April 2009

Features

SEMICONDUCTOR

- Linearly Decreasing PWM Frequency
- Green Mode Under Light-load and Zero-Load Conditions
- Constant Voltage (CV) and Constant Current (CC) around ±25% without Secondary Side Feedback Circuitry
- Precise Constant Voltage (CV) at ±5% by Secondary Side Feedback Circuitry
- Low Startup Current: 8µA
- Low Operating Current: 3.6mA
- Leading-Edge Blanking (LEB)
- Constant Power Limit
- Universal AC Input Range
- Synchronized Slope Compensation
- 140°C OTP Sensor with Hysteresis
- V_{DD} Over-Voltage Clamping
- Cycle-by-Cycle Current Limiting
- Under-Voltage Lockout (UVLO)
- Fixed PWM Frequency with Hopping
 - Gate Output Maximum Voltage Clamped at 17V

Applications

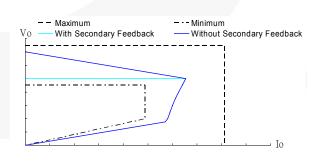
www.D

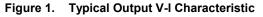
General-purpose switching-mode power supplies and flyback power converters, such as:

- Battery Chargers for Cellular Phones, Cordless Phones, PDAs, Digital Cameras, Power Tools
- Power Adapters for Ink Jet Printers, Video Game Consoles, Portable Audio Players
- Open-Frame SMPS for TV/DVD Standby and Auxiliary Supplies, Home Appliances, Consumer Electronics
- Replacement for Linear Transformers and RCC SMPS
- PC 5V Standby Power

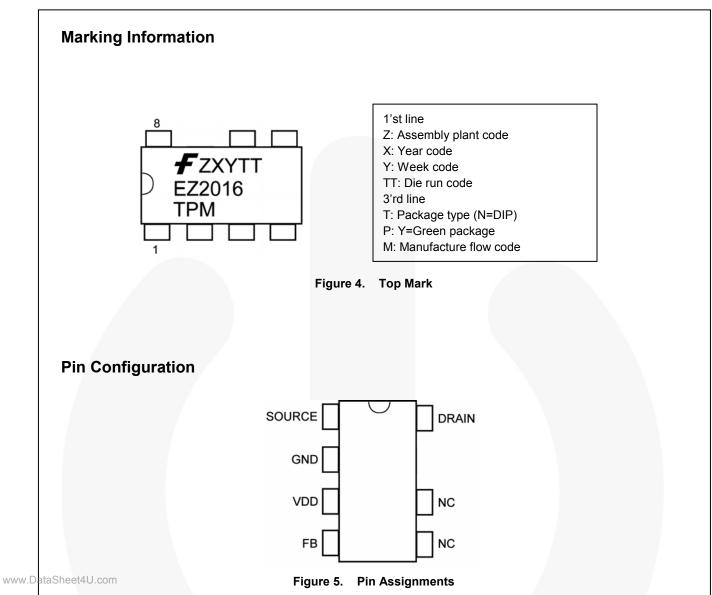
Related Resources

■ <u>AN-6081 — Low-Power Green-Mode EZSWITCHTM</u> <u>without Secondary Feedback</u>


Description


This highly integrated PWM controller provides several features to enhance the performance of low-power flyback converters. To minimize standby power consumption, a proprietary green-mode function provides off-time modulation to linearly decrease the switching frequency under light-load and zero-load conditions. This green mode enables the power supply to meet international power conservation requirements. The supply voltage V_{DD} is also used for feedback compensation, to regulate the output voltage without requiring a conventional TL431 and a photo-coupler. A typical output CV/CC characteristic is shown in Figure 1.


Another advantage of the FSEZ2016 is that the typical startup current is only 8μ A, while the typical operating current can be as low as 3.6mA. A large startup resistance can be used to achieve even higher power conversion efficiency.


FSEZ2016 integrates frequency hopping function internally to reduce EMI emissions with minimum line filters. Also, built-in synchronized slope compensation maintains the stability of peak current-mode control. Proprietary internal compensation ensures constant output power limiting over a universal range of AC input voltages, from $90V_{AC}$ to $264V_{AC}$.

The FSEZ2016 provides many protection functions. Pulse-by-pulse current limiting ensures constant output current, even if a short circuit occurs. The internal protection circuit disables PWM output if V_{DD} exceeds 22.7V. The gate output is clamped at 17V to protect the power MOS from over-voltage damage. The built-in over-temperature protection (OTP) function shuts down the controller at 140°C with a 30°C hysteresis.

Pin Definitions

Pin #	Name	Description
1	SOURCE	Power MOSFET source. This is the high-voltage power MOSFET source.
2	GND	Ground
3	VDD	Power supply
4	FB	The FB pin provides feedback information to the internal PWM comparator. This feedback is used to control the duty cycle. When no feedback is provided, this pin is left open.
5	NC	No connection
6	NC	No connection
8	DRAIN	Power MOSFET drain. This is the high-voltage power MOSFET drain.

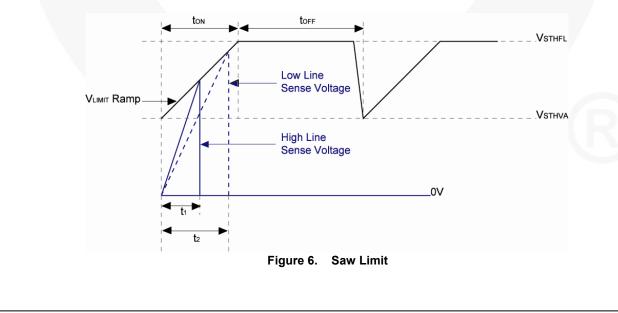
Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Min.	Max.	Unit	
V _{DD}	DC Supply Voltage ^(1, 2)	DC Supply Voltage ^(1, 2)			V
V _{FB}	Input Voltage to FB Pin	Input Voltage to FB Pin			V
V _{SENSE}	Input Voltage to Sense	Pin	-0.3	7.0	V
PD	Power Dissipation (T _A =		1.2	W	
heta ja	Thermal Resistance (Junction to Air)			98.7	°C/W
TJ	Operating Junction Temperature			150	°C
T _{STG}	Storage Temperature Range			150	°C
TL	Lead Temperature (Wave Soldering or IR, 10 Seconds) 260				°C
ESD	Electrostatic	Human Body Model (JEDEC:JESD22_A114)		2	KV
ESD	Discharge Capability	Charged Device Model (JEDEC:JESD22_C101)		1	KV

Notes:

1. All voltage values, except differential voltages, are given with respect to GND pin.


2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.

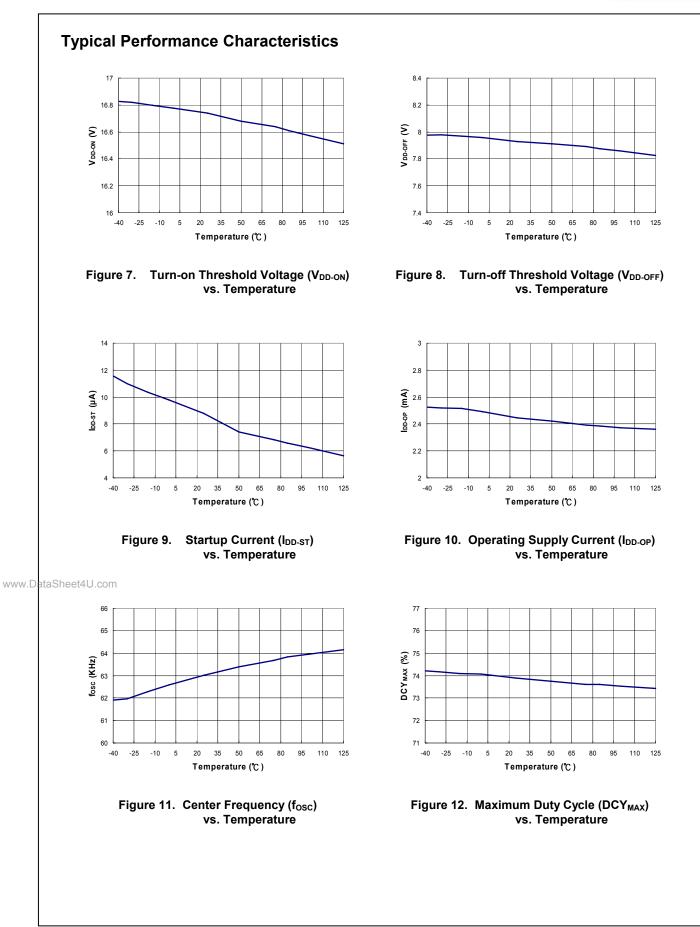
www.DataSheet4U.com

Electrical Characteristics

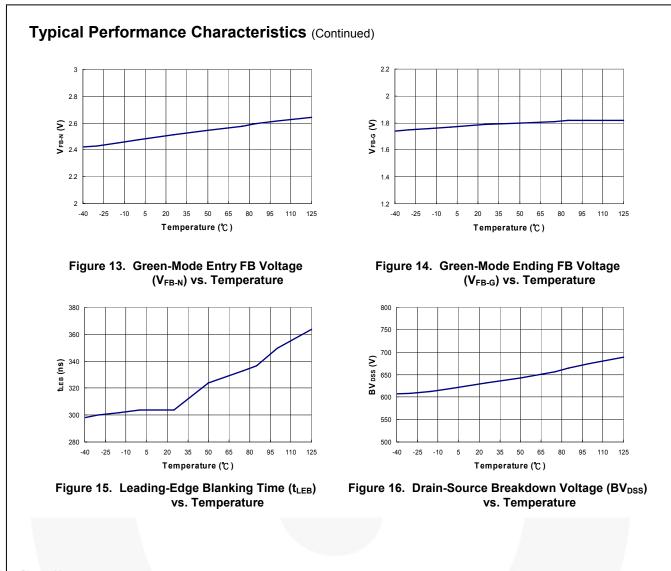
Unless otherwise noted, $V_{\text{DD}}\text{=}15V$ and $T_{\text{A}}\text{=}25^{\circ}\text{C}.$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{DD} Sectio	on			•		
M	Continuously Operation Voltage	With Secondary Feedback			20.0 22.7	V
V _{DD-OP}	Continuously Operation Voltage	Without Secondary Feedback				
$V_{\text{DD-ON}}$	Turn-on Threshold Voltage		16	17	18	V
$V_{\text{DD-OFF}}$	Turn-off Threshold Voltage		7.5	8.0	8.5	V
I _{DD-ST}	Startup Current	V _{DD} =V _{DD-ON} – 0.1V		8	20	μA
I _{DD-OP}	Operating Supply Current	C _L =1nF		3.6	4.6	mA
$V_{\text{DD-G-OFF}}$	V _{DD} Low-threshold Voltage to Exit Green-off Mode			V _{DD-OFF} +1.3		V
Feedback	Input Section					
A _V	Input-Voltage to Current-Sense Attenuation			0.35		V/V
Z _{FB}	Input Impedance	I _{FB} =0.1mA to 0.2mA		4.6		kΩ
VFB-OPEN	Open-Loop Voltage		4.5			V
V _{DD-FB}	V _{DD} Feedback Threshold Voltage	FB is Open	20.7	22.7	24.7	V
V DD-FB		I _{FB} =0.4mA	18.4	20.4	22.4	V
Current-S	ense Section					
t _{PD}	Propagation Delay			100	150	ns
		V _{DD} =18V		0.83		V
VSTHVA	Current Limit Valley Threshold Voltage	V _{DD} =15V		0.74		V
		V _{DD} =10V		0.59		V
		V _{DD} =18V		1.15		V
VSTHFL	Current Limit Flat Threshold Voltage	V _{DD} =15V		1.04		V
		V _{DD} =10V		0.84		V
heet 4LEB com	Leading-Edge Blanking Time		220	310	400	ns

FSEZ2016 — Low-Power Green-Mode EZSWITCHTM without Secondary Side Feedback Circuitry


www.D


Electrical Characteristics (Continued)


Unless otherwise noted, V_{DD} =15V and T_A=25°C.

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Units
Oscillator	Section				1	•	
,	E	Center Frequency		60	65	70	
f _{osc}	Frequency	Hopping Range		±4.1	±4.7	±5.3	- kHz
t _{HOP}	Hopping Peric	d			4		ms
f _{OSC-G}	Green Mode Frequency			14.5	17.0	19.5	KHz
V_{FB-N}	Green Mode E	Entry FB Voltage		2.3	2.6	2.9	V
$V_{\text{FB-G}}$	Green Mode E	nding FB Voltage			V _{FB-N} - 0.75		V
V_{FB-Z}	Zero Duty Cyc	le FB Voltage			1.4		V
S_{G}	Green Mode N	Iodulation Slope		40	70	100	Hz/m
f _{DV}	Frequency Va	riation vs. V _{DD} Deviation	V _{DD} =10 to 22V			5	%
f _{DT}	Frequency Va Deviation	riation vs. Temperature	T _A = -20 to 85°C		1.5	5.0	%
Internal MC	OSFET Sectio	n					
DCY _{MAX}	Maximum Dut	y Cycle		69	74	79	%
BV _{DSS}	Drain-Source	Breakdown Voltage	I _D =250µA, V _{GS} =0V	600			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Vo Coefficient	oltage Temperature	I _D =250µA, Referenced to 25°C		0.6		V/°C
Is	Maximum Cor Diode Forward	tinuous Drain-Source I Current				1	A
I _{SM}	Maximum Puls Forward Curre	sed Drain-Source Diode ent				4	A
R _{DS(ON)}	Static Drain-S	ource On-Resistance	I _D =0.5A, V _{GS} =10V		9.3	11.5	Ω
la sa	Drain Source	Lookago Current	V _{DS} =600V, V _{GS} =0V, T _C =25°C			5	μA
I _{DSS} heet4U.com	Dialii-Source	Leakage Current	V _{DS} =480V, V _{GS} =0V, T _C =100°C			10	μA
t _{D-ON}	Turn-on Delay	Time	V_{DS} =300V, I_{D} =1.1A, R_{G} =25 Ω		7	24	ns
tr	Rise Time				21	52	ns
t _{D-OFF}	Turn-off Delay	Time			13	36	ns
t _f	Fall Time				27	64	ns
C _{ISS}	Input Capacita	ince	V_{GS} =0V, V_{DS} =25V, f_{S} =1MHz		130	170	pF
C _{OSS}	Output Capac	itance			19	25	pF
Over Temp	erature Prote	ction (OTP)		1.5			
T _{OTP}	Protection Jur	ction Temperature			140		°C
T _{OTP-RESTART}	Restart Juncti	on Temperature			110		°C

FSEZ2016 — Low-Power Green-Mode EZSWITCHTM without Secondary Side Feedback Circuitry

www.DataSheet4U.com

Operation Description

FSEZ2016 devices integrate functions for low-power switch-mode power supplies. The following descriptions highlight the key features of the FSEZ2016.

Startup Current

The required startup current is only 8µA. This allows a high-resistance, low-wattage startup resistor to supply the controller's startup power. A 1.5M Ω /0.25W startup resistor can be used over a wide input range (100V-240V_{AC}) with very little power loss.

Operating Current

The operating current is normally 3.6mA, which results in higher efficiency and reduces the required V_{DD} hold-up capacitance. A 10μ F/25V V_{DD} hold-up capacitor can be used over a wide input range (90V-264V_{AC}) with very little power loss.

Green-Mode Operation

The proprietary green-mode function provides off-time modulation to linearly decrease the switching frequency under light-load and zero-load conditions. The on-time is limited to provide better protection against brownouts and other abnormal conditions. Power supplies using the FSEZ2016 can meet international restrictions regarding standby power-consumption.

Constant Voltage (CV) and Constant Current (CC) without Feedback

The FSEZ2016 can tightly regulate the output voltage and provide over-current protection without requiring secondary-side feedback signals. For improved CV and CC accuracy, the transformer leakage inductance should be reduced as much as possible.

www.DataSheet4U.

Over-Temperature Protection (OTP)

The FSEZ2016 has a built-in temperature-sensing circuit to shut down PWM output if the junction temperature exceeds 140°C. While PWM output is shut down, the V_{DD} voltage gradually drops to the UVLO voltage. Some of the internal circuits are shut down, and V_{DD} gradually starts increasing again. When V_{DD} reaches 17V, all the internal circuits, including the temperature-sensing circuit, operate normally. If the junction temperature is still higher than 140°C, the PWM controller shuts down immediately. This situation continues until the temperature drops below 110°C. The PWM output is then turned back on. The temperature hysteresis window for the OTP circuit is 30°C.

V_{DD} Over-Voltage Clamping

 V_{DD} over-voltage clamping is built in to prevent damage from over-voltage conditions. When V_{DD} exceeds 22.7V, PWM output is shut down. Over-voltage conditions may be caused by an open photo-coupler loop or a short circuit in the output.

Oscillator Operation

The oscillation frequency is fixed at 65KHz.

Leading-Edge Blanking (LEB)

Each time the power MOSFET is switched on, a turn-on spike occurs at the sense-resistor. To avoid premature termination of the switching pulse, a 310ns leadingedge blanking time is built in. Conventional RC filtering is not necessary. During this blanking period, the current-limit comparator is disabled and cannot switch off the gate drive.

Constant Output Power Limit

When the SENSE voltage across the sense resistor Rs reaches the threshold voltage, the output GATE drive is turned off following a small propagation delay, tpp. This propagation delay introduces an additional current proportional to t_{PD}•V_{IN}/L_P. The propagation delay is nearly constant, regardless of the input line voltage VIN. Higher input line voltages result in larger additional currents. Under high input-line voltages, the output power limit is higher than under low input-line voltages. Over a wide range of AC input voltages, the variation can be significant. To compensate for this, the threshold voltage is adjusted by adding a positive ramp (Vlimit_ramp). This ramp signal can vary from 0.74V to 1.04V and flattens out at 1.04V. A smaller threshold voltage forces the output GATE drive to terminate earlier, reducing total PWM turn-on time and making the output power equal to that of the low line input. This proprietary internal compensation feature ensures a constant output power limit over a wide range of AC input voltages (90V-264V_{AC}).

Under Voltage Lockout (UVLO)

The turn-on/turn-off thresholds are fixed internally at 17V and 8V. To enable the FSEZ2016 during startup, the hold-up capacitor must first be charged to 17V through the startup resistor. The hold-up capacitor continues to supply V_{DD} before energy can be delivered from the auxiliary winding of the main transformer. V_{DD} must not drop below 8V during this startup process. This UVLO hysteresis window ensures that the hold-up capacitor can adequately supply V_{DD} during startup.

Gate Output

The BiCMOS output stage is a fast totem-pole gate driver. Cross-conduction is avoided to minimize heat dissipation, increase efficiency, and enhance reliability. The output driver is clamped by an internal 17V Zener diode to protect the power MOSFET transistors against any harmful over-voltage gate signals.

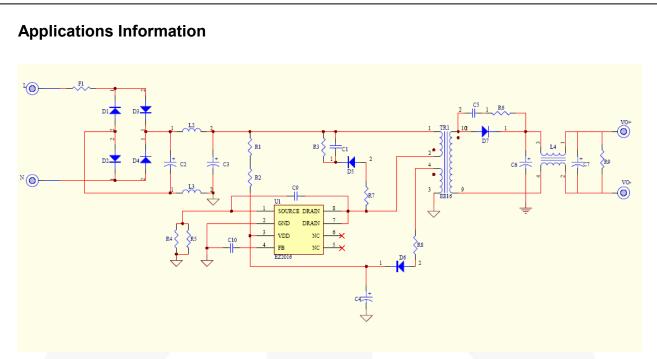
SEZ2016 — Low-Power Green-Mode EZSWITCHTM without Secondary Side Feedback Circuitry

Operation Description (Continued)

Slope Compensation

The sensed voltage across the current sense resistor is used for current mode control and pulse-by-pulse current limiting. The built-in slope compensation improves power supply stability. Furthermore, it prevents sub-harmonic oscillations that normally would occur because of peak current mode control. A positively sloped, synchronized ramp is activated with every switching cycle. The slope of the ramp is:

$0.33 \times Duty$


Duty(max.)

Noise Immunity

(1)

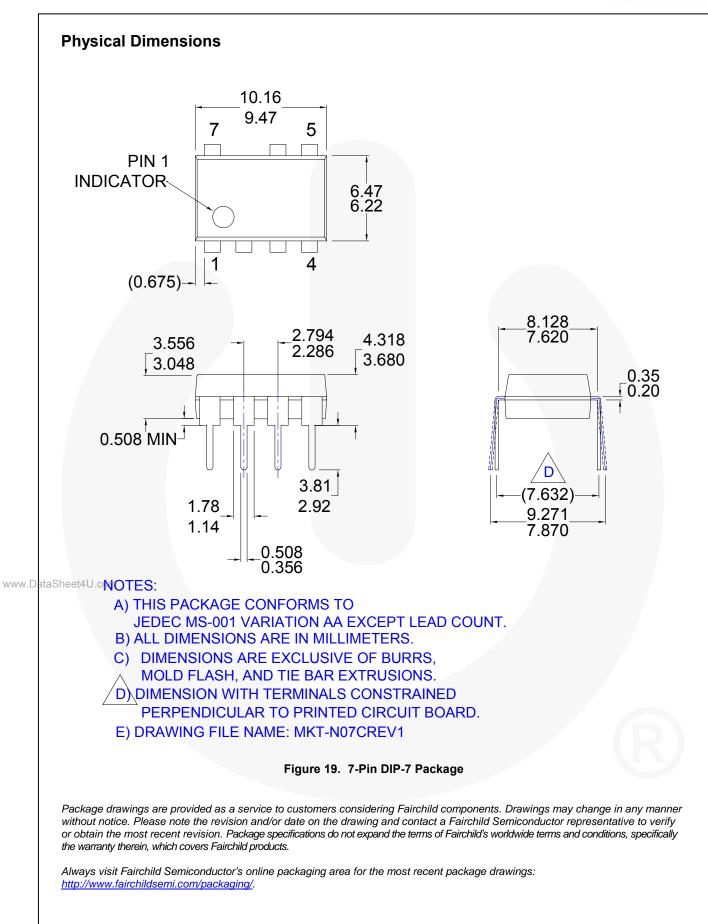
Noise from the current sense or the control signal may cause significant pulse-width jitter, particularly in continuous-conduction mode. Slope compensation helps alleviate this problem. Good placement and layout practices should be followed. The designer should avoid long PCB traces and component leads. Compensation and filter components should be located near the FSEZ2016. Finally, increasing the power-MOS gate resistance is advised.

www.DataSheet4U.com

BOM

	Reference	Component	Reference	Component		
	C1	CC 4.7nF/1kV	F1	R 1Ω/1W		
	C2	EC 4.7µF/400V 105°C	L2	Inductor 4.7µH		
	C3	EC 4.7µF/400V 105°C	L3	Inductor 470µH		
	C4	EC 10µF/50V 105°C	L4	Inductor 80µH		
	C5	CC 1nF/1kV	R1	R 750kΩ		
	C6	EC 560µF/10V	R2	R 750kΩ		
ww.Datas	6h C7 t4U.com	EC 560µF/10V	R3	R 100kΩ		
	C9	Open	R4	R 10Ω		
	C10	CC 1nF	R5	R 2.2Ω		
	D1	Diode 1N4007	R6	R 47Ω		
	D2	Diode 1N4007	R7	R 270Ω		
	D3	Diode 1N4007	R8	R 0Ω		
	D4	Diode 1N4007	R9	R 2kΩ		
	D5	Diode FR107	T1	Transformer EE-16		
	D6	Diode FR102	U1	IC FSEZ2016		
	D7	Diode SB560				

FSEZ2016 — Low-Power Green-Mode EZSWITCHTM without Secondary Side Feedback Circuitry



BOM

	Reference	Component	Reference	Component
C1	1	CC 4.7nF/1kV	L3	Inductor 470µH
C2	2	EC 4.7µF/400V 105°C	L4	Inductor 80µH
C3	3	EC 4.7µF/400V 105°C	R1	R 750kΩ
C4	4	EC 10µF/50V 105°C	R2	R 750kΩ
ww.DataShee	t4U.com	CC 1nF/1kV	R3	R 100kΩ
C6	6	EC 560µF/10V	R4	R 10Ω
C7	7	EC 560µF/10V	R5	R 2.2Ω
C8	3	CC 2.2nF	R6	R 47Ω
C9	9	Open	R7	R 270Ω
C1	10	CC 1nF	R8	R 0Ω
D1	1	Diode 1N4007	R9	R 2kΩ
D2	2	Diode 1N4007	R10	R 560Ω
D3	3	Diode 1N4007	R11	R 20kΩ
D4	4	Diode 1N4007	R12	R 20kΩ
D5	5	Diode FR107	R13	R 20kΩ
D6	6	Diode FR102	T1	Transformer EE-16
D7	7	Diode SB560	U1	IC FSEZ2016
F1		R 1Ω/1W	U2	IC PC817
L2	2	Inductor 4.7µH	U3	IC TL431

SEZ2016 — Low-Power Green-Mode EZSWITCHTM without Secondary Side Feedback Circuitry

S

EZ2016

Low-Power Green-Mode EZSWITCHTM without Secondary Side Feedback Circuitry

Rev. 140