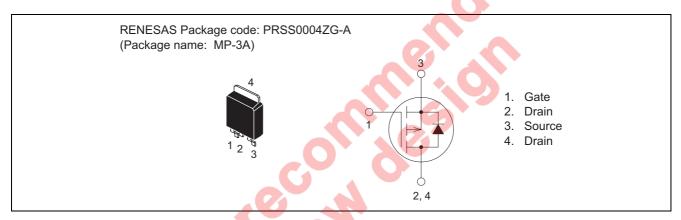


FX20ASJ-2

High-Speed Switching Use Pch Power MOS FET

REJ03G1441-0300 Rev.3.00 Dec 19, 2008


Features

 $\begin{array}{ll} \bullet & Drive\ voltage: 4\ V \\ \bullet & V_{DSS}: -100\ V \\ \bullet & r_{DS(ON)\ (max)}: 0.26\ \Omega \\ \end{array}$

 $I_D : -20 A$

• Integrated Fast Recovery Diode (TYP.): 100 ns

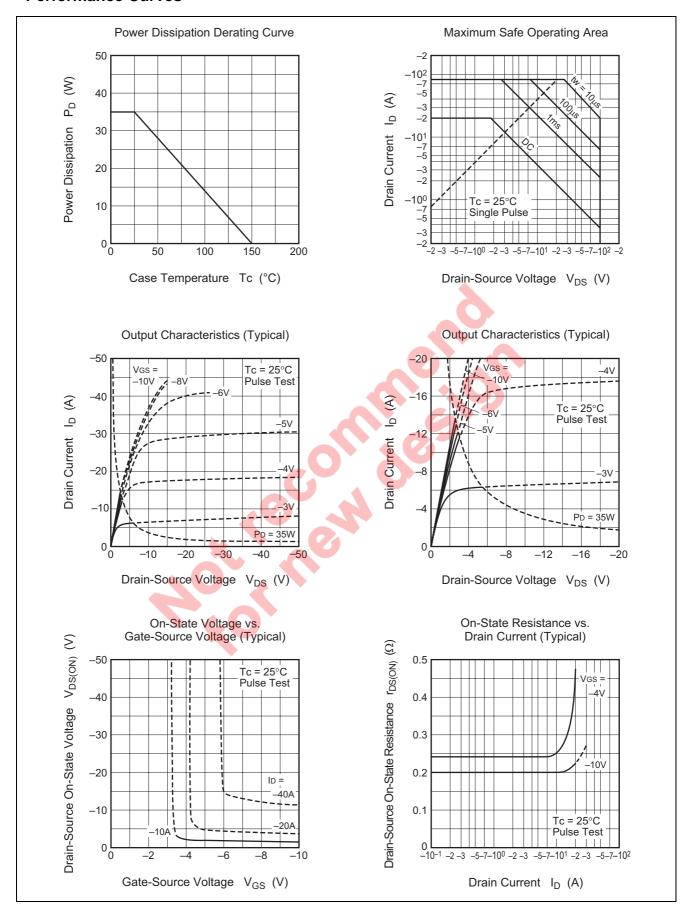
Outline

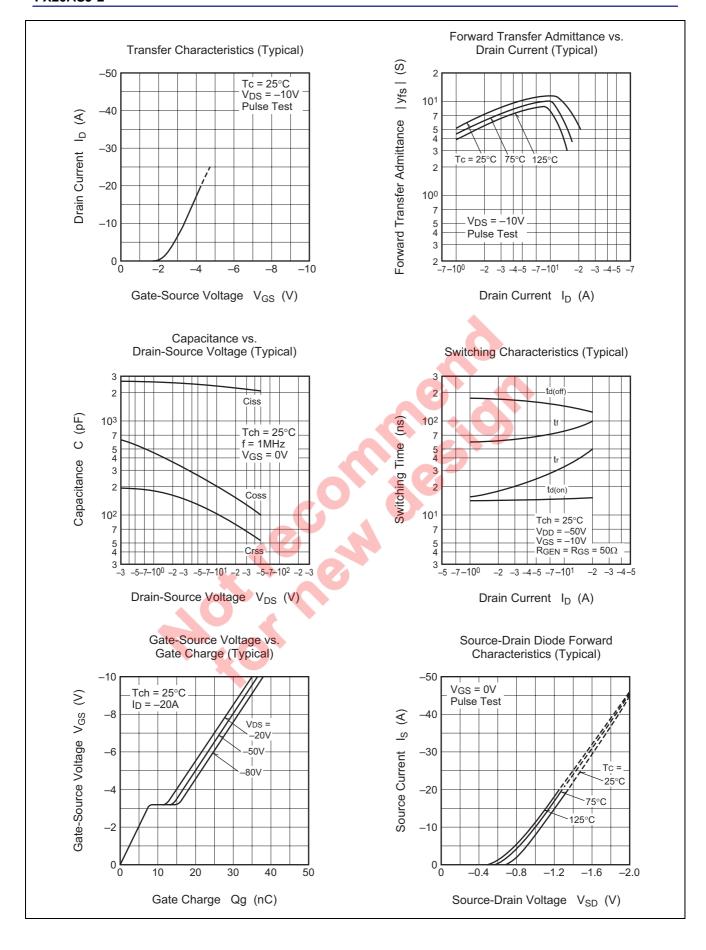
Applications

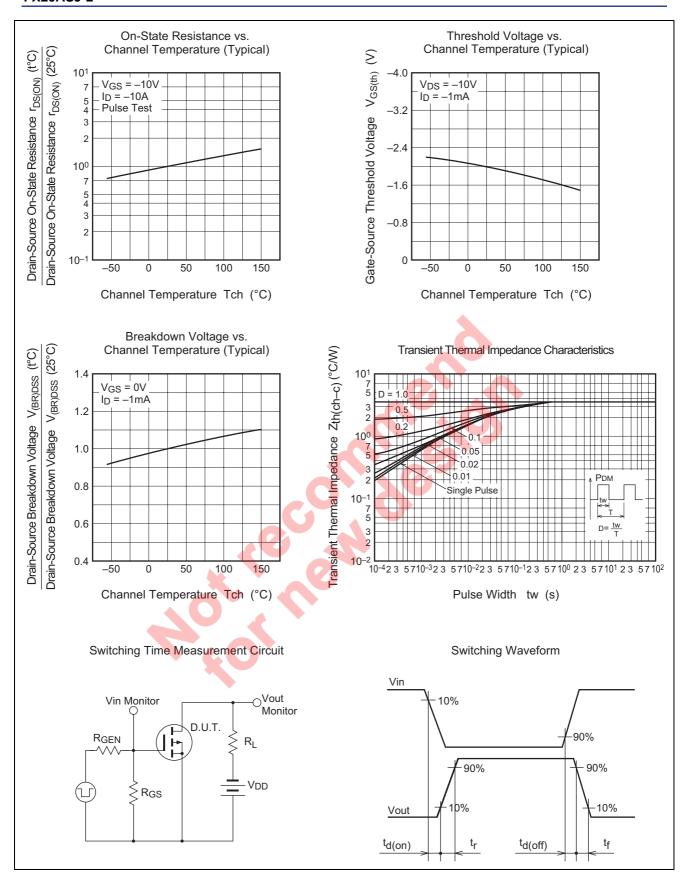
Motor control, Lamp control, Solenoid control, DC-DC converters, etc.

Maximum Ratings

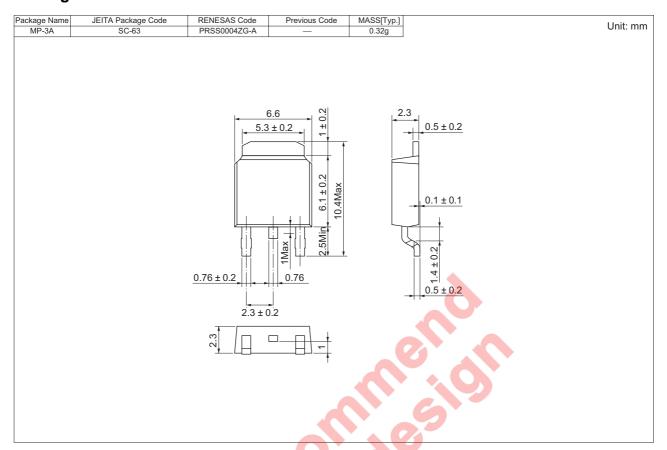
 $(Tc = 25^{\circ}C)$


Parameter	Symbol	Ratings	Unit	Conditions
Drain-source voltage	V_{DSS}	-100	V	V _{GS} = 0 V
Gate-source voltage	V_{GSS}	±20	V	$V_{DS} = 0 V$
Drain current	I _D	-20	Α	
Drain current (Pulsed)	I _{DM}	-80	Α	
Avalanche drain current (Pulsed)	I _{DA}	-20	Α	L = 50 μH
Source current	Is	-20	Α	
Source current (Pulsed)	I _{SM}	-80	Α	
Maximum power dissipation	P_D	35	W	
Channel temperature	Tch	- 55 to +150	°C	
Storage temperature	Tstg	- 55 to +150	°C	
Mass	_	0.32	g	Typical value


Electrical Characteristics


 $(Tch = 25^{\circ}C)$

Drain-source breakdown voltage V _{(BR)DSS} -100 V I _D = -1 mA, V _{GS} = 0 V	Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain-source breakdown voltage	V _{(BR)DSS}	-100	_	_	V	$I_D = -1 \text{ mA}, V_{GS} = 0 \text{ V}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-source leakage current	I _{GSS}	_	_	±0.1	μΑ	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain-source leakage current	I _{DSS}	_	_	-0.1	mA	$V_{DS} = -100 \text{ V}, V_{GS} = 0 \text{ V}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-source threshold voltage	$V_{GS(th)}$	-1.3	-1.8	-2.3	V	$I_D = -1 \text{ mA}, V_{DS} = -10 \text{ V}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain-source on-state resistance	r _{DS(ON)}	_	0.20	0.26	Ω	$I_D = -10 \text{ A}, V_{GS} = -10 \text{ V}$
Forward transfer admittance $ y_{fs} $ — 10.3 — S $ I_D = -10 \text{ A}, V_{DS} = -10 \text{ V}$ Input capacitance Ciss — 2360 — pF $ V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, V_{DS} = -10 \text{ V}$ Output capacitance Coss — 198 — pF $ V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, V_{DS} = -10 \text{ A}, V_{DS} = 0 \text{ V}$ Thermal resistance $ V_{DS} = -10 \text{ A}, V_{DS} = 0 \text{ V}$ Reverse recovery time $ V_{DS} = -20 \text{ A}, V_{DS} = -20 \text{ A}, V$	Drain-source on-state resistance	r _{DS(ON)}	_	0.25	0.32	Ω	$I_D = -10 \text{ A}, V_{GS} = -4 \text{ V}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain-source on-state voltage	V _{DS(ON)}	_	-2.0	-2.6	V	$I_D = -10 \text{ A}, V_{GS} = -10 \text{ V}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Forward transfer admittance	yfs	_	10.3	_	S	$I_D = -10 \text{ A}, V_{DS} = -10 \text{ V}$
Reverse transfer capacitance Crss — 99 — pF Turn-on delay time $t_{d(on)}$ — 13 — ns $V_{DD} = -50 \text{ V}, I_D = -10 \text{ A},$ Rise time t_r — 30 — ns $V_{GS} = -10 \text{ V},$ Turn-off delay time $t_{d(off)}$ — 139 — ns $V_{GS} = -10 \text{ V},$ Fall time v_{f} — 74 — ns Source-drain voltage v_{f} — 1.0 — 1.5 v_{f} — 1.0 A, v_{f} = 0 V Thermal resistance v_{f} — 3.57 °C/W Channel to case	Input capacitance	Ciss	_	2360	_	pF	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$
	Output capacitance	Coss	_	198	_	pF	f = 1MHz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse transfer capacitance	Crss	_	99	_	pF	
Turn-off delay time $t_{d(off)}$ —	Turn-on delay time	t _{d(on)}	_	13	_	ns	$V_{DD} = -50 \text{ V}, I_D = -10 \text{ A},$
Fall time t_f — 74 — ns t_g — 1.0 — 1.5 V t_g = 0 V Thermal resistance t_g — 3.57 °C/W Channel to case	Rise time	t _r	_	30	_	ns	*
Source-drain voltage V_{SD} — -1.0 -1.5 V $I_S = -10$ A, $V_{GS} = 0$ V Thermal resistance $R_{th(ch-c)}$ — $-$ 3.57 °C/W Channel to case Reverse recovery time I_{CS} — I_{C	Turn-off delay time	t _{d(off)}	_	139	_	ns	$R_{GEN} = R_{GS} = 50 \Omega$
Thermal resistance $R_{th(ch-c)}$ — — 3.57 °C/W Channel to case	Fall time	t _f	_	74	_ (ns	
Reverse recovery time $t_r = 100$ $t_r = 100$ $t_r = 100$ A dia/di = 100 A/us	Source-drain voltage	V _{SD}	_	-1.0	-1.5	V	$I_S = -10 \text{ A}, V_{GS} = 0 \text{ V}$
Reverse recovery time t_{rr} — 100 — ns $I_S = -20$ A, $d_{is}/d_t = 100$ A/ μs	Thermal resistance	R _{th(ch-c)}	_	_	3.57	°C/W	Channel to case
	Reverse recovery time	t _{rr}	_	100	(4)	ns	$I_S = -20 \text{ A}, d_{is}/d_t = 100 \text{ A}/\mu \text{s}$


Performance Curves

Package Dimensions

Order Code

Lead form	Standard packing	Qua	antity	Standard order code	Standard order code example
Surface-mounted type	Taping	5	3000	Type name – T +Direction (1 or 2) +3	FX20ASJ-2-T13
Surface-mounted type	Plastic Magazine (Tube)		75	Type name	FX20ASJ-2

Note: Please confirm the specification about the shipping in detail. Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in this document, including, but not intelled to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and received and regulations of the procedure of th

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510