

High-reliability discrete products and engineering services since 1977

GA200-GA201A

SILICON CONTROLLED RECTIFIERS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Ratings	Symbol	GA200 GA200A	GA201 GA201A	GB200 GB200A	GB201 GB201A
Repetitive peak off state voltage	V_{DRM}	60V	100V	60V	100V
Repetitive peak on state current	I _{TRM}	Up to 100A			
DC on state current					
70°C ambient	I _T	200mA		-	
70°C case		400mA		6A	
Peak gate current	I _{GM}	250mA		250mA	
Average gate current	$I_{G(AV)}$	25mA		50mA	
Reverse gate current	I _{GR}	3mA		3mA	
Reverse gate voltage	V_{GR}	5V 5V		5V	
Thermal resistance	R _{OCA}	300°C/W			
Storage temperature range	T _{stg}	-65° to 200°C			
Operating temperature range	Tı	-65° to 150°C			

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Test	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Delay time	t _d	_	20	30	ns	I _G = 20mA, I _T = 1A
,	-u	-	10	-		$I_G = 30 \text{mA}, I_T = 1 \text{A}$
Rise time (GA200, GA200A, GB200, GB200A)	t _r	-	15	25	ns	$V_D = 60V, I_T = 1A(1)$
	L _r	-	25	-		$V_D = 60V, I_T = 30A(1)$
Rise time (GA201, GA201A, GB201, GB201A)	t _r	-	10	20	ns	$V_D = 100V, I_T = 1A(1)$
		-	20	-		$V_D = 100V, I_T = 30A(1)$
Gate trigger on pulse width	t _{pg(on)}	-	0.02	0.05	μs	$I_G = 10 \text{mA}, I_T = 1 \text{A}$
Circuit commutated turn-off time						
(GA200, GA201, GB200, GB201)	t_q	-	0.8	2.0	μs	$I_T = 1A$, $I_R = 1A$, $R_{GK} = 1K$
(GA200A, GA201A, GB200A, GB201A)		-	0.3	0.5		
Off-state current	I _{DRM}	-	0.01	0.1	μΑ	V_{DRM} = Rating, R_{GK} = 1K
		-	20	100	μΑ	V _{DRM} = rating, R _{GK} = 1K, 150°C
Reverse current	I _{RRM}	-	1.0	10	mA	$V_{RRM} = 30V, R_{GK} = 1K(2)$
Reverse gate current	I_{GR}	-	0.01	0.1	mA	$V_{GRM} = 5V$
Gate trigger current	I _{GT}	-	10	200	μΑ	V _D = 5V, R _{GS} = 10K
Gate trigger voltage	V_{GT}	0.4	0.6	0.75	V	$V_D = 5V$, $R_{GS} = 100\Omega$, $T = 25$ °C
		0.10	0.20	-	V	T = 150°C
On-state voltage	V _T	-	1.1	1.5	V	I _T = 2A
Holding current	I _H	0.3	2.0	5.0	mA	$V_D = 5V$, $R_{GK} = 1K$, $T = 25$ °C
		0.05	0.2	-	mA	T = 150°C
Off-state voltage - critical rate of rise	dv/dt	20	40	-	V/µS	$V_D = 30V, R_{GK} = 1K$

Note 1: I_G = 10mA, Pulse test: Duty cycle < 1%.

Note 2: Pulse test intended to guarantee reverse anode voltage capability for pulse commutation. Device should not be operated in the reverse blocking mode on a continuous basis.

High-reliability discrete products and engineering services since 1977

GA200-GA201A

SILICON CONTROLLED RECTIFIERS

MECHANICAL CHARACTERISTICS

Case	TO-18
Marking	Alpha-numeric
Pin out	See below

		TC	1-18		
	Inc	hes	Millimeters		
	Min	Max	Min	Max	
Α	0.209	0.230	5.310	5.840	
В	0.178	0.195	4.520	4.950	
С	0.170	0.210	4.320	5.330	
D	0.016	0.021	0.406	0.533	
E	-	0.030	15	0.762	
F	0.016	0.019	0.406	0.483	
G	0.100 BSC		2.540 BSC		
Н	0.036	0.046	0.914	1.170	
J	0.028	0.048	0.711	1.220	
K	0.500	12	12.700	112	
L	0.250		6.350		
М	45°C BSC		45° BSC		
N	0.050 BSC		1.270 BSC		
Р	35	0.050	15	1.270	

High-reliability discrete products and engineering services since 1977

GA200-GA201A

SILICON CONTROLLED RECTIFIERS

NOTES: 1. DATA BASED ON ON-STATE
VOLTAGE GRAPH AT T, = 150°C.
BLOCKING VOLTAGE MAY BE
APPLIED INMEDIATELY AFTER
TERMINATION OF CURRENT
POLICE.
2. T, = 75°C

NOTES: 1. DATA BASED ON ON-STATE VOLTAGE GRAPH AT T = 150°C. BLOCKING VOLTAGE MAY BE APPLIED IMMEDIATELY AFTER TERMINATION OF CURRENT PULSE. 2. T_c = 75°C.

NOTES: 1. DATA BASED ON ON-STATE
VOLTAGE GRAPH AT T, = 150°C,
BLOCKING VOLTAGE MAY BE
APPLIED IMMEDIATELY AFTER
TERMINATION OF CURRENT
PULSE.
2. T, = 75°C

High-reliability discrete products and engineering services since 1977

GA200-GA201A

SILICON CONTROLLED RECTIFIERS

NOTES: 1. BLOCKING VOLTAGE MAY NOT BE APPLIED FOR .001 SEC. AFTER TERMINATION OF SURGE PULSE AS JUNCTION TEMPERATURE WILL EXCEED 150°C.

2. $T_{\rm c} = 75^{\circ}{\rm C}$