

FSB50450A / FSB50450AS / FSB50450AT Motion SPM[®] 5 Series

Features

- UL Certified No. E209204 (UL1557)
- 500 V R_{DS(on)} = 2.4 Ω(Max) FRFET MOSFET 3-Phase Inverter with Gate Drivers and Protection
- Built-In Bootstrap Diodes Simplify PCB Layout
- Separate Open-Source Pins from Low-Side MOSFETs for Three-Phase Current-Sensing
- Active-HIGH Interface, Works with 3.3 / 5 V Logic, Schmitt-trigger Input
- · Optimized for Low Electromagnetic Interference
- HVIC Temperature-Sensing Built-In for Temperature Monitoring
- HVIC for Gate Driving and Under-Voltage Protection
- Isolation Rating: 1500 V_{rms} / min.
- Moisture Sensitive Level (MSL) 3
- RoHS Compliant

Applications

• 3-Phase Inverter Driver for Small Power AC Motor Drives

Related Source

- RD-FSB50450A Reference Design for Motion SPM 5 Series Ver.2
- AN-9082 Motion SPM5 Series Thermal Performance by Contact Pressure
- AN-9080 User's Guide for Motion SPM 5 Series V2

General Description

The FSB50450A/AS/AT is an advanced Motion SPM[®] 5 module providing a fully-featured, high-performance inverter output stage for AC Induction, BLDC and PMSM motors. These modules integrate optimized gate drive of the built-in MOSFETs (FRFET[®] technology) to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage lockouts and thermal monitoring. The built-in high-speed HVIC requires only a single supply voltage and translates the incoming logic-level gate inputs to the high-voltage, high-current drive signals required to properly drive the module's internal MOSFETs. Separate open-source MOSFET terminals are available for each phase to support the widest variety of control algorithms.

FSB50450AT

Package Marking & Ordering Information

Device Marking	Device	Package	Reel Size	Packing Type	Quantity
FSB50450A	FSB50450A	SPM5P-023	NA	Rail	15
FSB50450AS	FSB50450AS	SPM5Q-023	330mm	Tape-Reel	450
FSB50450AT	FSB50450AT	SPM5N-023	NA	Rail	15

July 2016

Absolute Maximum Ratings

Inverter Part (each MOSFET unless otherwise specified.)

Symbol	Parameter	Parameter Conditions		Unit	
V _{DSS}	Drain-Source Voltage of Each MOSFET		500	V	
*I _{D 25}	Each MOSFET Drain Current, Continuous	$T_{C} = 25^{\circ}C$	1.5	А	
*I _{D 80}	Each MOSFET Drain Current, Continuous	$T_{C} = 80^{\circ}C$	1.1	А	
*I _{DP}	Each MOSFET Drain Current, Peak	T _C = 25°C, PW < 100 μs	3.9	А	
*I _{DRMS}	Each MOSFET Drain Current, Rms	T _C = 80°C, F _{PWM} < 20 kHz	0.8	A _{rms}	
*P _D	Maximum Power Dissipation	$T_{C} = 25^{\circ}C$, For Each MOSFET	14	W	

Control Part (each HVIC unless otherwise specified.)

Symbol	Parameter	Conditions	Rating	Unit
V _{CC}	Control Supply Voltage	Applied between V_{CC} and COM	20	V
V _{BS}	High-side Bias Voltage	Applied between V_{B} and V_{S}	20	V
V _{IN}	Input Signal Voltage	Applied between V_{IN} and COM	$-0.3 \sim V_{CC} + 0.3$	V

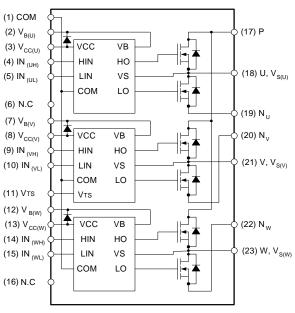
Bootstrap Diode Part (each bootstrap diode unless otherwise specified.)

Symbol	Parameter	Conditions	Rating	Unit
V _{RRMB}	Maximum Repetitive Reverse Voltage		500	V
* I _{FB}	Forward Current	$T_{\rm C} = 25^{\circ}{\rm C}$	0.5	A
* I _{FPB}	Forward Current (Peak)	$T_{C} = 25^{\circ}C$, Under 1ms Pulse Width	1.5	А

Thermal Resistance

Symbol	Parameter	Conditions	Rating	Unit
$R_{ extsf{ heta}JC}$	Junction to Case Thermal Resistance	Each MOSFET under Inverter Oper- ating Condition (1st Note 1)	8.9	°C/W

Total System


Symbol	Parameter	Conditions	Rating	Unit
ТJ	Operating Junction Temperature		-40 ~ 150	°C
T _{STG}	Storage Temperature		-40 ~ 125	°C
V _{ISO}	Isolation Voltage	60 Hz, Sinusoidal, 1 Minute, Con- nect Pins to Heat Sink Plate	1500	V _{rms}

1st Notes:

1. For the measurement point of case temperature T_{C} please refer to Figure 4.

2. Marking "* " is calculation value or design factor.

Pin Number	Pin Name	Pin Description
1	COM	IC Common Supply Ground
2	V _{B(U)}	Bias Voltage for U-Phase High-Side MOSFET Driving
3	V _{CC(U)}	Bias Voltage for U-Phase IC and Low-Side MOSFET Driving
4	IN _(UH)	Signal Input for U-Phase High-Side
5	IN _(UL)	Signal Input for U-Phase Low-Side
6	N.C	No Connection
7	V _{B(V)}	Bias Voltage for V-Phase High Side MOSFET Driving
8	V _{CC(V)}	Bias Voltage for V-Phase IC and Low Side MOSFET Driving
9	IN _(VH)	Signal Input for V-Phase High-Side
10	IN _(VL)	Signal Input for V-Phase Low-Side
11	V _{TS}	Output for HVIC Temperature Sensing
12	V _{B(W)}	Bias Voltage for W-Phase High-Side MOSFET Driving
13	V _{CC(W)}	Bias Voltage for W-Phase IC and Low-Side MOSFET Driving
14	IN _(WH)	Signal Input for W-Phase High-Side
15	IN _(WL)	Signal Input for W-Phase Low-Side
16	N.C	No Connection
17	Р	Positive DC-Link Input
18	U, V _{S(U)}	Output for U-Phase & Bias Voltage Ground for High-Side MOSFET Driving
19	NU	Negative DC-Link Input for U-Phase
20	NV	Negative DC-Link Input for V-Phase
21	V, V _{S(V)}	Output for V-Phase & Bias Voltage Ground for High-Side MOSFET Driving
22	N _W	Negative DC-Link Input for W-Phase
23	W, V _{S(W)}	Output for W Phase & Bias Voltage Ground for High-Side MOSFET Driving

Figure 1. Pin Configuration and Internal Block Diagram (Bottom View)

1st Notes:

3. Source terminal of each low-side MOSFET is not connected to supply ground or bias voltage ground inside Motion SPM[®] 5 product. External connections should be made as indicated in Figure 3.

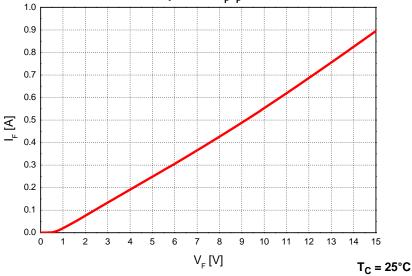
Electrical Characteristics ($T_J = 25^{\circ}C$, $V_{CC} = V_{BS} = 15$ V unless otherwise specified.)

Inverter Part (each MOSFET unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
BV _{DSS}	Drain - Source Breakdown Voltage	V _{IN} = 0 V, I _D = 1 mA (2nd Note 1)	500	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{IN} = 0 V, V _{DS} = 500 V	-	-	1	mA
R _{DS(on)}	Static Drain - Source Turn-On Resistance	$V_{CC} = V_{BS} = 15 \text{ V}, V_{IN} = 5 \text{ V}, I_D = 1.0 \text{ A}$	-	1.9	2.4	Ω
V _{SD}	Drain - Source Diode Forward Voltage	$V_{CC} = V_{BS} = 15V, V_{IN} = 0 V, I_{D} = -1.0 A$	-	-	1.2	V
t _{ON}		$V_{PN} = 300 \text{ V}, V_{CC} = V_{BS} = 15 \text{ V}, I_D = 1.0 \text{ A}$ $V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V}, \text{ Inductive Load L} = 3 \text{ mH}$ High- and Low-Side MOSFET Switching (2nd Note 2)	-	1250	-	ns
t _{OFF}			-	680	-	ns
t _{rr}	Switching Times		-	200	-	ns
E _{ON}			-	60	-	μJ
E _{OFF}				10	-	μJ
RBSOA	Reverse Bias Safe Oper- ating Area	$ V_{PN} = 400 \text{ V}, \text{ V}_{CC} = \text{V}_{BS} = 15 \text{ V}, \text{ I}_{D} = \text{I}_{DP}, \text{ V}_{DS} = \text{BV}_{DSS}, $ T_J = 150°C High- and Low-Side MOSFET Switching (2nd Note 3)		Full	Square	

Control Part (each HVIC unless otherwise specified.)

Symbol	Parameter		Conditions	Min	Тур	Max	Unit
I _{QCC}	Quiescent V _{CC} Current	V _{CC} = 15 V, V _{IN} = 0 V	Applied between V_{CC} and COM	-	-	200	μΑ
I _{QBS}	Quiescent V _{BS} Current	V _{BS} = 15 V, V _{IN} = 0 V	Applied between V _{B(U)} - U, V _{B(V)} - V, V _{B(W)} - W	-	-	100	μΑ
I _{PCC}	Operating V _{CC} Supply Current	V _{CC} - COM	V_{CC} = 15 V, f_{PWM} = 20 kHz, duty = 50%, Applied to One PWM Signal Input for Low-Side	-	-	800	μΑ
I _{PBS}	Operating V _{BS} Supply Current	$V_{B(U)} - V_{S(U)}, V_{B(V)}$ - $V_{S(V)}, V_{B(W)}$ - $V_{S(W)}$	$V_{CC} = V_{BS} = 15 \text{ V}, f_{PWM} = 20 \text{ kHz},$ Duty = 50%, Applied to One PWM Signal Input for High-Side	-	-	700	μΑ
UV _{CCD}	Low-Side Under-Voltage	V _{CC} Under-Voltage	Protection Detection Level	7.4	8.0	9.4	V
UV _{CCR}	Protection (Figure 8)	V _{CC} Under-Voltage Protection Reset Level		8.0	8.9	9.8	V
UV _{BSD}	High-Side Under-Voltage	V _{BS} Under-Voltage	Protection Detection Level	7.4	8.0	9.4	V
UV _{BSR}	Protection (Figure 9)	V _{BS} Under-Voltage	Protection Reset Level	8.0	8.9	9.8	V
V _{TS}	HVIC Temperature Sens- ing Voltage Output	V _{CC} = 15 V, T _{HVIC} = 25°C (2nd Note 4)		600	790	980	mV
V _{IH}	ON Threshold Voltage	Logic HIGH Level	Applied between V and COM	-	-	2.9	V
V _{IL}	OFF Threshold Voltage	Logic LOW Level	Applied between V_{IN} and COM	0.8	-	-	V


Bootstrap Diode Part (each bootstrap diode unless otherwise specified.)

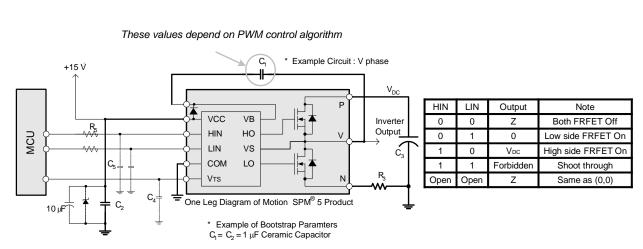
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{FB}	Forward Voltage	I _F = 0.1 A, T _C = 25°C (2nd Note 5)	-	2.5	-	V
t _{rrB}	Reverse Recovery Time	I _F = 0.1 A, T _C = 25°C	-	80	-	ns

4

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{PN}	Supply Voltage	Applied between P and N	-	300	400	V
V _{CC}	Control Supply Voltage	Applied between V_{CC} and COM	13.5	15.0	16.5	V
V _{BS}	High-Side Bias Voltage	Applied between V_B and V_S	13.5	15.0	16.5	V
V _{IN(ON)}	Input ON Threshold Voltage	Applied between P and N Applied between V_{CC} and COM Applied between V_B and V_S e Applied between V_{IN} and COM ing $V_{CC} = V_{BS} = 13.5 \sim 16.5 \text{ V}, T_J \leq 150^{\circ}\text{C}$	3.0	-	V _{CC}	V
V _{IN(OFF)}	Input OFF Threshold Voltage		0	-	0.6	V
t _{dead}	Blanking Time for Preventing Arm-Short	V_{CC} = V_{BS} = 13.5 ~ 16.5 V, T _J \leq 150°C	1.0	-	-	μS
f _{PWM}	PWM Switching Frequency	$T_{\rm J} \leq 150^{\circ} C$	-	15	-	kHz

Built-In Bootstrap Diode $V_F - I_F$ Characteristic

2nd Notes:


1. BV_{DSS} is the absolute maximum voltage rating between drain and source terminal of each MOSFET inside Motion SPM[®] 5 product. V_{PN} should be sufficiently less than this value considering the effect of the stray inductance so that V_{PN} should not exceed BV_{DSS} in any case.

t_{ON} and t_{OFF} include the propagation delay of the internal drive IC. Listed values are measured at the laboratory test condition, and they can be different according to the field applications due to the effect of different printed circuit boards and wirings. Please see Figure 6 for the switching time definition with the switching test circuit of Figure 7.

3. The peak current and voltage of each MOSFET during the switching operation should be included in the Safe Operating Area (SOA). Please see Figure 7 for the RBSOA test circuit that is same as the switching test circuit.

4. V_{ts} is only for sensing-temperature of module and cannot shutdown MOSFETs automatically.

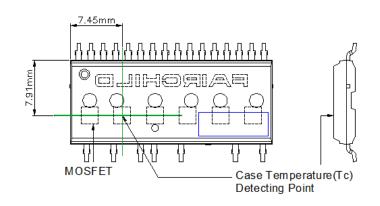
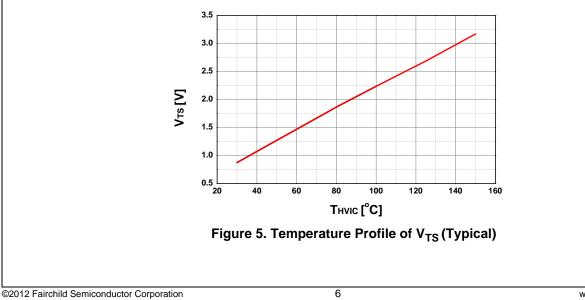
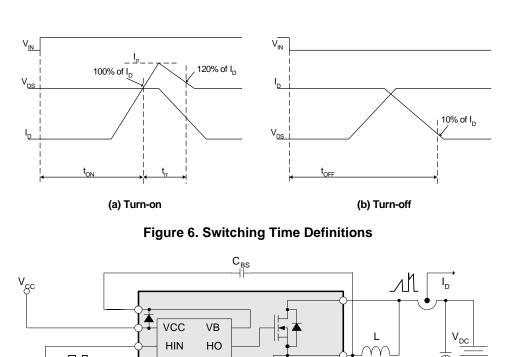
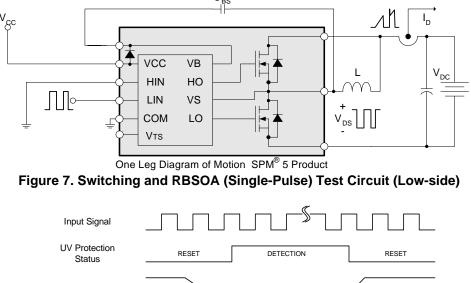

5. Built-in bootstrap diode includes around 15 $\,\Omega\, resistance$ characteristic. Please refer to Figure 2.

Figure 3. Recommended MCU Interface and Bootstrap Circuit with Parameters

3rd Notes:

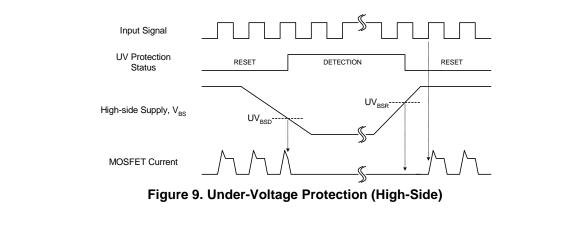

- 1. Parameters for bootstrap circuit elements are dependent on PWM algorithm. For 15 kHz of switching frequency, typical example of parameters is shown above.
- 2. RC-coupling (R5 and C5) and C4 at each input of Motion SPM 5 product and MCU (Indicated as Dotted Lines) may be used to prevent improper signal due to surge-noise. 3. Bold lines should be short and thick in PCB pattern to have small stray inductance of circuit, which results in the reduction of surge-voltage. Bypass capacitors such as C1, C2 and C3 should have good high-frequency characteristics to absorb high-frequency ripple-current.

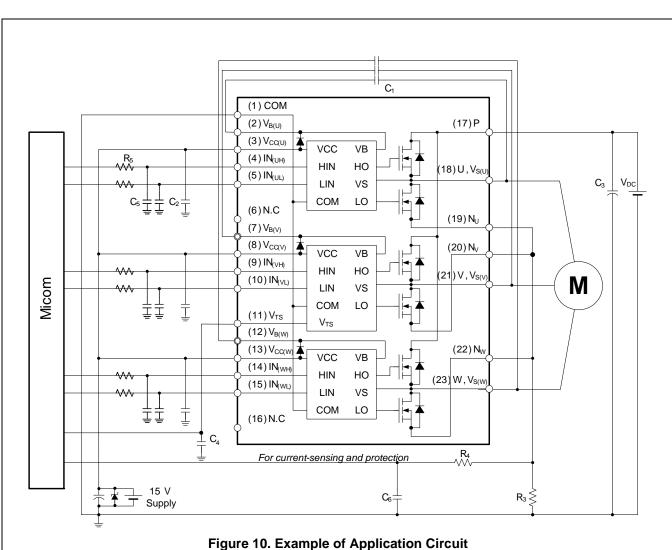



Figure 4. Case Temperature Measurement

3rd Notes:

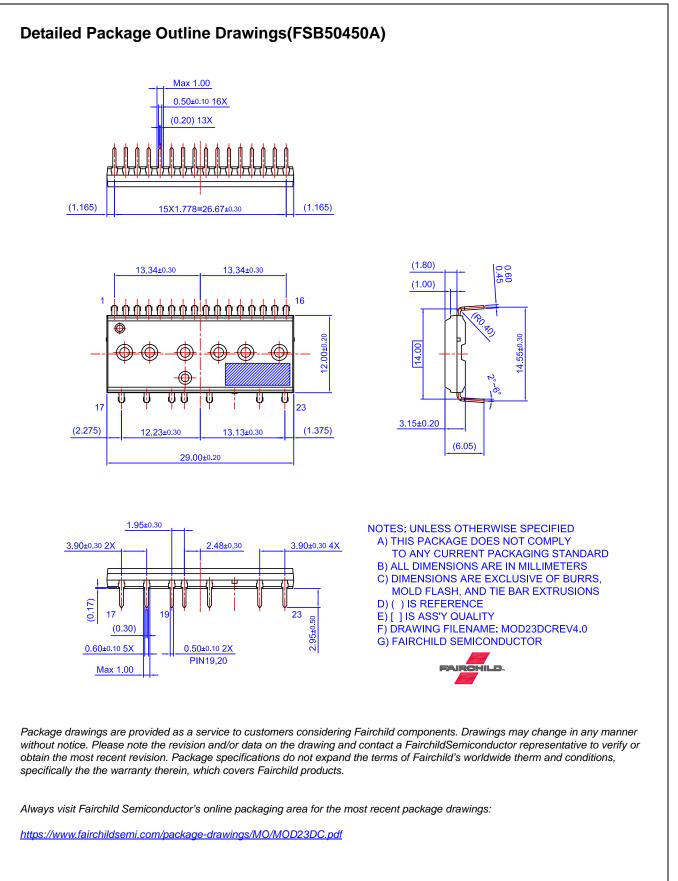
4. Attach the thermocouple on top of the heat-sink of SPM 5 package (between SPM 5 package and heatsink if applied) to get the correct temperature measurement.

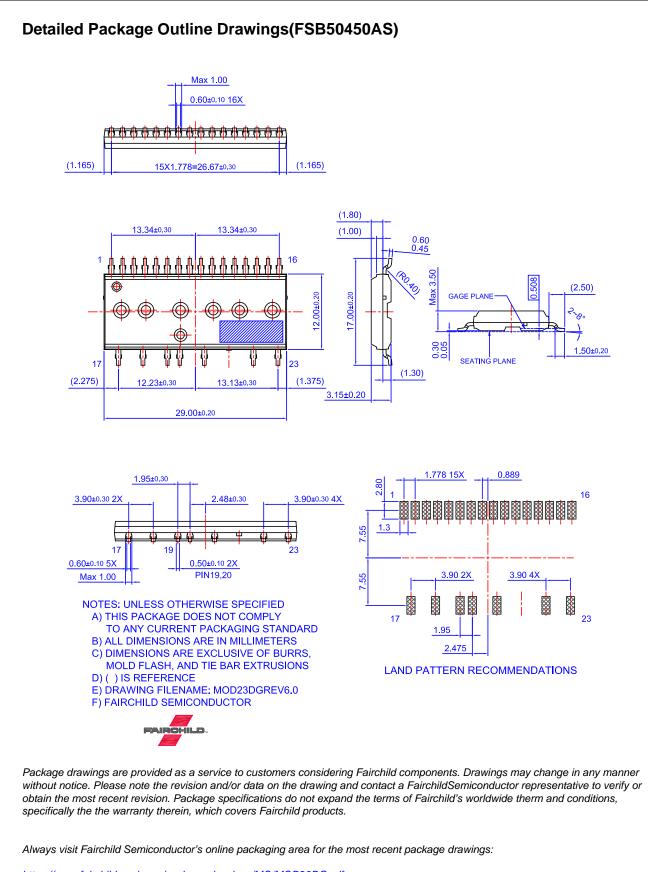



Low-side Supply, V_{cc}

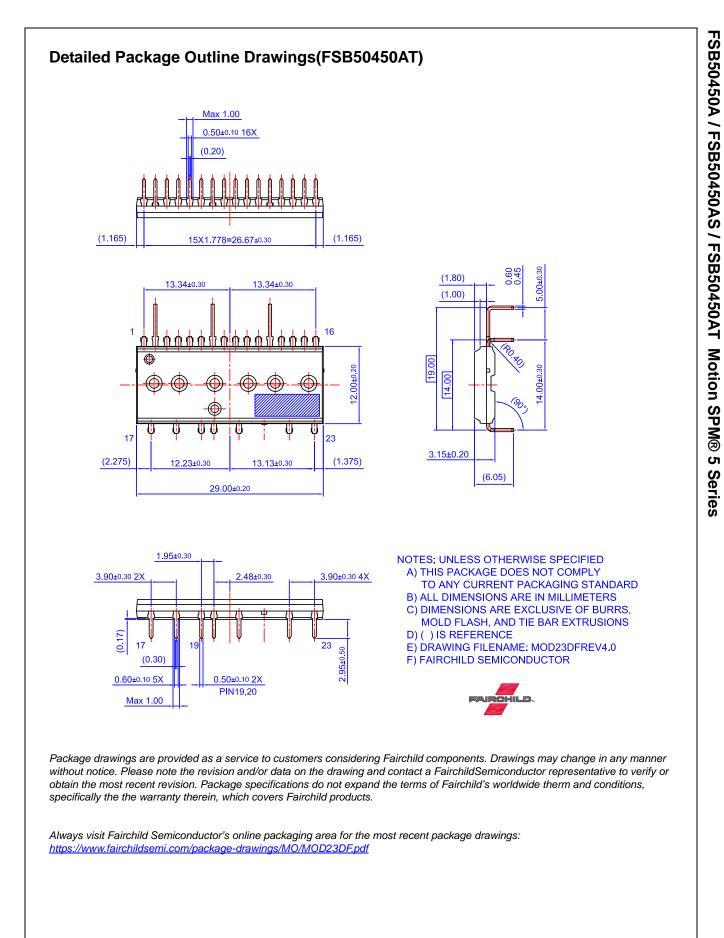
UV

4th Notes:


1. About pin position, refer to Figure 1.


2. RC-coupling (R₅ and C₅, R₄ and C₆) and C₄ at each input of Motion SPM[®] 5 product and MCU are useful to prevent improper input signal caused by surge-noise.

3. The voltage-drop across R₃ affects the low-side switching performance and the bootstrap characteristics since it is placed between COM and the source terminal of the lowside MOSFET. For this reason, the voltage-drop across R_3 should be less than 1 V in the steady-state.


4. Ground-wires and output terminals, should be thick and short in order to avoid surge-voltage and malfunction of HVIC.


5. All the filter capacitors should be connected close to Motion SPM 5 product, and they should have good characteristics for rejecting high-frequency ripple current.

FSB50450A / FSB50450AS / FSB50450AT Motion SPM® 5 Series

FSB50450A / FSB50450AS / FSB50450AT Motion SPM® 5 Series