1.25Gbps Spring-Latch SFP Transceiver

(For 550m transmission)

Fibervon esona (Sena Care Channel Care)

Features

iberxon

- Dual data-rate of 1.25Gbps/1.0625Gbps operation
- 850nm VCSEL laser and PIN photodetector
- 550m transmission with 50/125 μm MMF
- 275m transmission with 62.5/125 μm MMF
- Standard serial ID information Compatible with SFP MSA
- SFP MSA package with duplex LC connector
- With Spring-Latch for high density application
- Very low EMI and excellent ESD protection
- ♦ +3.3V single power supply
- Operating case temperature: 0 to +70°C

Applications

- Switch to Switch interface
- Switched backplane application
- Router/Server interface
- Other optical transmission systems

Standard

- Members of Flexon[™] Family
- Compatible with FDA 21 CFR 1040.10 and 1040.11, Class I
- Compatible with Telcordia GR-468-CORE
- RoHS compliance and lead free assembly process compatibility

Description

Fiberxon FTM-8012C-SLG SFP transceiver is high performance, cost effective module supporting dual data-rate of 1.25Gbps/1.0625Gbps and 550m transmission on 50/125 µm MMF.

The transceiver consists of two sections: The transmitter section incorporates a VCSEL laser. And the receiver section consists of a PIN photodiode integrated with a trans-impedance preamplifier (TIA). All modules satisfy class I laser safety requirements.

The optical output can be disabled by a TTL logic high-level input of Tx Disable. Tx Fault is provided to indicate that degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver.

The standard serial ID information Compatible SFP MSA describes the transceiver's capabilities, standard interfaces, manufacturer and other information. The host equipment can access this information via the 2-wire serial CMOS EEPROM protocol. For further information, please refer to SFP Multi-Source Agreement (MSA).

FTM-8012C-SLG is compliant with RoHS .

- Compatible with SFP MSA
- Compatible with IEEE 802.3z
- Compatible with ANSI specifications for Fibre Channel
- Compatible with FCC 47 CFR Part 15,Class B

Regulatory Compliance

The transceivers have been tested according to American and European product safety and electromagnetic compatibility regulations (See Table 1). For further information regarding regulatory certification, please refer to Flexon[™] regulatory specification and safety guidelines, or contact with Fiberxon, Inc. America sales office listed at the end of documentation.

Feature	Standard	Performance		
Electrostatic Discharge	MIL-STD-883E			
(ESD) to the Electrical Pins	Method 3015.7	Class 1(>500 V)		
Electrostatic Discharge (ESD)	IEC 61000-4-2	Competible with standards		
to the Duplex LC Receptacle	GR-1089-CORE	Compatible with standards		
Electromagnetic	FCC Part 15 Class B			
Electromagnetic	EN55022 Class B (CISPR 22B)	Compatible with standards		
Interference (EMI)	VCCI Class B			
Immunity	IEC 61000-4-3	Compatible with standards		
Leser Fue Cafety	FDA 21CFR 1040.10 and 1040.11	Compatible with Class I laser		
Laser Eye Safety	EN60950, EN (IEC) 60825-1,2	product.		
Component Recognition	UL and CSA	UL file E223705		
RoHS	2002/95/EC 4.1&4.2	Compliant with standards		

Table 1 - Regulatory Compliance

Absolute Maximum Ratings

Stress in excess of the maximum absolute ratings can cause permanent damage to the module.

Table 2 – Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Τs	-40	+85	°C
Supply Voltage	V _{CC}	-0.5	3.6	V
Operating Relative Humidity	-	5	95	%

Recommended Operating Conditions

Table 3 - Recommended Operating Conditions

Para	Symbol	Min.	Typical	Max.	Unit	
Operating Case Temperature		T _c	0		+70	°C
Power Supply Voltage		V _{CC}	3.13		3.47	V
Power Supply Current		I _{CC}		190	300	mA
Data Rate	Gigabit Ethernet			1.25		Chro
	Fibre Channel			1.0625		Gbps

Optical and Electrical Characteristics

Table 4 – Optical and Electrical Characteristics

Parameter		Symbol	Min.	Typical	Max.	Unit	Notes
		Т	ransmitter				
Centre Wavelen	igth	λ_{C}	830	850	860	nm	
Average Output	Power	P _{0ut}	-9.5		-4	dBm	1
P _{OUT} @TX Disa	ble Asserted	P _{0ut}			-45	dBm	1
Spectral Width (RMS)	σ			0.85	nm	
Extinction Ratio		ER	9			dB	
Rise/Fall Time (20%~80%)	t _r /t _f			0.26	ns	2
Total littar	1.25G	т			0.431		3
Total Jitter	1.0625G	T _J			0.43	UI	3
Deterministic	1.25G				0.2	UI	3
Jitter	1.0625G	DJ			0.21		3
Output Optical E	Eye	IEEE 802.3z	and ANSI Fi	bre Channe	I Compatible	•	4
Differential Data	Input Swing	V _{IN}	500		1660	mV	5
Differential Input Impedance		Z _{IN}	90	100	110	Ω	
	Disable	- 5	2.0		Vcc	V	
TX Disable	Enable	17	0		0.8	V	
	Fault		2.0		Vcc+0.3	V	
TX Fault	Normal		0		0.8	V	
			Receiver				
Centre Wavelength		λc	770		860	nm	
Receiver Sensit	ivity				-17	dBm	6
Receiver Overlo	bad		0			dBm	6
Return Loss			12			dB	
LOS De-Assert		LOSD			-18	dBm	
LOS Assert		LOS _A	-30			dBm	
LOS Hysteresis			1		4	dB	
Total littar	1.25G	т			0.749	UI	2
Total Jitter	1.0625G	TJ			0.61		3
Deterministic	1.25G				0.462		2
Jitter	1.0625G	DJ			0.36	UI	3
Differential Data Output Swing		V _{OUT}	370		2000	mV	5
1.00	High		2.0		Vcc+0.3	V	
LOS	Low		0		0.8	V	

Notes:

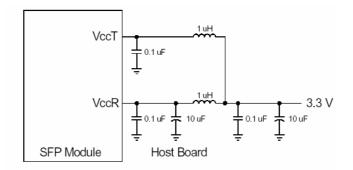
1. The optical power is launched into MMF.

- 2. Unfiltered, measured with a PRBS 2⁷-1 test pattern @1.25Gbps
- 3. Meet the specified maximum output jitter requirements if the specified maximum input jitter is present.
- 4. Measured with a PRBS 2⁷-1 test pattern @1.25Gbps/1.0625Gbps.
- 5. PECL logic, internally AC coupled.
- 6. Measured with a PRBS 2^{7} -1 test pattern @1.25Gbps, worst-case extinction ratio, BER $\leq 1 \times 10^{-12}$.

EEPROM Information

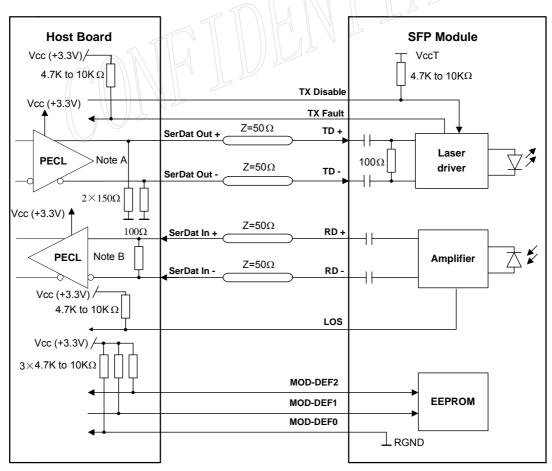
The SFP MSA defines a 256-byte memory map in EEPROM describing the transceiver's capabilities, standard interfaces, manufacturer, and other information, which is accessible over a 2 wire serial interface at the 8-bit address 1010000X (A0h). The memory contents refer to Table 5

Addr.	Field Size (Bytes)	Name of Field	Hex	Description
0	1	Identifier	03	SFP
1	1	Ext. Identifier	04	MOD4
2	1	Connector	07	LC
3—10	8	Transceiver	00 00 00 01 20 40 0C 01	Transmitter Code
11	1	Encoding	01	8B10B
12	1	BR, nominal	0D	1.25Gbps
13	1	Reserved	00	
14	1	Length (9um)-km	00	
15	1	Length (9um)	00	
16	1	Length (50um)	37	550m
17	1	Length (62.5um)	1В	270m
18	1	Length (copper)	00	
19	1	Reserved	00	
00 05	10		46 49 42 45 52 58 4F 4E	
20—35	16	Vendor name	20 49 4E 43 2E 20 20 20	"FIBERXON INC. "(ASC II)
36	1	Reserved	00	
37—39	3	Vendor OUI	00 00 00	
40 55	10 Vandar DN		46 54 4D 2D 38 30 31 32	
40—55	16	Vendor PN	43 2D 53 4C 47 20 20 20	"FTM-8012C-SLG " (ASC II)
56—59	4	Vendor rev	xx xx 20 20	ASC II ("31 30 20 20" means 1.0 revision)
60-61	2	Wavelength	03 52	850nm
62	1	Reserved	00	
63	1	CC BASE	xx	Check sum of bytes 0 - 62
64—65	2	Options	00 1A	LOS, TX_FAULT and TX_DISABLE
66	1	BR, max	00	
67	1	BR, min	00	
60 00	10	Vender CN	xx xx xx xx xx xx xx xx xx	ACC II. 12 bytes are used for Eiberyon CEDs
68—83	16	Vendor SN	xx xx xx xx 20 20 20 20	ASC ${\rm II}$, 12 bytes are used for Fiberxon SFPs
84—91	8	Vendor date code	xx xx xx xx xx xx 20 20	Year(2 byte), Month(2 byte), Day (2 byte)
92—94	3	Reserved	00 00 00	
95	1	CC EXT	xx	Check sum of bytes 64 - 94
96—255	160	Vendor specific		


Table 5 - EEPROM Serial ID Memory Contents (A0h)

Note: The "xx" byte should be filled in according to practical case. For more information, please refer to the related document of SFP Multi-Source Agreement (MSA).

Recommended Host Board Power Supply Circuit


Figure 1 shows the recommended host board power supply circuit.

Recommended Interface Circuit

Figure 2 shows the recommended interface circuit.

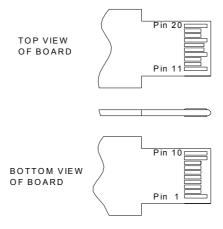

Note A: Circuit assumes open emitter output Note B: Circuit assumes high impedance internal bias @Vcc-1.3V

Figure 2, Recommended Interface Circuit

Pin Definitions

Figure 3 below shows the pin numbering of SFP electrical interface. The pin functions are described in Table 6 with some accompanying notes.

Figure 3, Pin View

Table 6 – Pin Function Definitions Pin No. Name Function Plug Seq. **Notes Transmitter Ground** 1 VeeT 1 2 TX Fault **Transmitter Fault Indication** 3 Note 1 TX Disable Transmitter Disable 3 Note 2 3 3 4 MOD-DEF2 Module Definition 2 Note 3 5 MOD-DEF1 Module Definition 1 3 Note 3 6 3 MOD-DEF0 Module Definition 0 Note 3 7 Rate Select Not Connected 3 3 8 LOS Loss of Signal Note 4 9 VeeR 1 **Receiver Ground Receiver Ground** 1 10 VeeR 1 11 VeeR **Receiver Ground** 12 RD-Inv. Received Data Out 3 Note 5 3 13 RD+ **Received Data Out** Note 5 14 **Receiver Ground** 1 VeeR 2 15 VccR **Receiver Power** VccT 2 16 **Transmitter Power** 17 VeeT Transmitter Ground 1 18 TD+ Transmit Data In 3 Note 6 19 TD-Inv. Transmit Data In 3 Note 6 20 VeeT **Transmitter Ground** 1

Notes:

1. TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.

2. TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k \sim 10k\Omega$ resistor. Its states are:

Low (0~0.8V):	Transmitter on		
(>0.8V, <2.0V):	Undefined		
High (2.0~3.465V):	Transmitter Disabled		
Fiberxon Proprietary and Confidential, Do Not Copy or Distribute			

Open:

Transmitter Disabled

 MOD-DEF 0,1,2 are the module definition pins. They should be pulled up with a 4.7k~10kΩ resistor on the host board. The pull-up voltage shall be VccT or VccR.
MOD-DEF 0 is grounded by the module to indicate that the module is present

MOD-DEF 1 is the clock line of two wire serial interface for serial ID

MOD-DEF 2 is the data line of two wire serial interface for serial ID

- LOS is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates loss of signal. In the low state, the output will be pulled to less than 0.8V.
- 5. These are the differential receiver output. They are internally AC-coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module.

Mechanical Design Diagram

The mechanical design diagram is shown in Figure 4.

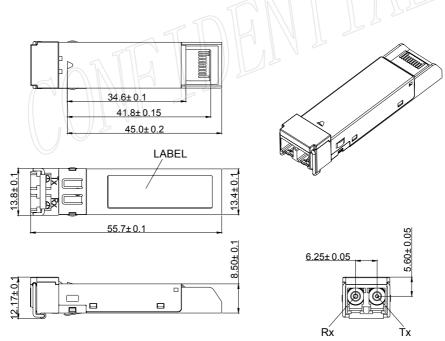
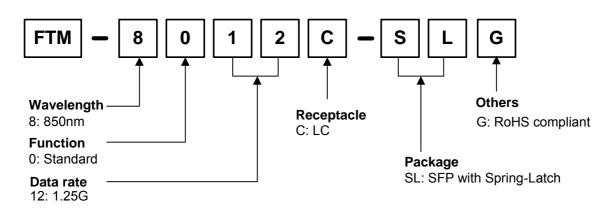



Figure 4, Mechanical Design Diagram of SFP with Spring-Latch

Ordering Information

Part No.	Product Description		
FTM-8012C-SLG	850nm, 1.25Gbps, 550m, SFP with Spring-Latch, 0°C~+70°C		

Related Documents

For further information, please refer to the following documents:

- Fiberxon Spring-Latch SFP Installation Guide
- Fiberxon SFP Application Notes
- SFP Multi-Source Agreement (MSA)

Obtaining Document

You can visit our website:

http://www.fiberxon.com

Or contact with Fiberxon, Inc. America Sales Office listed at the end of documentation to get the latest documents.

Revision History

Revision	Initiate	Review	Approve	Subject	Release Date
Rev. 1a	Zeus.Shen	Simon.Jiang	Walker.Wei	Initial datasheet	July 8, 2005
Rev. 1b	Univer.Yang	Simon.Jiang	Walker.Wei	Recense preliminary version	Feb. 28, 2006

© Copyright Fiberxon Inc. 2006

All Rights Reserved.

All information contained in this document is subject to change without notice. The products described in this Fiberxon Proprietary and Confidential, Do Not Copy or Distribute Page 8 of 9

document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons.

The information contained in this document does not affect or change Fiberxon's product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Fiberxon or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environment may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Fiberxon be liable for damages arising directly from any use of the information contained in this document.

Contact

U.S.A. Headquarter: 5201 Great America Parkway, Suite 340 Santa Clara, CA 95054 U. S. A. Tel: 408-562-6288 Fax: 408-562-6289 Or visit our website: http://www.fiberxon.com