60V N-Channel MOSFET #### **General Features** - ➤ Fast Switching Speed - > RoHS Compliant - ➤ Halogen-free available | Aı | oplica | tions | |----|--------|-------| | | PIICU | | - ➤ Power Management in Inverter System - > Synchronous Rectification | BV _{DSS} | R _{DS(ON)} (Typ.) | I_D | |-------------------|----------------------------|-------| | 60V | 11m Ω | 15A | **Ordering Information** | Part Number | Package | Marking | Remark | |-------------|---------|---------|--------------| | FTE11N06G | SOP-8 | 11N06G | Halogen Free | ## **Absolute Maximum Ratings** T_A=25°C unless otherwise specified | Symbol | Paramete | Rating | Unit | | |--|-------------------------------------|---------------|------------|----------------| | $V_{ m DSS}$ | Drain-Source Voltage ^[1] | | 60 | V | | V_{GS} | Gate –Source Voltage | | <u>+25</u> | V | | т | Continuous Drain Current | Tc=25 °C | 15 | A | | I_{D} | Continuous Drain Current | 10 | A | | | I_{DP} | 300us Pulsed Drain Current | 30 | A | | | D | Power Dissipation | 5.2 | W | | | P _D Derating Factor above 25 °C | | | 0.04 | W /°C | | T_{J} and T_{STG} | Operating and Storage Temp | erature Range | -55 ~ 150 | ${\mathcal C}$ | ^{*}Drain Current limited by Maximum Junction Temperature. Caution: Stresses greater than those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. ## **Thermal Characteristics** | Symbol | Parameter | Rating | Unit | |----------------|---|--------|------| | $R_{ heta JC}$ | Thermal Resistance, Junction-to-Case | 24 | °C/W | | $R_{ heta JA}$ | Thermal Resistance, Junction-to-Ambient | 85 | C/W | ## **Electrical Characteristics** ## **OFF Characteristics**(TA=25 °C unless otherwise noted) | Symbol | Parameter | Min. | Тур. | Max. | Unit | Test Conditions | |------------|---------------------------------|------|------|------|------|------------------------------------| | BV_{DSS} | Drain-Source Breakdown Voltage | 60 | 1 | 1 | V | V_{GS} =0V, I_{D} =250 μ A | | I_{DSS} | Zero Gate Voltage Drain Current | | | 1 | μΑ | $V_{DS}=48V, V_{GS}=0V,$ | | Ţ | Cata Laaka ga Currant | | - | 100 | nA | $V_{GS}=20V$, $V_{DS}=0V$ | | I_{GSS} | Gate Leakage Current | | | -100 | nA | V_{GS} =-20V, V_{DS} =0V | #### **On Characteristics** | Symbol | Parameter | Min. | Тур. | Max. | Unit | Test Conditions | |---|---|------|------|------|------|------------------------------------| | R _{DS(ON)} Drain-Source On-Resistance ^[3] | Drain Source On Posistance ^[3] | | 11 | 15 | mΩ | $V_{GS}=10V, I_{D}=15A$ | | | Dram-Source On-Resistance | | 16 | 18 | mΩ | $V_{GS} = 5V, I_D = 10A$ | | $V_{\text{GS(TH)}}$ | Gate Threshold Voltage | 2 | | 4 | V | $V_{DS} = V_{GS}, I_D = 250 \mu A$ | | GFS | Forward Transconductance | | | | S | $V_{DS}=30V, I_{D}=40A$ | #### **Dynamic Characteristics** | Symbol | Parameter | Min. | Тур. | Max. | Unit | Test Conditions | |------------------|------------------------------|------|------|------|------|--| | R_{G} | Gate Resistance | | 1.2 | | Ω | V_{GS} =0V, V_{DS} =0V,
f=1MHz | | C _{iss} | Input Capacitance | | | | | | | C _{oss} | Output Capacitance | | - | - | pF | V_{GS} =0V, V_{DS} =30V,
f=1MHz | | C_{rss} | Reverse Transfer Capacitance | | 1 | 1 | | | | Q_{g} | Total Gate Charge | | | | | | | Q_{gs} | Gate-Source Charge | | | | nC | $V_{DS}=30V, V_{GS}=10V, I_{D}=15A$ | | Q_{gd} | Gate-Drain Charge | | | | | - J | #### **Resistive Switch Characteristics** | Symbol | Parameter | Min. | Тур. | Max. | Unit | Test Conditions | |---------------------|---------------------|------|------|------|------|---| | t _{d(on)} | Turn-On Delay Time | | | | | | | t _r | Turn-On Rise Time | | | | | $V_{DD}=30V,R_L=30\Omega$ | | t _{d(off)} | Turn-Off Delay Time | | | | ns | I_{D} =1.0A, V_{GS} =10V
R_{G} =6 Ω | | t_{f} | Turn-Off Fall Time | | | | | | #### **Source-Drain Diode Characteristics** | Symbol | Parameter | Min. | Тур. | Max. | Unit | Test Conditions | |-------------------|---------------------------------------|------|------|------|------|-------------------------| | I_{SD} | Continuous Source Current(Body Diode) | | | 15 | A | Integral P-N diode in | | I_{SM} | Maximum Pulsed Current(Body Diode) | | | 30 | A | MOSFET | | V_{SD} | Diode Forward Voltage | | | 1.2 | V | $I_{SD}=15A, V_{GS}=0V$ | | t _{rr} | Reverse Recovery Time | | | | ns | I _{SD} =15A, | | Q _{rr} | Reverse Recovery Charge | | | | nC | $dI_{SD}/dt=100A/\mu A$ | #### NOTE: ^[1] $T_J = +25^{\circ}C$ to $+150^{\circ}C$ ^[2] Repetitive rating, pulse width limited by maximum junction temperature. [3] Pulse width \(\frac{380}{\text{ µs}}; \) duty cycle \(\frac{2}{\text{ %}}. \) # **Switching Time Test Circuit and Waveforms** ## **Package Dimensions** ## SOP-8 Published by ARK Microelectronics Co., Ltd. No.9, East Zijing Road, High-tech District, Chengdu, P. R. China All Rights Reserved. #### **Disclaimers** ARK Microelectronics Co., Ltd. reserves the right to make change without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to ARK Microelectronics Co., Ltd's terms and conditions supplied at the time of order acknowledgement. ARK Microelectronics Co., Ltd. warrants performance of its hardware products to the specifications at the time of sale, Testing, reliability and quality control are used to the extent ARK Microelectronics Co., Ltd deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessary performed. ARK Microelectronics Co., Ltd. does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using ARK Microelectronics Co., Ltd's components. To minimize risk, customers must provide adequate design and operating safeguards. ARK Microelectronics Co., Ltd. does not warrant or convey any license either expressed or implied under its patent rights, nor the rights of others. Reproduction of information in ARK Microelectronics Co., Ltd's data sheets or data books is permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. ARK Microelectronics Co., Ltd is not responsible or liable for such altered documentation. Resale of ARK Microelectronics Co., Ltd'sproducts with statements different from or beyond the parameters stated by ARK Microelectronics Co., Ltd. for the product or service voids all express or implied warrantees for the associated ARK Microelectronics Co., Ltd's product or service and is unfair and deceptive business practice. ARK Microelectronics Co., Ltd is not responsible or liable for any such statements. #### Life Support Policy: ARK Microelectronics Co., Ltd's products are not authorized for use as critical components in life devices or systems without the expressed written approval of ARK Microelectronics Co., Ltd. #### As used herein: - 1. Life support devices or systems are devices or systems which: - a. are intended for surgical implant into the human body, - b. support or sustain life, - c. whose failure to perform when properly used in accordance with instructions for used provided in the labeling, can be reasonably expected to result in significantinity to the user. - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.