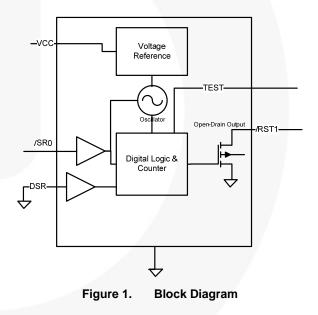


FT7511 Reset Timer with Fixed Delay and Reset Pulse

Features

- Fixed Reset Delay: 7.5 Seconds
- One Input Reset Pin
- Open-Drain Output Pin with Fixed 80ms Pulse
- 1.8V to 5.0V Operation (T_A=-40°C to +85°C)
- 1.7V to 5.0V Operation (T_A=-25°C to +85°C)
- 1.65V to 5.0V Operation (T_A=0°C to +85°C)
- <1µA I_{CCQ} Consumption
- Zero-Second Test Mode Enable

Applications


- Cell Phones
- Portable Media Players
- Tablets
- Mobile Devices
- Consumer Medical

Description

The FT7511 is a timer for resetting a mobile device where long reset times are needed. The long delay helps avoid unintended resets caused by accidental key presses. It has a fixed delay of 7.5 \pm 20% seconds. The DSR pin enables Test Mode operation by immediately forcing /RST1 LOW for factory testing.

The FT7511 has one input for single-button resetting capability. The device has a single open-drain output with 0.5mA pull-down drive.

FT7511 draws minimal I_{CC} current when inactive and functions over a power supply range of 1.65V to 5.0V.

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FT7511L6X	-40°C to +85°C	PD	6-Lead, MicroPak™ 1.0 x 1.45mm, JEDEC MO-252	5000 Units on Tape and Reel

Pin Configuration

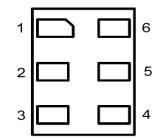


Figure 2. Pad Assignments (Top-Through View)

Pin Definitions

Pin #	Name	Description			
F111 #	Name	Normal Operation	0-Second Factory-Test Mode		
1	/RST1	Open-Drain Output, Active LOW	Open-Drain Output, Active LOW		
2	GND	GND	GND		
3	/SR0	Reset Input, Active LOW	Reset Input, Active LOW		
4	VCC	Power Supply	Power Supply		
5	DSR	Delay Selection Input. Tie to GND ⁽¹⁾ during normal operation.	Delay Selection Input. Pull HIGH to enable the 0-second delay for factory test.		
6	TEST	Used for device testing; should be tied to GND during normal operation.	Used for device testing; should be tied to GND during normal operation.		

Note:

1. The DSR pin must always be tied to either GND or VCC; it must not float.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Condition	Min.	Max.	Unit
V _{CC}	Supply Voltage		-0.5	7.0	V
V _{IN}	DC Input Voltage	/SR0, DSR	-0.5	7.0	V
V _{OUT}	Output Voltage ⁽²⁾	/RST1	-0.5	7.0	V
I _{IK}	DC Input Diode Current	$V_{IN} < 0V$		-50	mA
Ι _{ΟΚ}	DC Output Diode Current	V _{OUT} < 0V		-50	mA
I _{OL}	DC Output Sink Current			+50	mA
I _{cc}	DC V _{CC} or Ground Current per Supply Pin			±100	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Junction Temperature Under Bias			+150	°C
TL	Junction Lead Temperature, Soldering	g 10 Seconds		+260	°C
PD	Power Dissipation			5	mW
FOD	Flastrastetia Discharge Canchility	Human Body Model, JESD22-A114		4	kV
ESD	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101		2	κv

Note:

2. All output current Absolute Maximum Ratings must be observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Condition	Min.	Max.	Unit
V _{cc}	Supply Voltage ⁽³⁾	-40°C to +85°C	1.8	5.0	V
		-25°C to +85°C	1.7	5.0	
		0°C to +85°C	1.65	5.00	
t _{RFC}	V _{CC} Recovery Time After Power Down	V _{CC} =0V After Power Down, Rising to 0.5V	5		ms
V _{IN}	Input Voltage ⁽³⁾	/SR0	0	5	V
V _{OUT}	Output Voltage	/RST1	0	5	V
IOL	DC Output Sink Current	/RST1, V _{CC} =1.8V to 5.0V		+0.5	mA
T _A	Free-Air Operating Temperature		-40	+85	°C
Θ_{JA}	Thermal Resistance			350	°C/W

Note:

3. VCC should never be allowed to float while input pins are driven.

DC Electrical Characteristics

Unless otherwise specified; conditions of T_A =-40 to 80°C with V_{CC}=1.8 - 5.0V, <u>OR</u> T_A =-25 to 85°C with V_{CC}=1.7 - 5V, <u>OR</u> T_A =0 to 85°C with V_{CC}=1.65 - 5V produce the performance characteristics below.

Symbol	Parameter	Condition	Min.	Max.	Unit
VIH	Input High Voltage	DSR, /SR0	0.65 x V _{CC}		V
V _{IL}	Input Low Voltage	DSR, /SR0		$0.25 \times V_{CC}$	V
V _{OL}	Low Level Output Voltage	RST, I _{OL} =500µA		0.3	V
I _{IN}	Input Leakage Current (/SR0, DSR)	$0V \leq V_{IN} \leq 5.0V$		±1.0	μA
Icc	Quiescent Supply Current (Timer Inactive)	/SR0=V _{CC}		1	μA
	Dynamic Supply Current (Timer Active)	/SR0=0V		100	μA

AC Electrical Characteristics

Unless otherwise specified; conditions of T_A =-40 to 80°C with V_{CC}=1.8 - 5.0V, <u>OR</u> T_A =-25 to 85°C with V_{CC}=1.7 - 5V, <u>OR</u> T_A =0 to 85°C with V_{CC}=1.65 - 5V produce the performance characteristics below.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
t _{PHL1}	Timer Delay, /SR0 to RST (DSR=0)	$C_L=5pF, R_L=5K\Omega$, See Figure 6	6.0	7.5	9.0	s
t _{REC}	Reset Timeout Delay		60	80	100	ms

Capacitance Specifications

T_A=+25°C.

Symbol	Parameter	Condition	Typical	Unit
CIN	Input Capacitance	V _{CC} =GND	4.0	pF
C _{OUT}	Output Capacitance	V _{CC} =5.0V	5.0	pF

Functional Description

Device default operation time *N* is 7.5s. If the DSR pin is pulled HIGH prior to V_{CC} ramp, the FT7511 enters Test Mode and the reset output, /RST1, is immediately pulled LOW for factory testing. The DSR pin MUST be forced to GND during normal operation. The DSR pin should never be driven HIGH or left to float during normal operation. The DSR pin state should never be changed during device operation; it must be biased prior to supplying the V_{CC} supply. If there is a need to use the DSR=V_{CC} Test Mode, the /SR0 must be HIGH when the DSR pin is moved from LOW to HIGH to enter Zero-Second Factory-Test Mode. To return to the standard 7.5-second reset time, the same procedure must be followed with DSR=GND. The DSR pin should never be allowed to change state while the /SR0 pin is LOW.

Operation Modes

/SR0

RST1.

/SR0

RST1

/SR0

RST1

A low input signal on /SR0 starts the oscillator. There are two scenarios for counting: short duration and long duration. In the short-duration scenario, output /RST1 is not affected. In the long-duration scenario, the output /RST1 goes LOW after /SR0 has been held LOW for at least 7.5 seconds. The /RST1 output returns to its

t_{REC}=80ms

original HIGH state 80ms after time t_{REC} has expired, regardless of the state of /SR0. The /RST1 output is an open-drain driver. When the count time exceeds 7.5 seconds, the /RST1 output pulls LOW.

Short Duration (t_w < 7.5s)

When the /SR0 input goes LOW, the internal timer starts counting. If the /SR0 input goes HIGH before 7.5s has elapsed, the timer stops counting and resets; no changes occur on the outputs.

Long Duration (t_w > 7.5s)

When the /SR0 input goes LOW, the internal timer starts counting. If the /SR0 input stays LOW for at least 7.5s, the RST output is enabled and pulled LOW. The output RST is held LOW for t_{REC} , 80ms, as soon as the reset time of 7.5s is met, regardless of the state of the /SR0 pin. When the /SR0 input has returned HIGH and t_{REC} has expired, the internal timer resets and awaits the next RESET event.

0-Second Test Mode

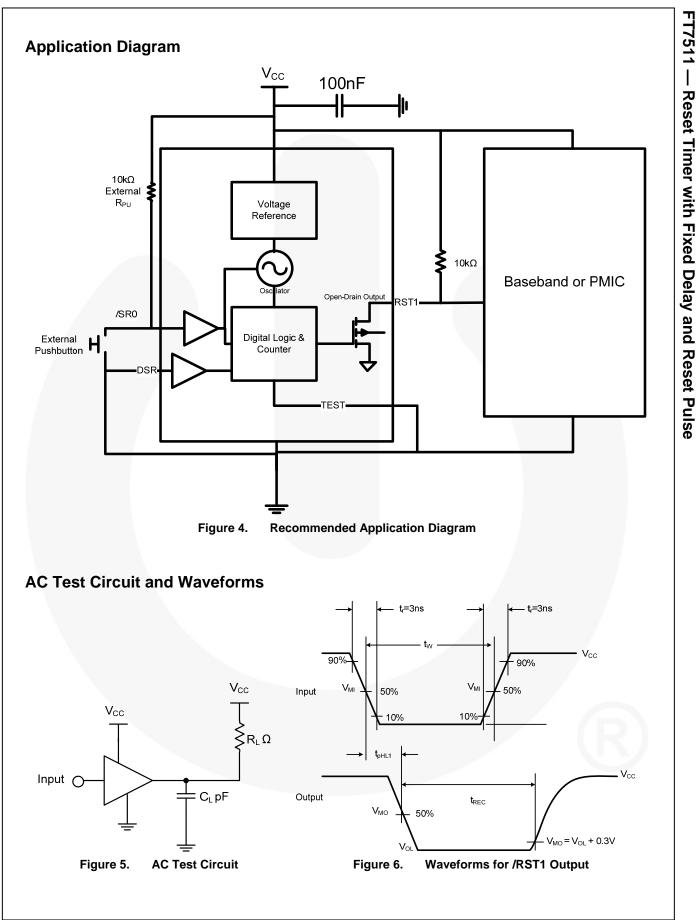
/RST1 goes LOW immediately after /SR0 goes LOW.

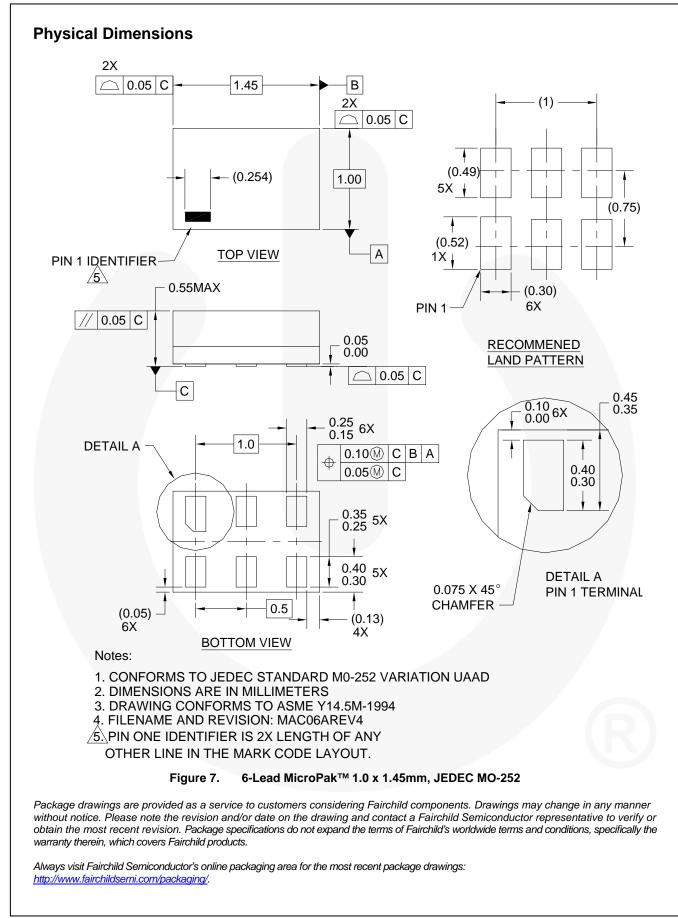
Short-Duration, Normal Operation

/RST1 never goes LOW because /SR0 LOW duration did not meet requirement: reset time N=7.5s

Long-Duration, Normal Operation

/RST1 goes LOW because /SR0 LOW duration exceeded requirement: reset time N=7.5s


0-Second Factory-Test Mode /RST1 goes LOW immediately


after /SR0 goes LOW

Reset Timing Waveforms

REC=80ms

Figure 3.

FT7511 — Reset Timer with Fixed Delay and Reset Pulse

FAIRCHILD SEMICONDUCTOR TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. F-PFS™ PowerTrench[®] 2CoolT The Power Franchise® AccuPower™ PowerXS™ FRFET® wer Global Power ResourceSM Programmable Active Droop™ AX-CAPTM* franchise GreenBridge™ OFFT BitSiC™ TinyBoost™ OSTM Build it Now™ Green FPS™ TinyBuck™ Green FPS™ e-Series™ Quiet Series™ CorePLUS™ TinyCalc™ CorePOWER™ Gmax™ RapidConfigure™ TinyLogic® GTO™ **CROSSVOLT**^{IM} TINYOPTOM IntelliMAXTM CTL™ Saving our world, 1mW/W/kW at a time™ TinyPower™ **ISOPLANAR™** Current Transfer Logic™ SignalWise™ TinyPWM™ DEUXPEED® Making Small Speakers Sound Louder SmartMax™ TinyWire™ and Better^T Dual Cool™ SMART START™ Tran SiC™ EcoSPARK[®] MegaBuck™ Solutions for Your Success™ TriFault Detect™ MICROCOUPLER™ EfficientMax™ TRUECURRENT®* SPM® **ESBC™** MicroFET™ STEAL THM μSerDes™ R MicroPak™ SuperFET μ MicroPak2™ SuperSOT™-3 Fairchild® Miller Drive™ SuperSOT™-6 Fairchild Semiconductor® UHC MotionMax™ SuperSOT™-8 Ultra FRFET™ FACT Quiet Series™ mWSaver™ SupreMOS® FACT UniFET™ OptoHiT™ FAST® SyncFET™ VCXTM **OPTOLOGIC®** Sync-Lock™ FastvCore™ VisualMax™ **OPTOPLANAR®** GENERAL®. FETBench™ VoltagePlus™ FlashWriter®* XS™ **FPS^{TI}** * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are 2. A critical component in any component of a life support, device, or intended for surgical implant into the body or (b) support or sustain system whose failure to perform can be reasonably expected to life, and (c) whose failure to perform when properly used in cause the failure of the life support device or system, or to affect its accordance with instructions for use provided in the labeling, can be safety or effectiveness. reasonably expected to result in a significant injury of the user. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. **PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status** Definition Datasheet contains the design specifications for product development. Specifications may change Advance Information Formative / In Design in any manner without notice. Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Preliminary First Production Semiconductor reserves the right to make changes at any time without notice to improve design. Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make No Identification Needed **Full Production** changes at any time without notice to improve the design.

© 2012 Fairchild Semiconductor Corporation FT7511 • Rev. 1.0.0

Obsolete

Not In Production

Rev. 162

The datasheet is for reference information only.

Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC