155Mbps SFP Transceiver

(For 15km~80km transmission)

Members of Flexon[™] Family

Features

iberxon

- Up to 155Mbps data-rate
- 1310nm FP laser and PIN photodetector for 15km and 40km transmission
- 1550nm uncooled DFB laser and PIN photodetector for 80km transmission
- Standard serial (D information compliant with SFP MSA
- SFP MSA package with duplex LC connector
- Very low EMI and excellent ESD protection
- +3.3V single power supply
- Operating case temperature: Standard : 0 to +70°C
 Industrial : -40 to +85°C

Applications

- SDH STM-1, S-1.1, L-1.1, L-1.2
- SONET OC-3 IR1, LR1, LR2
- Other optical links

Standard

- Compliant with SFP MSA
- Compliant with ITU-T G.957 and G.958
- Compliant with Telcordia GR-253-CORE
- Compliant with FCC 47 CFR Part 15, Class B
- Compliant with FDA 21 CFR 1040.10 and 1040.11, Class I

Description

Fiberxon 155Mbps SFP transceiver is high performance, cost effective module that supports data-rate of 155Mbps and transmission distance from 15km to 80km.

The transceiver consists of two sections: The transmitter section incorporates a FP or uncooled DFB laser, and the receiver section consists of a PIN photodiode integrated with a trans-impedance preamplifier (TIA). All modules satisfy class I laser safety requirements.

The optical output can be disabled by a TTL logic high-level input of Tx Disable. Tx Fault is provided to indicate that degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver.

The standard serial ID information compliant SFP MSA describes the transceiver's capabilities, standard interfaces, manufacturer and other information. The host equipment can access this information via the 2-wire serial CMOS EEPROM protocol. For further information, please refer to SFP Multi-Source Agreement (MSA).

Fiberxon Proprietary and Confidential, Do Not Copy or Distribute Page 1 of 11

Regulatory Compliance

The transceivers have been tested according to American and European product safety and electromagnetic compatibility regulations (See Table 1). For further information regarding regulatory certification, please refer to Fiberxon regulatory specification and safety guidelines, or contact Fiberxon, Inc. America sales office listed at the end of the documentation.

Feature	Standard	Performance	
Electrostatic Discharge	MIL-STD-883E		
(ESD) to the Electrical Pins	Method 3015.7	Class 1(>500 V)	
Electrostatic Discharge (ESD)	IEC 61000-4-2	Compliant with standards	
to the Duplex LC Receptacle	GR-1089-CORE	Compliant with standards	
Electromagnetic	FCC Part 15 Class B		
Interference (EMI)	EN55022 Class B (CISPR 22B)	Compliant with standards	
	VCCI Class B		
Immunity	IEC 61000-4-3	Compliant with standards	
	FDA 21CFR 1040.10 and 1040.11	Compliant with Class 1 laser	
Laser Eye Safety	EN60950, EN (IEC) 60825-1,2	product.	
	EN00330, EN (IEC) 00823-1,2	TUV Certificate No. 50030043	
Component Recognition	UL and CSA	UL file E223705	

Table 1 - Regulatory Compliance

Absolute Maximum Ratings

Stress in excess of the maximum absolute ratings can cause permanent damage to the module.

Table 2 - Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Τs	-40	+85	°C
Supply Voltage	V _{CC}	-0.5	3.6	V
Operating Relative Humidity	-	5	95	%

Recommended Operating Conditions

Table 3 - Recommended Operating Conditions

Parameter		Symbol	Min.	Typical	Max.	Unit
Operating Case	Standard	т	0		+70	°C
Temperature	Industrial	T _C	-40		+85	
Power Supply Voltage		V _{CC}	3.13		3.47	V
Power Supply Current		I _{cc}			300	mA
Data Rate				155		Mbps

FTM-3001C-S15, FTM-3001C-S15i (1310nm FP and PIN, 15km)

Para	meter	Symbol	Min.	Typical	Max.	Unit	Notes
		T	ransmitter				
Centre Waveleng	gth	λ _C	1261		1360	nm	
Average Output	Power	P _{0ut}	-15		-8	dBm	1
Spectral Width (F	RMS)	σ			4	nm	
Extinction Ratio		EX	8.2			dB	
Jitter Generation	(RMS)				0.01	UI	
Jitter Generation	(pk-pk)				0.1	UI	
Output Optical E	уе	Compliant w	ith Telcordia	GR-253-CO	RE and ITU	-T G.957	2
Data Input Swing	Differential	V _{IN}	300		1860	mV	3
Input Differential	Impedance	Z _{IN}	90	100	110	Ω	
TX Disable	Disable		2.0	1007	Vcc	V	
TA DISable	Enable		0		0.8	V	
TX Fault	Fault	15	2.0		Vcc+0.3	V	
I A Fault	Normal	17	0		0.8	V	
			Receiver				
Centre Waveleng	gth	λ _c	1260		1580	nm	
Receiver Sensitiv	vity				-34	dBm	4
Receiver Overloa	ad	V	-3			dBm	4
Optical Path Pen	alty				1	dB	5
LOS De-Assert		LOSD			-37	dBm	
LOS Assert		LOS _A	-45			dBm	
LOS Hysteresis			1		4	dB	
Data Output Swir	ng Differential	V _{OUT}	370		1800	mV	6
LOS	High		2.0		Vcc+0.3	V	
103	Low		0		0.8	V	

Table 4 - Optical and Electrical Characteristics

Notes:

- 1. The optical power is launched into SMF.
- 2. Measured with a PRBS 2²³-1 test pattern @155Mbps.
- 3. PECL input, internally AC coupled and terminated.
- 4. Measured with a PRBS 2^{23} -1 test pattern @155Mbps, worst-case extinction ratio, BER $\leq 1 \times 10^{-10}$.
- 5. Measured with a PRBS 2^{23} -1 test pattern @155Mbps, over 15km G.652 SMF, BER $\leq 1 \times 10^{-10}$.
- 6. PECL output, internally AC coupled.

FTM-3001C-S40, FTM-3001C-S40i (1310nm FP and PIN, 40km)

Para	meter	Symbol	Min.	Typical	Max.	Unit	Notes
		T	ransmitter				
Centre Waveleng	gth	λ _C	1263		1360	nm	
Average Output	Power	P _{0ut}	-5		0	dBm	1
Spectral Width (F	RMS)	σ			3	nm	
Extinction Ratio		EX	10			dB	
Jitter Generation	(RMS)				0.01	UI	
Jitter Generation	(pk-pk)				0.1	UI	
Output Optical E	уе	Compliant w	ith Telcordia	GR-253-CO	RE and ITU	-T G.957	2
Data Input Swing	Differential	V _{IN}	300		1860	mV	3
Input Differential	Impedance	Z _{IN}	90	100	110	Ω	
	Disable		2.0	1007	Vcc	V	
TX Disable	Enable		0 2		0.8	V	
TV Foult	Fault	15	2.0		Vcc+0.3	V	
TX Fault	Normal	17	0		0.8	V	
			Receiver				
Centre Waveleng	gth	λ _c	1260		1580	nm	
Receiver Sensitiv	vity				-34	dBm	4
Receiver Overloa	ad	V	-3			dBm	4
Optical Path Pen	alty				1	dB	5
LOS De-Assert		LOSD			-37	dBm	
LOS Assert		LOS _A	-45			dBm	
LOS Hysteresis			1		4	dB	
Data Output Swir	ng Differential	V _{OUT}	370		1800	mV	6
1.00	High		2.0		Vcc+0.3	V	
LOS	Low		0		0.8	V	

Table 5 - Optical and Electrical Characteristics

Notes:

- 1. The optical power is launched into SMF.
- 2. Measured with a PRBS 2^{23} -1 test pattern @155Mbps.
- 3. PECL input, internally AC coupled and terminated.
- 4. Measured with a PRBS 2^{23} -1 test pattern @155Mbps, worst-case extinction ratio, BER $\leq 1 \times 10^{-10}$.
- 5. Measured with a PRBS 2²³-1 test pattern @155Mbps, over 40km G.652 SMF, BER $\leq 1 \times 10^{-10}$.
- 6. PECL output, internally AC coupled.

FTM-5001C-S80 (1550nm DFB and PIN, 80km)

Table 6 - Optical and Electrical Characteristics

Para	meter	Symbol	Min.	Typical	Max.	Unit	Notes
		Ti	ransmitter				
Centre Waveleng	ŋth	$\lambda_{\rm C}$	1480		1580	nm	
Average Output I	Power	P _{0ut}	-5		0	dBm	1
Spectral Width (-	20dB)	Δλ			1	nm	
Side Mode Supp	ression Ratio	SMSR	30			dB	
Extinction Ratio		EX	10			dB	
Jitter Generation	(RMS)				0.01	UI	
Jitter Generation	(pk-pk)				0.1	UI	
Output Optical E	ye	Compliant w	ith Telcordia	GR-253-CO	RE and ITU	-T G.957	2
Data Input Swing	Differential	V _{IN}	300		1860	mV	3
Input Differential	Impedance	Z _{IN}	90	100	110	Ω	
TX Disable	Disable		2.0	50	Vcc	V	
TA DISable	Enable	7.51			0.8	V	
TX Fault	Fault	17	2.0		Vcc+0.3	V	
I A Fault	Normal		0	2	0.8	V	
			Receiver				
Centre Waveleng	gth /	λ	1260		1580	nm	
Receiver Sensitiv	/ity	V			-34	dBm	4
Receiver Overloa	ad 🕖		-3			dBm	4
Optical Path Pen	alty				1	dB	5
LOS De-Assert		LOS _D			-37	dBm	
LOS Assert		LOS _A	-45			dBm	
LOS Hysteresis			1		4	dB	
Data Output Swir	ng Differential	V _{OUT}	370		1800	mV	6
1.00	High		2.0		Vcc+0.3	V	
LOS	Low		0		0.8	V	

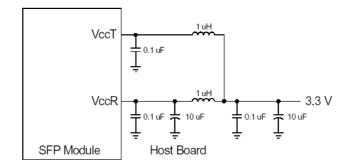
Notes:

- 1. The optical power is launched into SMF.
- 2. Measured with a PRBS 2²³-1 test pattern @155Mbps.
- 3. PECL input, internally AC coupled and terminated.
- 4. Measured with a PRBS 2²³-1 test pattern @155Mbps, worst-case extinction ratio, BER $\leq 1 \times 10^{-10}$.
- 5. Measured with a PRBS 2^{23} -1 test pattern @155Mbps, over 80km G.652 SMF, BER $\leq 1 \times 10^{-10}$.
- 6. PECL output, internally AC coupled.

EEPROM Information

The SFP MSA defines a 256-byte memory map in EEPROM describing the transceiver's capabilities, standard interfaces, manufacturer, and other information, which is accessible over a 2 wire serial interface at the 8-bit address 1010000X (A0h). For memory contents please refer to Table 7.

Addr.	Field Size (Bytes)	Name of Field	Hex	Description
0	1	Identifier	03	SFP
1	1	Ext. Identifier	04	MOD4
2	1	Connector	07	LC
3—10	8	Transceiver	00 00 xx 00 00 00 00 00	OC 3, Single mode inter. or long reach
11	1	Encoding	03	NRZ
12	1	BR, nominal	01	155Mbps
13	1	Reserved	00	
14	1	Length (9um)-km	xx	15km/40km/80km(0F/28/50)
15	1	Length (9um)	xx	15km/40km/80km(96/FF/FF)
16	1	Length (50um)	60	
17	1	Length (62.5um)	00	
18	1	Length (copper)	00	
19	1	Reserved	00	
20—35	16	Vendor name	46 49 42 45 52 58 4F 4E	"FIBERXON INC. "(ASC II)
20—33	10	venuor name	20 49 4E 43 2E 20 20 20	TIBLICKON INC. (ASCIT)
36	1	Reserved	00	
37—39	3	Vendor OUI	00 00 00	
40—55	16	Vendor PN	46 54 4D 2D xx 30 30 31	"FTM-x001C-Sxx (i)" (ASC Ⅱ)
56—59	4		43 2D 53 xx xx xx 20 20 xx xx 00 00	ASC II ("31 30 00 00" means 1.0 revision)
60—62	4		00 00 00	
63				Check our of buton 0 62
63 64—65	2		xx 00 1A	Check sum of bytes 0 - 62
	 1	•	00 1A	LOS, TX_FAULT and TX_DISABLE
66				
67	1	,	00	
68—83	16	Vendor SN	XX XX XX XX XX XX XX XX XX	ASC II .
84—91	8		xx xx xx xx xx xx xx xx xx xx xx xx xx x	Year (2 bytes), Month (2 bytes), Day (2 bytes)
92—94	о З		00 00 00	i cai (2 bytes), iviointi (2 bytes), bay (2 bytes)
92 <u>94</u> 95				Check sum of bytes 64 - 94
			xx	-
96—255	160	Vendor specific		All are set to 0


Table 7 - EEPROM Serial ID Memory Contents (A0h)

Note: The "xx" byte should be filled in according to practical case. For more information, please refer to the related document of *SFP Multi-Source Agreement (MSA)*.

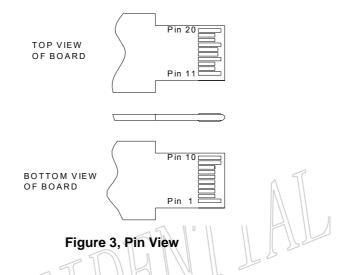
Recommended Host Board Power Supply Circuit

Figure 1 shows the recommended host board power supply circuit.

Figure 1, Recommended Host Board Power Supply Circuit

Recommended Interface Circuit

Figure 2 shows the recommended interface circuit.


5 7		
Host Board		SFP Module
Vcc (+3.3V)		
4.7K to 10KΩ	TX Disable	4.7K to 10KΩ
Vcc (+3.3V)		├ ────┐
	TX Fault	
	SerDat Out + Z=50 Ω TD +	
PECL Note A	SerDat Out - Z=50Ω TD -	100Ω driver
2×150Ω Vcc (+3.3V) ▲	SorDat In Z=50Ω	
100Ω	SerDat In - Z=5002 RD -	
PECL Note B	SerDat In + Z=50Ω RD +	Amplifier
Vcc (+3.3V)		
4.7K to 10KΩ	LOS	
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	203	
Vcc (+3.3V)		
3×4.7 K to 10 K Ω		
	MOD-DEF2	↓
	MOD-DEF1	EEPROM
	MOD-DEF0	

Note A: Circuit assumes open emitter output Note B: Circuit assumes high impedance internal bias @Vcc-1.3V

Pin Definitions

Figure 3 below shows the pin numbering of SFP electrical interface. The pin functions are described in Table 8 with some accompanying notes.

Table 8 – Pin Function Definitions

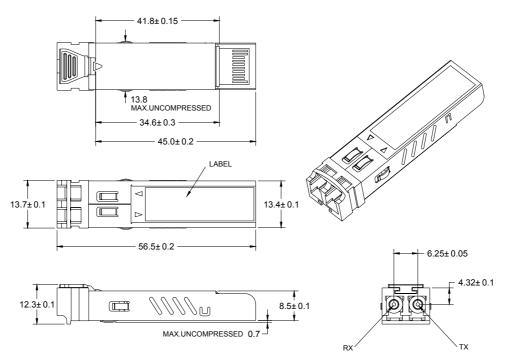
Pin No.	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	
2	TX Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2
4	MOD-DEF2	Module Definition 2	3	Note 3
5	MOD-DEF1	Module Definition 1	3	Note 3
6	MOD-DEF0	Module Definition 0	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	VeeR	Receiver Ground	1	
10	VeeR	Receiver Ground	1	
11	VeeR	Receiver Ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	VeeR	Receiver Ground	1	
15	VccR	Receiver Power	2	
16	VccT	Transmitter Power	2	
17	VeeT	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	VeeT	Transmitter Ground	1	

Notes:

 TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates a

Fiber×on Apr. 27, 2005

laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.

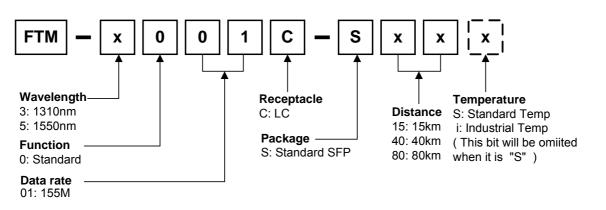

2. TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10k\Omega$ resistor. Its states are:

Low (0~0.8V):	Transmitter on
(>0.8V, <2.0V):	Undefined
High (2.0~3.465V):	Transmitter Disabled
Open:	Transmitter Disabled

- MOD-DEF 0,1,2 are the module definition pins. They should be pulled up with a 4.7k~10kΩ resistor on the host board. The pull-up voltage shall be VccT or VccR.
 MOD-DEF 0 grounded by the module indicates that the module is present
 MOD-DEF 1 is the clock line of two-wire serial interface for serial ID
 MOD-DEF 2 is the data line of two-wire serial interface for serial ID
- LOS is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates loss of signal. In the low state, the output will be pulled to less than 0.8V.
- 5. These are the differential receiver outputs. They are internally AC-coupled 100 Ω differential lines which should be terminated with 100 Ω (differential) at the user SERDES.
- 6. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module.

Mechanical Design Diagram

The mechanical design diagram is shown in Figure 4.


DIMENSIONS ARE IN MILLIMETERS

 $15 \sim 80$ km transmission

Ordering information

Part No.	Product Description
FTM-3001C-S15	1310nm, 155Mbps, 15km, Standard SFP, 0°C~+70°C
FTM-3001C-S15i	1310nm, 155Mbps, 15km, Standard SFP, -40°C~+85°C
FTM-3001C-S40	1310nm, 155Mbps, 40km, Standard SFP, 0°C~+70°C
FTM-3001C-S40i	1310nm, 155Mbps, 40km, Standard SFP, -40°C~+85°C
FTM-5001C-S80	1550nm, 155Mbps, 80km, Standard SFP, 0°C~+70°C
Related Document	

Related Documents

For further information, please refer to the following documents:

- Fiberxon SFP Installation Guide
- Fiberxon SFP Application Notes
- SFP Multi-Source Agreement (MSA)

Obtaining Document

You can visit our website:

http://www.fiberxon.com

Or contact with Fiberxon, Inc. America Sales Office listed at the end of documentation to get the latest documents.

Revision History

Revision	Initiate	Review	Approve	Subject	Release Date
Rev. 1a	Andy.Xiao	Gary.Chen	Walker.Wei	Initial datasheet	Sep 22, 2004
Rev. 1b	Univer.Yang	Gary.Chen	Walker.Wei	Add the Revision History	Mar 15, 2005

© Copyright Fiberxon Inc. 2005

All Rights Reserved.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons.

The information contained in this document does not affect or change Fiberxon product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Fiberxon or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environment may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Fiberxon be liable for damages arising directly from any use of the information contained in this document.

Contact

U.S.A. Headquarter: 5201 Great America Parkway, Suite 350 Santa Clara, CA 95054 U. S. A. Tel: 408-562-6288 Fax: 408-562-6289 Or visit our website: http://www.fiberxon.com