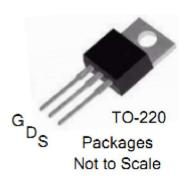
FTP50N20R

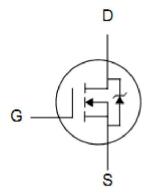
N-Channel MOSFET

Applications:

- Adaptor
- Charger
- .SMPS

Lead Free Package and Finish


V_{DSS}	R _{DS(ON)} (Typ.)	I _D
200V	$42m\Omega$	50A


Features:

- RoHS Compliant
- Low ON Resistance
- Low Gate Charge
- Peak Current vs Pulse Width Curve
- Inductive Switching Curves

Ordering Information

PART NUMBER	PACKAGE	BRAND
FTP50N20R	TO-220	IPS

Absolute Maximum Ratings $T_C=25^{\circ}C$ unless otherwise specified

Symbol	Parameter	FTP50N20R	Units
V _{DSS}	Drain-to-Source Voltage	200	V
I _D	Continuous Drain Current	50	А
	Continuous Drain Current T _C =100 ℃	38.5	Α
I _{DM}	Pulsed Drain Current (NOTE *1)	200	Α
D	Power Dissipation	250	W
P_D	Derating Factor above 25°C	2	W/℃
V _{GS}	Gate-to-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy(NOTE *2)	1700	mJ
dv/dt	Peak Diode Recovery dv/dt(NOTE *3)	5	V/ns
TL	Maximum Temperature for Soldering	300	
T_J and T_{STG}	Operating Junction and Storage Temperature Range	150,-55 to150	${\mathbb C}$

Thermal Resistance

Symbol	Parameter	Max.	Units	Test Conditions
R _{θJC}	Junction-to-Case	0.5	°CXW	Water cooled heatsink, P _D adjusted for a peak junction temperature of +150 ℃.
$R_{\theta JA}$	Junction-to-Ambient	62.5		1 cubic foot chamber, free air.

OFF Characteristics T_C=25°C unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	200			V	V_{GS} =0V, I_D =250 μ A
				1		V _{DS} =200V, V _{GS} =0V T _J =25℃
I _{DSS}	Drain-to-Source Leakage Current			100	μA	V_{DS} =160V, V_{GS} =0V T_{J} =125°C
	Gate-to-Source Forward Leakage			+100	nΛ	V _{GS} =+30V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -30V

ON Characteristics T_J=25 °C unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions	
R _{DS(ON)}	StaticDrain-to-Source On-Resistance		42	51	mΩ	V_{GS} =10V, I_D =20A	
V _{GS(TH)}	Gate Threshold Voltage	2		4	V	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	
g _{fs}	Forward Transconductance		65		S	V_{DS} =15V, I_{D} =20A	
Pulse width	Pulse width ≤300µs; duty cycle≤ 2%						

Dynamic Characteristics Essentially independent of operating temperature

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
C _{iss}	Input Capacitance		2819		pF	$V_{GS} = 0V, V_{DS} = 25V$ f =1.0MHz
Coss	Output Capacitance		394			
C _{rss}	Reverse Transfer Capacitance		34			
Q _g	Total Gate Charge		49.4			$I_D=20A, V_{DD}=160V$ $V_{GS}=10V$
Q_{gs}	Gate-to-Source Charge		13		nC	
Q_{gd}	Gate-to-Drain ("Miller") Charge		18			

					<u> </u>	
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
t _{d(ON)}	Turn-on Delay Time		35.7		ns	
t _{rise}	Rise Time		38.9			V_{DD} =100V, I_{D} =20A,
t _{d(OFF)}	Turn-Off Delay Time		74.7			V_{GS} =10V R_{G} =10 Ω
t _{fall}	Fall Time		21.9			

FTP50N20R

Source-Drain Diode Characteristics Tc=25 °C unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions	
Is	Continuous Source Current (Body Diode)			50	А	T _C =25℃	
I _{SM}	Maximum Pulsed Current (Body Diode)			200	Α	1 _C =25 C	
V_{SD}	Diode Forward Voltage			1.5	V	I_{SD} =40A, V_{GS} =0V	
t _{rr}	Reverse Recovery Time		261		ns	I _F = I _S	
Q _{rr}	Reverse Recovery Charge		2770		nC	di/dt=100A/us	
Pulse width	Pulse width ≤300µs; duty cycle ≤ 2%						

Notes:

^{*1.} Repetitive rating; pulse width limited by maximum junction temperature.

^{*2.} L=10mH, I_D =18.5A, Start T_J =25 $^{\circ}$ C

^{*3.} I_{SD} =20A,di/dt ≤100A/us, V_{DD} ≤B V_{DS} , Start T_{J} =25 $^{\circ}$ C

Characteristics Curve:

Figure 1.Maximum Effective Thermal Impedance, Junction-to-Case

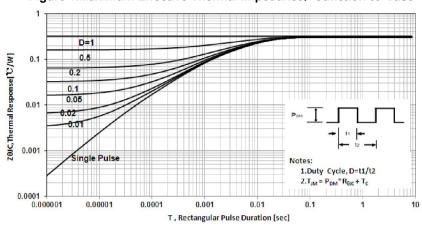
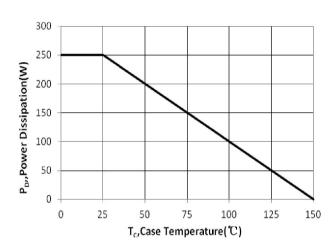
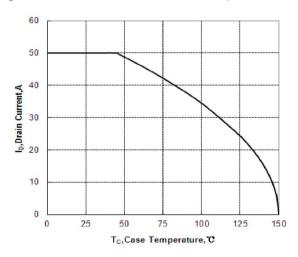
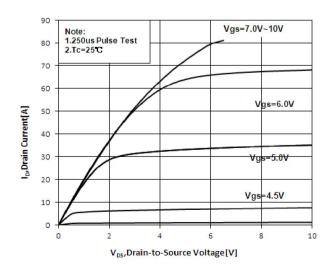


Figure2.Max. Power Dissipation vs Case Temperature

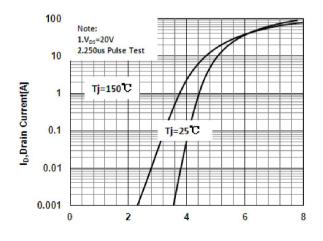

Figure 3. Max. Drain Current vs Case Temperature

Figure 4.Typical Output Characteristics

Figure 5. Typical Transfer Characteristics

V_{GS},Gate-to-Source Voltage[V]

Figure 6. Typical Body Diode Transfer Characteristics

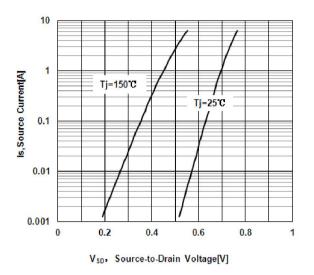


Figure 7. Typical on Resistance VS Drain Current

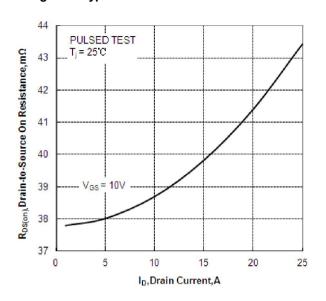


Figure 8. Capacitance VS Drain-to-Source Voltage

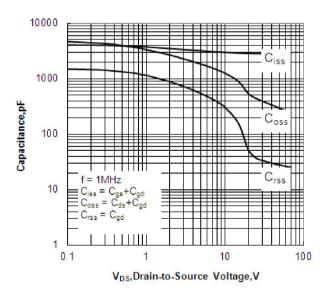


Figure 9. Gate Charge VS Gate-to-Source Voltage

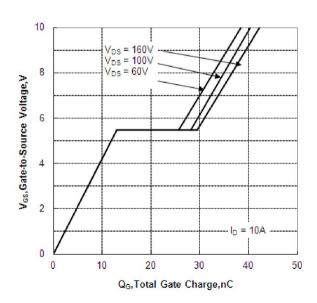


Figure 10. Breakdown Voltage VS Temperature

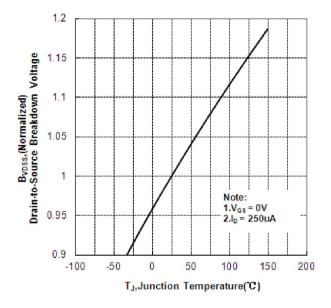


Figure 11. on-Resistance VS Temperature

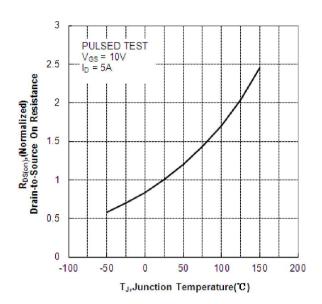


Figure 12 The shold Voltage vs Junction Temperature

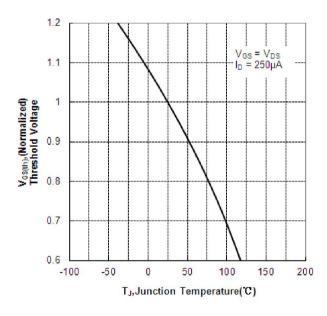
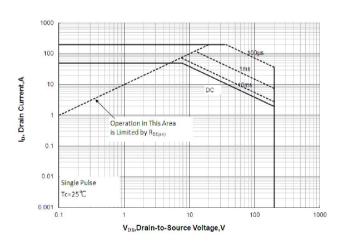



Figure 13. Safe Operating Area

Test Circuits and Waveforms

Figure 14. Gate Charge Test Circuit

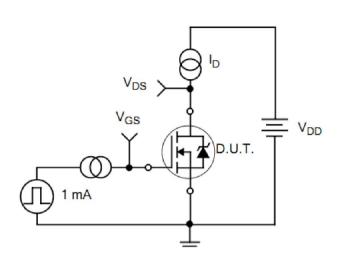


Figure 15. Gate Charge Waveforms

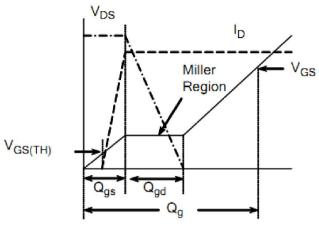
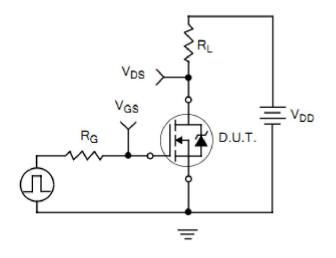



Figure 16. Resistive Switching Test Circuit

Figure 17. Resistive Switching Waveforms

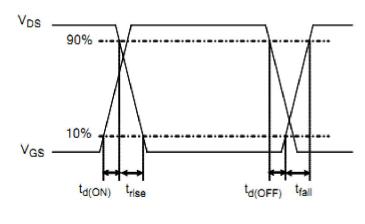


Figure 18. Diode Reverse Recovery Test Circuit

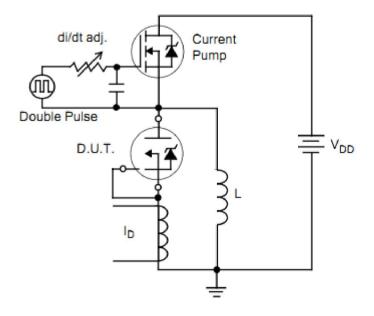


Figure 19. Diode Reverse Recovery Waveform

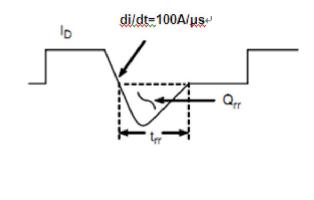
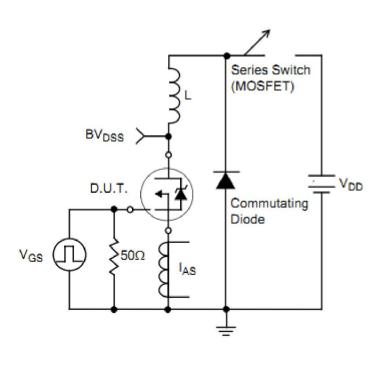
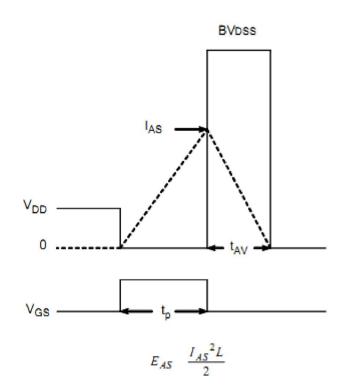




Figure 20. Unclamped Inductive Switching Test Circuit

Figure21.Unclamped Inductive Switching Waveform

Disclaimers:

InPower Semiconductor Co., Ltd (IPS) reserves the right to make changes without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to IPS's terms and conditions supplied at the time of order acknowledgement.

InPower Semiconductor Co., Ltd warrants performance of its hardware products to the specifications at the time of sale, Testing reliability and quality control are used to the extent IPS deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

InPower Semiconductor Co., Ltd does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using IPS's components. To minimize risk, customers must provide adequate design and operating safeguards.

InPower Semiconductor Co., Ltd does not warrant or convey any license either expressed or implied under its patent rights, nor the rights of others. Reproduction of information in IPS's data sheets or data books is permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. InPower Semiconductor Co., Ltd is not responsible or liable for such altered documentation.

Resale of IPS's products with statements different from or beyond the parameters stated by InPower Semiconductor Co., Ltd for that product or service voids all express or implied warrantees for the associated IPS's product or service and is unfair and deceptive business practice. InPower Semiconductor Co., Ltd is not responsible or liable for any such statements.

Life Support Policy:

InPower Semiconductor Co., Ltd's products are not authorized for use as critical components in life support devices or systems without the expressed written approval of InPower Semiconductor Co., Ltd.

As used herein:

- 1. Life support devices or systems are devices or systems which:
 - a. are intended for surgical implant into the human body,
 - b. support or sustain life,
 - c. whose failure to perform when properly used in accordance with instructions for used provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.