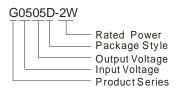
MORNSUN®


G D-2W & H D-2W Series

2W, FIXED INPUT, 6000V ISOLATED & UNREGULATED DUAL/SINGLE OUTPUT DC-DC CONVERTER

PART NUMBER SYSTEM

PRODUCT FEATURES

- Efficiency up to 81%
- Up to 6KVDC Isolation
- DÎP Package
- Low Isolation Capacitance
- Operating Temperature Range: -40°C to +85°C
- Low Temperature rise
- Internal SMD Construction
- No External Component Required
- Continuous short circuit protection
- Industry Standard Pinout
- Meets UL Approval

APPLICATIONS

The G_D-2W & H_D-2W Series are designed for application where isolated output is required from a distributed power system.

These products apply to where:

- 1) Input voltage variation ≤ ±10%;
- 2) 6KVDC input and output isolation;
- Regulated and low ripple noise is not required.
 Such as: digital circuits, low frequency analog circuits, and IGBT power device driving circuits.

Model Number	Input Voltage(VDC)	Output Voltage	Output (m	Current A)	Input (mA)	(typ.)	Reflected Ripple	Max. Capacitive	Efficiency (%, typ.)	Approva
Woder Humber	Nominal (Range)	(VDC)	Max.	Min.	@Max. Load	@No Load	Current (mA,typ.)	Load(µF)	@Max. Load	7,661014
H0505D-2W		5	400	40	547	60.3	60.6		75	UL
H0509D-2W		9	222	23	492	52.1	72.5	220	76	UL
H0512D-2W		12	167	17	504	58.1	71.2	220	78	UL
H0515D-2W	5	15	133	13	505	54.9	70.3		77	UL
G0505D-2W	(4.5-5.5)	±5	±200	±20	533	57.7	68.7		75	UL
G0509D-2W	_ A	±9	±111	±12	498	52.6	88.1	100	77	UL
G0512D-2W		±12	±84	±9	512	59.9	78.1		79	UL
G0515D-2W		±15	±67	±7	502	53.3	68.7		78	UL
H1205D-2W		5	400	40	217	20.5	54		75	UL
H1209D-2W	12 (10.8-13.2)	9	222	23	215	26.9	79	220	78	UL
H1212D-2W		12	167	17	204	25.4	69	220	80	UL
H1215D-2W		15	133	14	214	24.3	89.5		78	UL
G1205D-2W		±5	±200	±20	215	23.2	79		76	UL
G1209D-2W		±9	±111	±12	207	22.8	94	100	78	UL
G1212D-2W		±12	±84	±9	206	22.9	37.5	100	80	UL
G1215D-2W		±15	±67	±7	212	26.9	90		78	UL
H1505D-2W		5	400	40	170	20.6	64.4	220	75	
H1515D-2W	15 (13.5-16.5)	15	133	14	165	15.4	62.5	220	81	
G1515D-2W	(1010 1010)	±15	±67	±7	166	15.5	76.8	100	77	
H2405D-2W		5	400	40	109	10.8	158.9		77	
H2409D-2W		9	222	23	101	10.1	62.5	220	78	
H2412D-2W	24	12	167	17	100	9.3	155.6	220	81	
H2415D-2W*	(21.6-26.4)	15	133	14	100	9.1	137.5		80	
G2405D-2W*		±5	±200	±20	104	16.6	86.7		77	
G2409D-2W		±9	±111	±12	99	9.6	98.5	100	78	
G2412D-2W	24	±12	±84	±9	99	9.3	102.7	100	81	
G2415D-2W	(21.6-26.4)	±15	±67	±7	100	9.2	113.6		80	

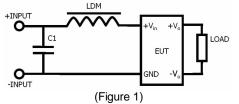
INTPUT SPECIFICATIONS								
Item	Test Conditions	Min.	Тур.	Max.	Unit			
	5VDC Input Models	-0.7		9				
Input Surge Veltage (1000 may)	12VDC Input Models	-0.7		18	VDC			
Input Surge Voltage (1sec. max.)	15VDC Input Models	-0.7		21	VDC			
	24VDC Input Models	-0.7		30				
Input Filter		C Filter						

Item	Test Conditions		Min.	Тур.	Max.	Unit	
Output Power			0.2		2	W	
Output Voltage Accuracy				See tolerance envelope graph			
Output Voltage Balance	Dual Output, Balan	ced Loads		±0.5	±1		
Line Regulation	For Vin change of ±	±1%			±1.2		
	10% to 100% load	5V output		10	15	- % - %	
Load Degulation		9V output		8.3	15		
Load Regulation		12V output		6.8	15		
		15V output		6.3	15		
Temperature Drift	100% full load				±0.03	%/°C	
Ripple & Noise*	20MHz Bandwidth			150	250	mVp-p	
Short Circuit Protection				Conti	nuous		

Note: Dual output models unbalanced load: ±5%.

^{*}Ripple and noise tested by "parallel cable" method. See detailed operation instructions at Testing of Power Converter section, application notes.

COMMON SPECIFICATIONS								
Item	Test Conditions	Min.	Тур.	Max.	Unit			
Isolation Voltage	Isolation Voltage Tested for 1 minute and 1mA max				VDC			
Isolation Resistance	Test at 500VDC	1000			ΜΩ			
Isolation Capacitance Input/Output,100KHz/1V			3.5		pF			
Switching Frequency	Full load, nominal input(5V Input)		35		KHz			
Switching Frequency	Full load, nominal input(12V,15V,24VInput)		50		KIIZ			
MTBF MIL-HDBK-217F@25℃		3500			K hours			
Case Material			Plastic(l	JL94-V0)				
Weight			8.2		g			


ENVIRONMENTAL SPECIFICATIONS								
Item	Test Conditions	Min.	Тур.	Max.	Unit			
Storage Humidity	Non condensing			95	%			
Operating Temperature	Power derating (above 85°C)	-40		85				
Storage Temperature		-55		125	°C			
Temp. rise at full load			25					
Soldering Temperature	1.5mm from case for 10 seconds			300				
Cooling		Free air	convection					

EMC SPECIFICATIONS							
EMI	CE	CISPR22/EN55022 CLASS A (External Circuit Refer to Figure 1,2)					
EMS	ESD	IEC/EN61000-4-2 Contact ±8KV perf. Criteria B					

EMC RECOMMENDED CIRCUIT

G15XXD-2W, G24XXD-2W and H15XXD-2W already meet CLASS A, for other models following Figure 1,2.

EMI Recommended External Circuit:

G_D-2W Series

Recommended external circuit parameters:

Vin: 5V

① C1: 4.7µF/50V 1210

2 LDM: 6.8µH

Vin: 12V

① C1: 1µF/50V 1210

② LDM: 4.7μH

+INPUT EUT -INPUT GND 0١ (Figure 2)

H_D-2W Series

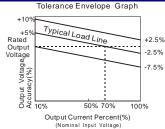
Recommended external circuit parameters:

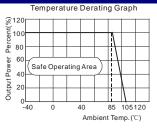
Vin: 5V

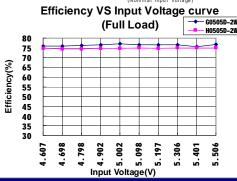
1 C1: 4.7µF/50V 1210

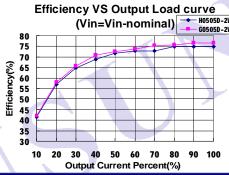
2 LDM: 6.8µH

Vin: 12V

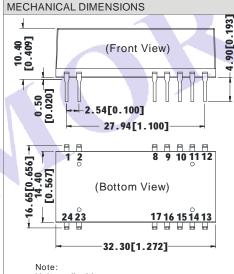

C1: 4.7µF/50V 1210

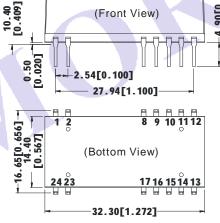

Vin: 24V


1 C1、C2: 4.7µF/50V 1210

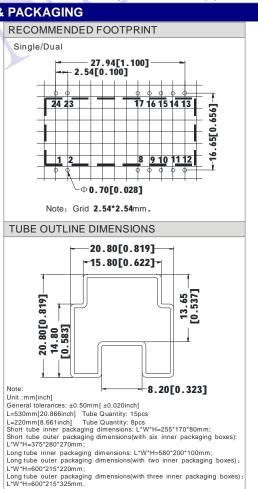

(2) LDM: 6.8µH

PRODUCT TYPICAL CURVE



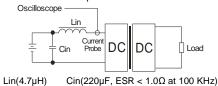


OUTLINE DIMENSIONS、RECOMMENDED FOOTPRINT & PACKAGING



Unit:mm(inch)
Pin section:0.50*0.30mm(0.020*0.012inch) Pin section tolerances:±0.10mm(±0.004inch) General tolerances: ±0.25mm(±0.010inch)

FOOTPRINT DETAILS				
Pin	Single	Dual		
1	Vin	Vin		
2	GND	GND		
8,17	NC	-Vo		
10,15	0 V	0 V		
12,13	+Vo	+Vo		
Others	NC	NC		


NC:No Connection

TEST CONFIGURATIONS

Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with an inductor Lin and Capacitor Cin to simulate source impedance.

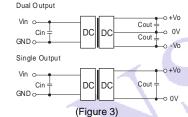
DESIGN CONSIDERATIONS

1) Requirement on output load

To ensure this module can operate efficiently and reliably, During operation, the minimum output load *could not be less than 10% of the full load.* If the actual output power is very small, please connect a resistor with proper resistance at the output end in parallel to increase the load, or use our company's products with a lower rated output power (G/H_D-1W series).

2) Overload Protection

Under normal operating conditions, the output circuit of these products has no protection against overload. The simplest method is to connect a self-recovery fuse in series at the input end or add a circuit breaker to the circuit.

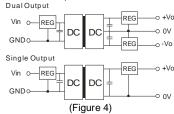

Input Fuse Selection Guide

5VDC Input Models	1000mA slow-Blow Type	15VDC Input Models	250mA slow-Blow Type
12VDC Input Models	500mA slow-Blow Type	24VDC Input Models	250mA slow-Blow Type

3) Recommended circuit

If you want to further decrease the input/output ripple, an capacitor filtering network may be connected to the input and output ends of the DC/DC converter, see (Figure 3).

It should also be noted that the capacitance of filter capacitor must be proper. If the capacitance is too big, a startup problem might arise. For every channel of output, provided the safe and reliable operation is ensured, the recommended capacitance of its filter capacitor sees (Table 1).


EXTERNAL CAPACITOR TABLE (TABLE 1)

	Vin	Cin	Single	Cout	Dual	Cout
	(VDC)	(µF)	Vout	(µF)	Vout	(µF)
			(VDC)		(VDC)	
	5	4.7	5	10	±5	4.7
I	12	2.2	9	4.7	±9	2.2
ſ	15	2.2	12	2.2	±12	1
	24	1	15	1	±15	1

It's not recommended to connect any external capacitor in the application field with less than 0.5 watt output.

4) Output Voltage Regulation and Over-voltage Protection Circuit

The simplest device for output voltage regulation, over-voltage and over-current protection is a linear regulator and an capacitor filtering network with overheat protection that is connected to the input or output end in series (Figure 4), the recommended capacitance of its filter capacitor sees (Table 1), linear regulator based on the actual voltage and current required.

5) Cannot use in parallel and hot swap

Note

- 1. Operation under minimum load will not damage the converter; However, they may not meet all specification listed.
- 2. Max. Capacitive Load tested at input voltage range and full load.
- 3. All specifications measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.
- 4. In this datasheet, all the test methods of indications are based on our corporate standards.
- 5. All characteristics are for listed model only, non-standard models may perform differently, please contact our technical person for more detail.
- 6. Contact us for your specific requirement.
- 7. Specifications subject to change without prior notice.

MORNSUN Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui development center, Science Ave., Guangzhou Science City, Luogang district, Guangzhou, P.R.China.

Tel: 86-20-28203030

Fax:86-20-38601272

Http://www.mornsun-power.com