High-reliability discrete products and engineering services since 1977 ## GA200-GA201A ## SILICON CONTROLLED RECTIFIERS #### **FEATURES** - Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number. - Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix. #### **MAXIMUM RATINGS** | Ratings | Symbol | GA200
GA200A | GA201
GA201A | GB200
GB200A | GB201
GB201A | |-----------------------------------|------------------|-----------------|-----------------|-----------------|-----------------| | Repetitive peak off state voltage | V_{DRM} | 60V | 100V | 60V | 100V | | Repetitive peak on state current | I _{TRM} | Up to 100A | | | | | DC on state current | | | | | | | 70°C ambient | I _T | 200mA | | - | | | 70°C case | | 400mA | | 6A | | | Peak gate current | I _{GM} | 250mA | | 250mA | | | Average gate current | $I_{G(AV)}$ | 25mA | | 50mA | | | Reverse gate current | I _{GR} | 3mA | | 3mA | | | Reverse gate voltage | V_{GR} | 5V 5V | | 5V | | | Thermal resistance | R _{OCA} | 300°C/W | | | | | Storage temperature range | T _{stg} | -65° to 200°C | | | | | Operating temperature range | Tı | -65° to 150°C | | | | #### **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise specified) | Test | Symbol | Min. | Тур. | Max. | Units | Test Conditions | |---|---------------------|------|------|------|-------|--| | Delay time | t _d | _ | 20 | 30 | ns | I _G = 20mA, I _T = 1A | | , | -u | - | 10 | - | | $I_G = 30 \text{mA}, I_T = 1 \text{A}$ | | Rise time (GA200, GA200A, GB200, GB200A) | t _r | - | 15 | 25 | ns | $V_D = 60V, I_T = 1A(1)$ | | | L _r | - | 25 | - | | $V_D = 60V, I_T = 30A(1)$ | | Rise time (GA201, GA201A, GB201, GB201A) | t _r | - | 10 | 20 | ns | $V_D = 100V, I_T = 1A(1)$ | | | | - | 20 | - | | $V_D = 100V, I_T = 30A(1)$ | | Gate trigger on pulse width | t _{pg(on)} | - | 0.02 | 0.05 | μs | $I_G = 10 \text{mA}, I_T = 1 \text{A}$ | | Circuit commutated turn-off time | | | | | | | | (GA200, GA201, GB200, GB201) | t_q | - | 0.8 | 2.0 | μs | $I_T = 1A$, $I_R = 1A$, $R_{GK} = 1K$ | | (GA200A, GA201A, GB200A, GB201A) | | - | 0.3 | 0.5 | | | | Off-state current | I _{DRM} | - | 0.01 | 0.1 | μΑ | V_{DRM} = Rating, R_{GK} = 1K | | | | - | 20 | 100 | μΑ | V _{DRM} = rating, R _{GK} = 1K, 150°C | | Reverse current | I _{RRM} | - | 1.0 | 10 | mA | $V_{RRM} = 30V, R_{GK} = 1K(2)$ | | Reverse gate current | I_{GR} | - | 0.01 | 0.1 | mA | $V_{GRM} = 5V$ | | Gate trigger current | I _{GT} | - | 10 | 200 | μΑ | V _D = 5V, R _{GS} = 10K | | Gate trigger voltage | V_{GT} | 0.4 | 0.6 | 0.75 | V | $V_D = 5V$, $R_{GS} = 100\Omega$, $T = 25$ °C | | | | 0.10 | 0.20 | - | V | T = 150°C | | On-state voltage | V _T | - | 1.1 | 1.5 | V | I _T = 2A | | Holding current | I _H | 0.3 | 2.0 | 5.0 | mA | $V_D = 5V$, $R_{GK} = 1K$, $T = 25$ °C | | | | 0.05 | 0.2 | - | mA | T = 150°C | | Off-state voltage - critical rate of rise | dv/dt | 20 | 40 | - | V/µS | $V_D = 30V, R_{GK} = 1K$ | Note 1: I_G = 10mA, Pulse test: Duty cycle < 1%. Note 2: Pulse test intended to guarantee reverse anode voltage capability for pulse commutation. Device should not be operated in the reverse blocking mode on a continuous basis. # High-reliability discrete products and engineering services since 1977 # GA200-GA201A ## SILICON CONTROLLED RECTIFIERS #### MECHANICAL CHARACTERISTICS | Case | TO-18 | |---------|---------------| | Marking | Alpha-numeric | | Pin out | See below | | | | TC | 1-18 | | | |---|-----------|-------|-------------|-------|--| | | Inc | hes | Millimeters | | | | | Min | Max | Min | Max | | | Α | 0.209 | 0.230 | 5.310 | 5.840 | | | В | 0.178 | 0.195 | 4.520 | 4.950 | | | С | 0.170 | 0.210 | 4.320 | 5.330 | | | D | 0.016 | 0.021 | 0.406 | 0.533 | | | E | - | 0.030 | 15 | 0.762 | | | F | 0.016 | 0.019 | 0.406 | 0.483 | | | G | 0.100 BSC | | 2.540 BSC | | | | Н | 0.036 | 0.046 | 0.914 | 1.170 | | | J | 0.028 | 0.048 | 0.711 | 1.220 | | | K | 0.500 | 12 | 12.700 | 112 | | | L | 0.250 | | 6.350 | | | | М | 45°C BSC | | 45° BSC | | | | N | 0.050 BSC | | 1.270 BSC | | | | Р | 35 | 0.050 | 15 | 1.270 | | # High-reliability discrete products and engineering services since 1977 ## GA200-GA201A ## SILICON CONTROLLED RECTIFIERS NOTES: 1. DATA BASED ON ON-STATE VOLTAGE GRAPH AT T, = 150°C. BLOCKING VOLTAGE MAY BE APPLIED INMEDIATELY AFTER TERMINATION OF CURRENT POLICE. 2. T, = 75°C # NOTES: 1. DATA BASED ON ON-STATE VOLTAGE GRAPH AT T = 150°C. BLOCKING VOLTAGE MAY BE APPLIED IMMEDIATELY AFTER TERMINATION OF CURRENT PULSE. 2. T_c = 75°C. NOTES: 1. DATA BASED ON ON-STATE VOLTAGE GRAPH AT T, = 150°C, BLOCKING VOLTAGE MAY BE APPLIED IMMEDIATELY AFTER TERMINATION OF CURRENT PULSE. 2. T, = 75°C High-reliability discrete products and engineering services since 1977 ## GA200-GA201A ## SILICON CONTROLLED RECTIFIERS NOTES: 1. BLOCKING VOLTAGE MAY NOT BE APPLIED FOR .001 SEC. AFTER TERMINATION OF SURGE PULSE AS JUNCTION TEMPERATURE WILL EXCEED 150°C. 2. $T_{\rm c} = 75^{\circ}{\rm C}$