

Doc# : D-FT6610-0812 (Version : 2.0) DDCN# : DC-0903003

Date: 8-Apr-09

FT6610 Universal High Brightness LED Driver FocalTech Systems Co., Ltd support@focaltech-systems.com

THIS DOCUMENT CONTAINS INFORMATION PROPRIETARY TO FOCALTECH SYSTEMS CO.,LTD., AND MAY NOT BE REPRODUCED, DISCLOSED OR USED IN WHOLE OR PART WITHOUT THE EXPRESS WRITTEN PERMISSION OF FOCALTECH SYSTEMS CO.,LTD.

Copyright © 2009, FocalTech Systems CO.,Ltd

All rights reserved

FocalTech

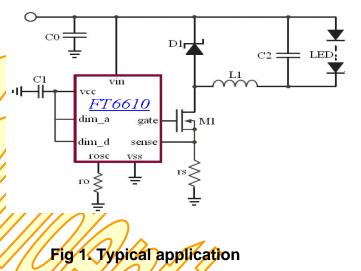
Product Data Sheet

Doc# : D-FT6610-0812 (Version : 2.0)

Index

1). Features :	3
2). Applications :	3
3). Typical Application General Description :	3
4). Block Diagram :	4
5). Pin Description :	
6). Pin configuration :	5
7). Absolute Maximum Ratings :	5
8). Thermal Resistance	5
9). Electrical Characteristics :	6
(Over recommended operating conditions unless otherwise specified T _A = 25°C)	
10). Application Information	7
11). LED Driver Operation :	8
12). Supply Current :	9
13). Setting Light Output :	9
14). Dimming :	9
15). Programming Operating Frequency	9
 16). Power Factor Correction :	10
17). Inductor Design :	10
18). Input Bulk Capacitor :	12
19). Enable :	12
20). Output Open Circuit Protection :	12
21). Typical application wave :	
22). Order Information :	
23). Package information :	15
23.1). Sop16 L outline information	15
23.2). Sop 8L outline information	16

Product Data Sheet


Doc#: D-FT6610-0812 (Version: 2.0)

1). Features :

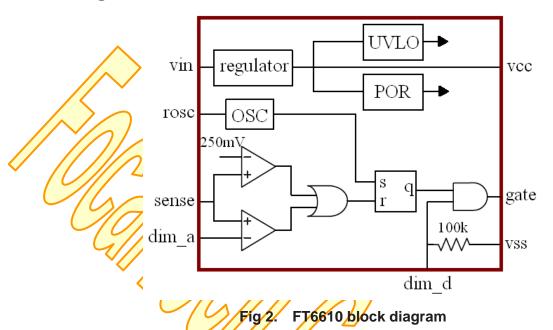
- >90% Efficiency
- ♦ 8V to 450 input range
- Constant-current LED driver
- Applications from a few mA to more than 1A Output
- LED string from one to hundreds of diodes
- PWW Low-Frequency Dimming via Enable pin
- Input Voltage Surge ratings up to 700V
- Constant offtime or constant frequency PWM

2). Applications :

- DC/DC or AC/DC/LED Driver applications
- ◆ RGB Backlighting LED Driver
- Back Lighting of Flat Panel Displays
- ◆ General purpose constant current source
- Signage and Decorative LED Lighting
- Automotive
- Chargers

3). Typical Application General Description

The FT6610 is a PWM high-efficiency LED driver control IC. It allows efficient operation of High Brightness (HB) LEDs from voltage sources ranging from 8VDC up to 450VDC. The FT6610 controls an external MOSFET at fixed switching frequency up to 300kHz. The frequency (*offtime*) can be programmed using a single resistor. The LED string is driven at constant current rather than constant voltage, thus providing constant light output and enhanced reliability. The output current can be programmed between a few milliamps and up to more than 1.0A.


The FT6610 uses a rugged high voltage junction isolated process that can withstand an input voltage surge of up to 450V. Output current to an LED string can be programmed to any value between zero and its maximum value by applying an external control voltage at the linear dimming control input of the FT6610. The FT6610 provides a low-frequency PWM dimming input that can accept an external control signal with a duty ratio of 0-100% and a frequency of up to a few kHz.

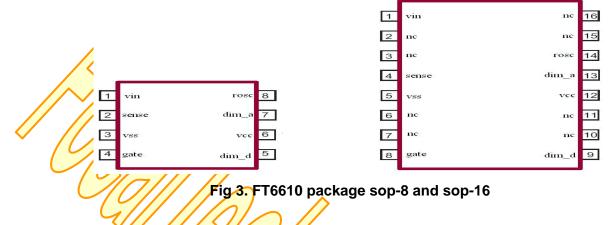
Doc#: D-FT6610-0812 (Version: 2.0)

DDCN# : DC-0903003

4). Block Diagram :

5). Pin Description :

Pin	SOIC-16	SOIC-8	Description
VIN	1	1	Input voltage 8V to 450V DC
SENSE	4	2	Sense LED string current
VSS	5	3	Device ground
GATE	8	4	Drives the gate of the external MOSEET
DIM_D	9	5	Low Frequency PWM Dimming pin, also Enable input. Internal $100k\Omega$ pull-down to VSS
VCC	12	6	Internally regulated supply voltage (7.5v nominal). Can supply up to 1mA for external circuitry. A sufficient storage capacitor is used to provide storage when the rectified AC input is near the zero crossings.
DIM_A	13	7	Linear dimming by changing the current limit threshold at current sense comparator
Rosc	14	8	Oscillator control. A resistor connected between this pin and ground sets the PWM frequency, ,_Connected between this pin and gate sets the offtime


No Connects (NC) are not internally connected and may be used for pass-thru PCB traces.

Doc#: D-FT6610-0812 (Version: 2.0)

DDCN# : DC-0903003

6). Pin configuration :

7). Absolute Maximum Ratings;

Parameter Value	
VIN to VSS	-0.5V to +470V
SENSE	-0.3V to (VCC + 0.3V)
DIM_A, DIM_D to VSS	-0.3V to (VCC - 0.3V)
GATE to VSS	-0.3V to (VCC + 0.3V)
VCCmax	13.5V
Continuous Power Dissipation ($TA = +25^{\circ}C$)	
16-Pin SO (derate 7.5mW/°C above +25°C)	1300mW
8-Pin SO (derate 6.3mW/°C above +25°C)	630mW
Operating temperature range	-40°C to +85°C
Junction temperature	+125°C
Storage temperature range	-65°C to +150°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

8). Thermal Resistance :

Package	$ heta_{_{ja}}$
8-Lead SOIC	128°C/W
16-Lead SOIC	82℃/W

Doc# : D-FT6610-0812 (Version : 2.0)

DDCN# : DC-0903003

9). Electrical Characteristics :

(Over recommended operating conditions unless otherwise specified	$T_A = 25^{\circ}C$
---	---------------------

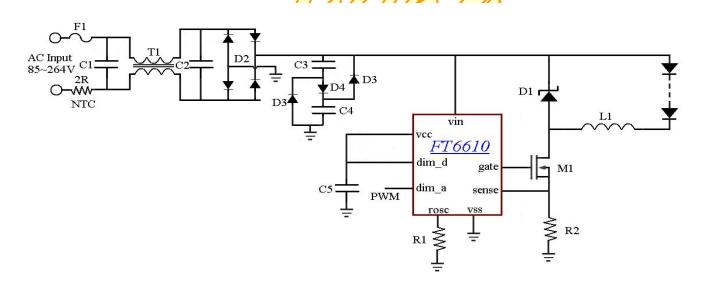
	A					
Symbol	Parameter	Min	Тур	Max	Units	Conditions
VINDC	Input DC supply voltage range	8.0	_	450	V	DC input voltage
IINsd	IINsd Shut-down mode supply current		0.5	1	mA	Pin DIM_D to VSS, VIN = 8V
VCC	Internally regulated voltage	7.2	7.5	7.8	V	VIN = 8 – 450V, lcc(ex = 0, GATE open
VCCmax	Maximal pin VCC voltage	-	-	13.5	V	When an external voltage applied to pin VCC
ICC(ext)	VCC current available for external circuitry 1	-	-	1.0	mA	VIN = 8 – 100V
UVLO	VCC undervoltage lockout threshold	6.2	6.7	7.2	V	VIN rising
ΔUVLO	VCC undervoltage lockout hysteresis	-	500	-	mV	VIN falling
VEN(lo)	Pin DIM_D input low voltage	-	-	1.0	V	VIN = 8 – 450V
VEN(hi) Pin DIM_D input high voltage		2.4	-	-	V	VIN = 8 – 450V
REN	Pin DIM_D pull-down resistance	80	100	120	kΩ	
VSENSE(hi)	Current sense pull-in threshold voltage	225	250	275	mV	
VGATE(hi)	GATE high output voltage	VCC-0.3	-	VCC	V	IOUT = 10mA
VGATE(lo)	GATE low output voltage	0	-	0.3	V	IOUT = -10mA
fOSC	Oscillator frequency		28 78		kHz	Rocs= $1M\Omega$ to vss Rosc= $300k\Omega$ to vss
DMAXhf	Maximum PWM duty cycle	-	-	100	%	FPWMhf = 25kHz. sense to vss. GBD
VDIM_A	Linear dimming pin voltage range	0	-	250	mV	VIN = 12V
TBLANK	Current sense blanking interval	240	300	360	ns	Vsense = 0.55Vdim_a, dim_a=vcc
tRISE	GATE output rise time	-	60		ns	CGATE = 270pF
tFALL	GATE output fall time	-	40		ns	CGATE = 270pF

Note: some parameters are guaranteed by design, not by production test

Doc# : D-FT6610-0812 (Version : 2.0)

DDCN# : DC-0903003

10). Application Information :


The FT6610 is a low-cost off-line buck(see Fig 5.) or boost (see Fig 6.) converter control IC designed specifically for driving multi-LED stings or arrays. It can be operated from either universal AC line(see fig 4.) or any DC voltage (see fig 1.) between 8-450V. Optionally, a passive power factor correction circuit can be used in order to pass the AC harmonic limits set by EN 61000-3-2 Class C for lighting equipment having input power less than 25W. The FT6610 can drive up to hundreds of High-Brightness (HB) LEDs or multiple strings of HB LEDs. The LED arrays can be configured as a series or series/parallel connection. The FT6610 regulates constant current that ensures controlled brightness and spectrum of the LEDs, and extends their lifetime. The FT6610 features an enable pin (DtM_D) that allows PWM control of brightness.

The FT6610 can also control brightness of LEDs by programming continuous output current of the LED driver (so-called linear dimming) when a control voltage is applied to the DIM_A pin.

The FT6610-is offered in a standard 8-pin SOIC package. It is also available in a high voltage rated SO-16 package for applications that require VIN greater than 250V.

The FT6610 includes an internal high-voltage linear regulator that powers all internal circuits and can also serve as a bias supply for low voltage external circuitry.

The FT6610 includes two kind of PWM: constant frequency or constant offtime. For the late one, when input power voltage changes in big range the output current will change little.

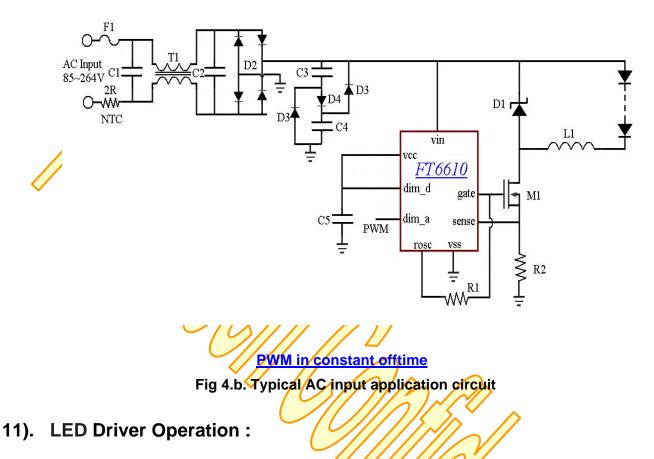

(PWM in constant frequency)

Fig 4.a. Typical AC input application circuit

Doc# : D-FT6610-0812 (Version : 2.0)

DDCN# : DC-0903003

The FT6610 can control all basic types of converters, isolated or non-isolated, operating in continuous or discontinuous conduction mode. When the gate signal enhances the external power MOSFET, the LED driver stores the input energy in an inductor or in the primary inductance of a transformer and, depending on the converter type, may partially deliver the energy directly to LEDs. The energy stored in the magnetic component is further delivered to the output during the off-cycle of the power MOSFET producing current through the string of LEDs (Flyback mode of operation).

When the voltage at the VCC pin exceeds the UVLO threshold the gate drive is enabled. The output current is controlled by means of limiting peak current in the external power MOSFET. A current sense resistor is connected in series with the source terminal of the MOSFET. The voltage from the sense resistor is applied to the SENSE pin of the FT6610. When the voltage at SENSE pin exceeds a peak current sense voltage threshold, the gate drive signal terminates, and the power MOSFET turns off. The threshold is internally set to 250mV, or it can be programmed externally by applying voltage to the DIM_A pin. When soft start is required, a capacitor can be connected to the DIM_A pin to allow this voltage to ramp at a desired rate, therefore, assuring that output current of the LED ramps gradually.

Product Data Sheet

Doc#: D-FT6610-0812 (Version: 2.0)

DDCN# : DC-0903003

12). Supply Current :

A current of 1mA is needed to start the FT6610, this current is internally generated in the FT6610 without using bulky startup resistors typically required in the offline applications. Moreover, in many applications the FT6610 can be continuously powered using its internal linear regulator that provides a regulated voltage of 7.5V for all internal circuits.

13). Setting Light Output :

When the buck converter topology of Figure 1 is selected, the peak SENSE voltage is a good representation of the average current in the LED. However, there is a certain error associated with this current sensing method that needs to be accounted for. This error is introduced by the difference between the peak and the average current in the inductor. For example if the peak-to-peak ripple current in the inductor is 150mA, to get a 500mA LED current, the sense resistor should be $250mV4(500mA + 0.5*150mA) = 0.43\Omega$.

14). Dimming :

Dimming can be accomplished in two ways, separately or combined, depending on the application. Light output of the LED can be controlled either by linear change of its current, or by switching the current on and off while maintaining it constant. The second dimming method (so-called PWM dimming) controls the LED brightness by varying the duty ratio of the output current.

The linear dimming can be implemented by applying a control voltage from 0 to 250mV to the DIM_A pin. This control voltage overrides the interpathy set 250mV threshold level of the SENSE pin and programs the output current accordingly. For example, a potentiometer connected between VCC and ground can program the control voltage at the SENSE pin. Applying a control voltage higher than 250mV will not change the output current setting. When higher current is desired, select a smaller sense resistor. The PWM dimming scheme can be implemented by applying an external PWM signal to the DIM_D pin. The PWM signal can be generated by a microcontroller or a pulse generator with a duty cycle proportional to the amount of desired light output. This signal enables and disables the converter modulating the LED current in the PWM fashion. In this mode, LED current can be in one of the two states: zero or the nominal current set by the current sense resistor. It is not possible to use this method to achieve average brightness levels higher than the one set by the current sense threshold level of the FT6610. By using the PWM control method of the FT6610, the light output can be adjusted between zero and 100%. The accuracy of the PWM dimming method is limited only by the minimum gate pulse width, which is a fraction of a percent of the low frequency duty cycle.

15). Programming Operating Frequency :

The operating frequency of the oscillator is programmed between 25 and 300kHz using an external resistor connected to the Rosc pin to vss shown in Fig 4 a:

Doc#: D-FT6610-0812 (Version: 2.0)

DDCN# : DC-0903003

Fosc= 25000/(Rosc[kΩ] + 22) [kHz]

And the operating offtime of the oscillator is programmed too using an external resistor connected to the Rosc pin to gate shown in Fig 4 b:

Toff=(Rosc[k Ω] + 22)/25[us]

16). Power Factor Correction :

When the input power to the LED driver does not exceed 25W, a simple passive power factor correction circuit can be added to the FT6610 typical application circuit in Fig 4. In order to pass the AC line harmonic limits of the EN61000-3-2 standard for Class C equipment. The typical application circuit diagram shows how this can be done without affecting the rest of the circuit significantly. A simple circuit consisting of 3 diodes and 2 capacitors is added across the rectified AC line input to improve the line current harmonic distortion and to achieve a power factor greater than 0.85.

17). Inductor Design

Referring to the typical buck application circuit in Fig 5. the value can be calculated from the desired peak-to-peak LED ripple current in the inductor. Typically, such ripple current is selected to be 30% of the nominal LED current. In the example given here, the nominal current lled is 350mA.

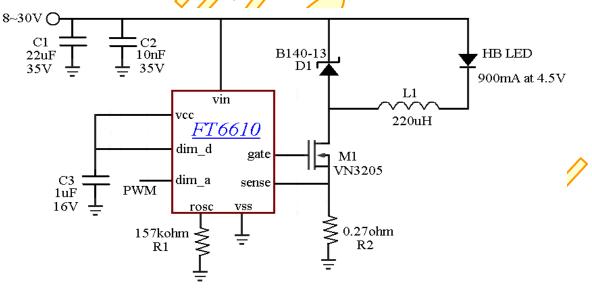


Fig 5. Buck Driver for a single 900mA HB LED(vin=8~30V)

The next step is determining the total voltage drop across the LED string. For example, when the string consists of 10 High-Brightness LEDs and each diode has a forward voltage drop of 3.0V at its nominal current; the total LED voltage VIed is 30V.

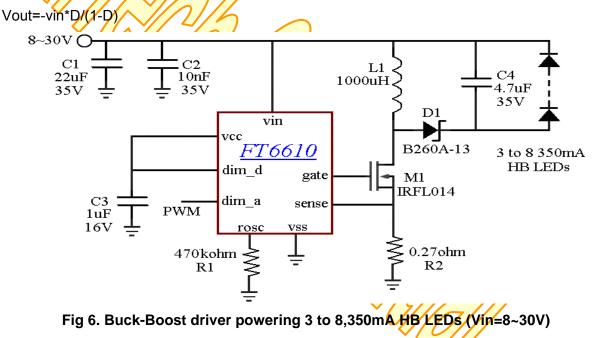
Knowing the nominal rectified input voltage VIN = 120V*1.41 = 169V, the switching duty ratio can be

FocalTech

Doc# : D-FT6610-0812 (Version : 2.0)

DDCN# : DC-0903003

determined, as:


D = Vled/VIN = 30/169 = 0.177

Then, given the switching frequency, in this example Fosc= 50KHz, the required on-time of the MOSFET transistor can be calculated:

Ton= D/Fosc = 3.5 microsecond

The required value of the inductor is given by:

Un the buck-boost application circuit in Fig 6., the energy from the input source is first stored in the inductor or a Flyback transformer when the switching transistor is ON. The energy is then delivered to the output during the OFF time of the transistor. When the energy stored in the Flyback inductor is not fully depleted by the next switching cycle*continuous conduction mode) the DC conversion between input and output voltage is given by:

The output voltage can be either higher or lower than the input voltage, depending on duty ratio. Aassumed the load current is 350mA and vin is equal to 12V, that:

D=vled/(vin+vled)=9/21=0.43

Then, given the switching frequency, in this example fosc=50kHz, the required on-time of the MOS can be calculated:

Ton=D/Fosc=9.6microsecond

Doc# : D-FT6610-0812 (Version : 2.0)

DDCN# : DC-0903003

The required value of the inductor is given by:

L=vin*Ton/(0.3*lled)=0.98mH, can use 1mH.

18). Input Bulk Capacitor :

An input filter capacitor should be designed to hold the rectified AC voltage above twice the LED string voltage throughout the AC line cycle. Assuming 15% relative voltage ripple across the capacitor, a singlified formula for the minimum value of the bulk input capacitor is given by:

Cmin= Hed*Vled*0.06/vin^2

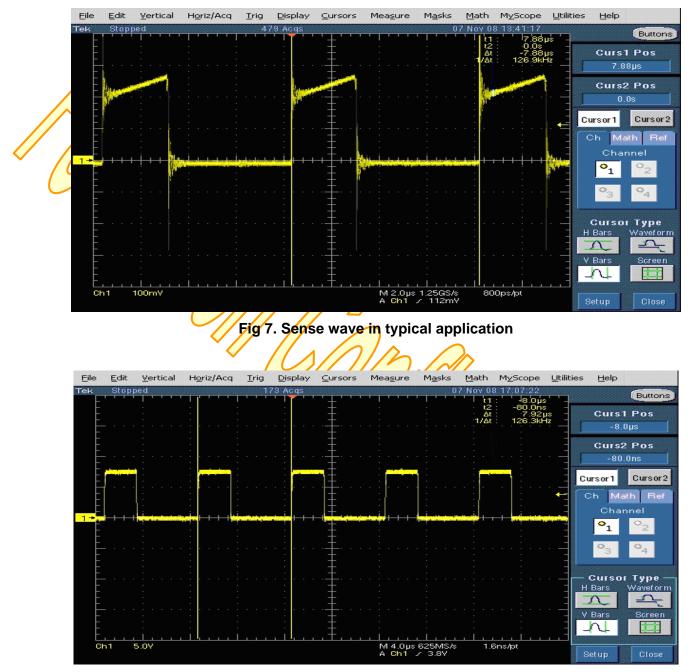
 $Cmin = 22 \mu F_{2} a value 22 \mu F/250V$ can be used.

A passive PFC circuit at the input requires using two series connected capacitors at the place of calculated Cmin Each of these identical capacitors should be rated for 1/2 of the input voltage and have twice as much capacitance.

19). Enable :

The FT6610 can be turned off by pulling the DIM_D pin to ground. When disabled, the FT6610 draws quiescent current of less than 1mA.

20). Output Open Circuit Protection :


When the buck topology is used, and the LED is connected in series with the inductor, there is no need for any protection against an open circuit condition in the LED string. Open LED connection means no switching and can be continuous. However, in the case of the buck-boost or the flyback topology the FT6610 may cause excessive voltage stress of the switching transistor and the rectifier diode and potential failure. In this case, the FT6610 can be disabled by pulling the DIM_D pin to ground when the over voltage condition is detected.

Doc#: D-FT6610-0812 (Version: 2.0)

DDCN# : DC-0903003

21). Typical application wave :

Fig 8. gate wave in typical application

Test condition: Rosc=180kohm to vss, Rsense=0.33ohm, L=220uH, Vin=20VDC with two LEDs Please refer to Fig 1.

Doc#: D-FT6610-0812 (Version: 2.0)

DDCN# : DC-0903003

22). Order Information :

Doologo Tymo	SOP	SOP					
Package Type	8 Pin	16 Pin					
Product Name	FT6610BE	FT6610CE					
Note:	pe are available in the top marking "B"	(i e FTyyyyBy)					
	ead pitch is available in the top marking						
T : Track Cøde							
F : "F" for Lead Free							
Y : Year Code	TFYWWSV						
SV : Lot Code	5 AM						
		Man					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
		6//6///					
		4///					



Doc# : D-FT6610-0812 (Version : 2.0) **DDCN# : DC-0903003** 

DIMENSIONS IN INCHES

NOM

0.063

0.057

0.153

0.050

0.236

0.041REF

MAX

0.069

0.010

_

0.020

0.010

0.394

0.157

0.244

0.050

0.004

8°

0.005

MIN

0.053

0.004

0.013

0.007

0.386

0.150

0.228

0.016

0°

___

---

MAX

1.75

0.25

0.51

0.25

10.00

4.00

6.20

1.27

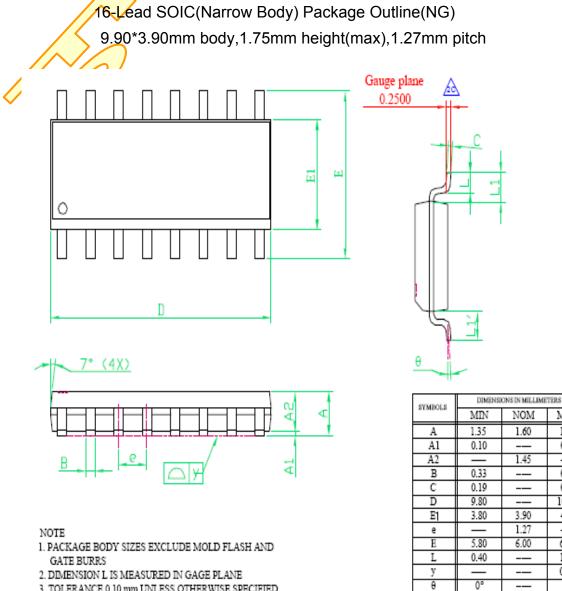
0.10

8°

0.12

---

1.45


3.90

6.00

1.04REF

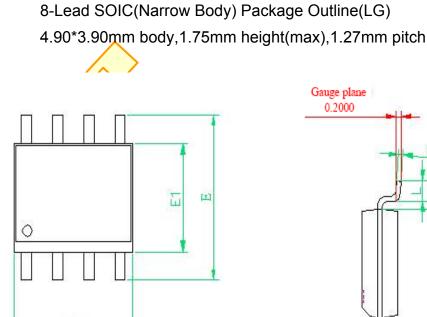
# 23). Package information :

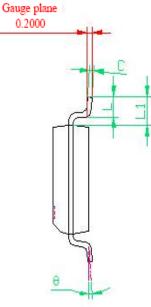
# 23.1). Sop16 L outline information

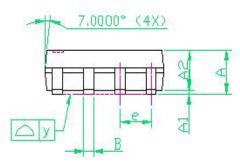


- 3. TOLERANCE 0.10 mm UNLESS OTHERWISE SPECIFIED
- 4. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED
- INCH DIMENSIONS ARE NOT NECESSARILY EXACT. 5. FOLLOWED FROM JEDEC MS-012

FocalTech Systems Co., Ltd


L1-L1'


Ll




Doc#: D-FT6610-0812 (Version: 2.0) DDCN# : DC-0903003

#### Sop 8L outline information 23.2).







#### NOTE

- 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS
- 2. DIMENSION L IS MEASURED IN GAGE PLANE
- 3. TOLERANCE 0.10 mm UNLESS OTHERWISE SPECIFIED
- 4. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.
- 5. FOLLOWED FROM JEDEC MS-012

	DIMENSIONS IN MILLIMETER			DIMENSIONS IN INCH			
SYMBOLS	MIN	NOM	MAX	MN	NOM	MAX	
A	1.35	1.60	1.75	0.053	0.063	0.069	
A1	0.10		0.25	0.004	17-1-12	0.010	
A2		1.45		1 )	0.057		
В	0.33		0.51	0.013		0.020	
С	0.19	1.557	0.25	0.007	1000	0.010	
D	4.80	<u>9950</u>	5.00	0.189	1	0.197	
E1	3.80	3.90	4.00	0.150	0.153	0.157	
e		1.27			0.050		
Е	5.80	6.00	6.20	0.228	0.236	0.244	
L	0.40	- <del></del>	1.27	0.016	175 64	0.050	
у	<u>22</u> 27	110227	0.10	<u>, 1999</u>	<u> </u>	0.004	
θ	0°	11222	8°	0°		8°	
L1	095	1.05	1.15	0.037	0.041	0.045	



Doc#: D-FT6610-0812 (Version : 2.0) DDCN# : DC-0903003

#### **REVISION TABLE**

DDCN	version	Revisions	Date
DC-0812002	1.0	Initial create	2009-12-18
DC-0903003	2.0	<ol> <li>page 3- ratings up to 450V→ ratings up to 700V</li> <li>Page6 - Oscillator frequency Change to 24 \ 78KHZ</li> <li>Page10- Fosc= 25000/(Rosc[kΩ] + 21) [kHz]→ Fosc= 25000/(Rosc[kΩ] + 22) [kHz]</li> <li>Toff=(Rosc[kΩ] + 21)/25[us]→ Toff=(Rosc[kΩ] + 22)/25[us]</li> <li>Page13-Rosc=100kohm→ Rosc=180kohm</li> <li>Current sense blanking interval Change to 240~360 ns</li> </ol>	2009-04-06
		Mad	

END OF DATABOOK