                                                                                                                                                                                  | $V_{GS} = 0 V, I_S = 1.1 A,$                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                | Capacitance<br>It Capacitance<br>rse Transfer Capacitance<br><b>naracteristics</b><br>On Delay Time<br>On Rise Time<br>Off Delay Time<br>Off Fall Time<br>Gate Charge<br>Source Charge<br>Drain Charge<br><b>biode Characteristics al</b><br>num Continuous Drain-Source Did                                                                                                                                                                              | Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$<br>f = 1.0 MHzTransfer Capacitancef = 1.0 MHzTransfer Capacitance $V_{DD} = 300 \text{ V}, I_D = 1.1 \text{ A},$<br>RG = 25 $\Omega$ On Delay Time $V_{DD} = 300 \text{ V}, I_D = 1.1 \text{ A},$<br>RG = 25 $\Omega$ Off Fall Time $V_{DS} = 480 \text{ V}, I_D = 1.1 \text{ A},$<br>VOS = 480 V, ID = 1.1 A,<br>VOS = 10 VGate Charge $V_{DS} = 480 \text{ V}, I_D = 1.1 \text{ A},$<br>VOS = 10 VDrain Charge $V_{OS} = 10 \text{ V}$<br>(Note 4, 5)P Diode Characteristics and Maximum Ratings<br>num Continuous Drain-Source Diode Forward Current<br>num Pulsed Drain-Source Diode Forward Current | Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$<br>f = 1.0 MHzrse Transfer Capacitancef = 1.0 MHzmaracteristicsVDD = 300 V, ID = 1.1 A,<br>RG = 25 $\Omega$ On Delay TimeVDD = 300 V, ID = 1.1 A,<br>RG = 25 $\Omega$ Off Delay TimeVDD = 300 V, ID = 1.1 A,<br>RG = 25 $\Omega$ Off Fall Time(Note 4, 5)Gate ChargeVDS = 480 V, ID = 1.1 A,<br>VGS = 10 VDrain ChargeVDS = 480 V, ID = 1.1 A,<br>VGS = 10 VDidde Characteristics and Maximum Ratingsnum Continuous Drain-Source Diode Forward Currentnum Pulsed Drain-Source Diode Forward Current | Capacitance<br>at Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$ 130Transfer Capacitancef = 1.0 \text{ MHz}19Transfer Capacitance3.5 <b>naracteristics</b> On Delay Time $V_{DD} = 300 \text{ V}, I_D = 1.1 \text{ A}, R_G = 25 \Omega$ 7Off Delay Time(Note 4, 5)21Off Fall Time(Note 4, 5)13Off Fall Time $V_{DS} = 480 \text{ V}, I_D = 1.1 \text{ A}, V_{GS} = 10 \text{ V}$ 4.8Source Charge $V_{DS} = 480 \text{ V}, I_D = 1.1 \text{ A}, V_{GS} = 10 \text{ V}$ 0.7Drain Charge(Note 4, 5)2.7 <b>e Diode Characteristics and Maximum Ratings</b> num Continuous Drain-Source Diode Forward Currentnum Pulsed Drain-Source Diode Forward Current | Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ 130         170           it Capacitance         f = 1.0 MHz          19         25           rse Transfer Capacitance          3.5         4.5           maracteristics           On Delay Time $V_{DD} = 300 \text{ V}, I_D = 1.1 \text{ A},$ 7         24           On Rise Time $V_{DD} = 300 \text{ V}, I_D = 1.1 \text{ A},$ 21         52           Off Delay Time $R_G = 25 \Omega$ (Note 4, 5)          27         64           Gate Charge $V_{DS} = 480 \text{ V}, I_D = 1.1 \text{ A},$ 4.8         6.2           Source Charge $V_{GS} = 10 \text{ V}$ 2.7            Didde Characteristics and Maximum Ratings          2.7            Puice Drain-Source Diode Forward Current           1 |

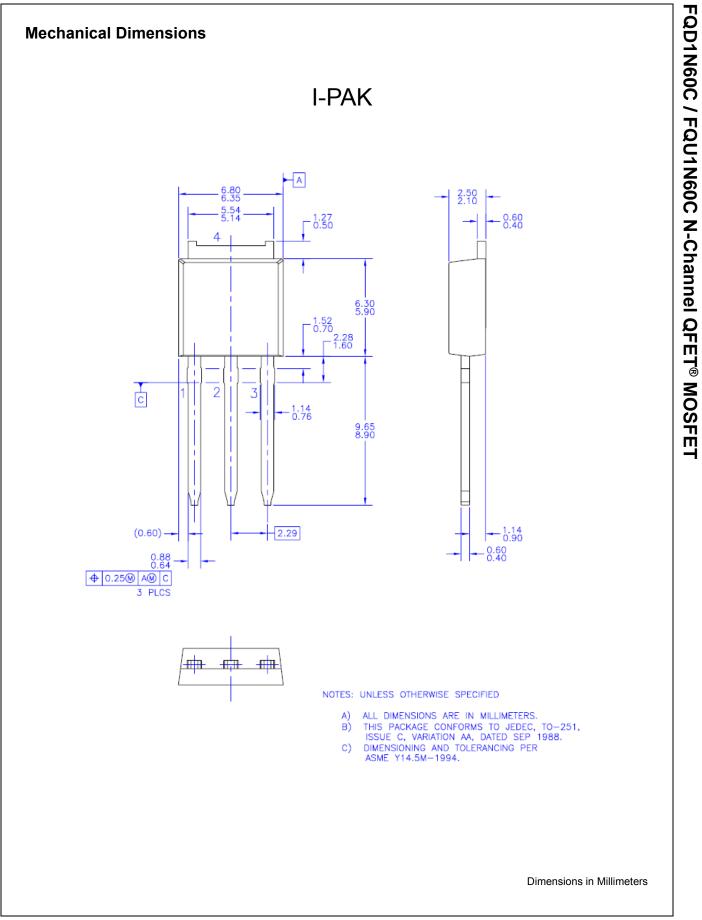

FQD1N60C / FQU1N60C N-Channel QFET® MOSFET



©2009 Fairchild Semiconductor Corporation FQD1N60C / FQU1N60C Rev. C0




www.fairchildsemi.com




©2009 Fairchild Semiconductor Corporation FQD1N60C / FQU1N60C Rev. C0

www.fairchildsemi.com









SEMICONDUCTOR

#### TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ **DEUXPEED**® Dual Cool™ EcoSPARK<sup>®</sup> EfficentMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™

F-PFS™ FRFET® Global Power Resource<sup>SM</sup> Green Bridge™ Green FPS<sup>™</sup> Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2<sup>™</sup> MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC**® **OPTOPLANAR<sup>®</sup>** 

FPS™

()<sub>®</sub> PowerTrench<sup>®</sup> PowerXS™ Programmable Active Droop™ QFET<sup>®</sup> QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM<sup>®</sup> STEALTH™ SuperFET<sup>®</sup> SuperSOT™-3 SuperSOT™-6 SuperSOT<sup>™</sup>-8 SupreMOS<sup>®</sup> SyncFET™

SYSTEM<sup>®'</sup> TinvBoost<sup>1</sup> TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®\* uSerDes™ UHC® Ultra FRFET™ **UniFET**<sup>™</sup> VCX™ VisualMax™ VoltagePlus™ XS™

Sync-Lock™

\*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

Life support devices or systems are devices or systems which, (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2 A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

#### PRODUCT STATUS DEFINITIONS Definition of Terms

| Datasheet Identification | Product Status        | Definition                                                                                                                                                                                          |  |
|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Advance Information      | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |  |
| Preliminary              | First Production      | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |  |
| No Identification Needed | Full Production       | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                               |  |
| Obsolete                 | Not In Production     | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.                                                    |  |
|                          |                       | Rev.                                                                                                                                                                                                |  |