

GC87C510A0-SP8IP (8-bit Turbo Microcontroller) Approval Sheet

Prepared by	
CIO, Isaac Kwon	
Confirmed by	
CTO, Victor Nam	

Rev. 1.0 October 29, 2007

Copyright CORERIVER Semiconductor Co., Ltd. 2007 All Rights Reserved

사용상 주의 (Caution/Warning)

이 서류에 기재된 제품은 일반적인 전자기기(사무기기, 통신기기, 계측기기, 가전제 품)에 사용하도록 의도되었습니다.

The products described in this document are intended to be used in general-purpose electronic equipment (Office equipment, telecommunication equipment, measuring equipment, home appliances)

높은 신뢰성을 요구하는 용도, 그리고 고장 및 오동작으로 직접적으로 신체적 위험 이나 손상을 일으키거나 재산상의 피해를 주는 특정 용도(항공, 우주용, 교통 설비, 생명유지장치, 안전장치)에 사용하지 말아야 합니다.

You don't have to use these products with equipment or device which require an extremely high of reliability, and special applications (such as air travel aerospace, transportation equipment, life support system, and safety devices) in which the failure or malfunction of products may directly jeopardize or harm the human body or damage to property.

최대 정격, 동작전원전압 등에 있어서 보증하는 범위 내에서 사용하기 바랍니다. 보 증 범위를 초과 사용하여 발생한 고장 및 문제에 대해서는 사용자의 책임입니다. You have to use product within the ranges guaranteed by CORERIVER for maximum rating, operating supply voltage range, etc. You shall be responsible for failure or damage when used beyond the guaranteed ranges.

이 서류에 기재된 기술 정보는 제품의 대표 특성 및 응용 회로 사례이며, 산업 재 산권, 지적 재산권, 다른 권리를 허락한다는 의미는 아닙니다.

The technical information described in this document is limited to showing representative characteristics and applied circuit examples of the products and it does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.

이 서류에 기술된 정보는 새로운 기술 개발을 반영하기 위해 사전에 통보 없이 변 경될 수 있습니다. 최종 설계 구매 또는 사용 전 가장 최근의 제품 표준 및 규격서 를 받았는지 확인하기 바랍니다.

The information described in this document may be changed without any prior notice to reflect new technical development. You have to confirm that you have received the latest product standards or specification before final design, purchase or use.

Contents :

- 1. Product Feature
- 2. Block Diagram
- 3. Pin List & Description
- 4. Physical dimension
- 5. Marking Spec.

1. Product Feature

1.1 Overview

- 8-bit turbo 80C52 architecture (X3)
- 4 clock cycles/1 machine cycle
- Instruction level compatible with Intel 80C52
- 4Kbyte OTP ROM (EPROM)
- 128byte Internal Data RAM
- Supply Voltage: 2.4V ~ 5.5V
- On-chip Oscillator Circuitry Using External Crystal
 - ✓ Max. 20MHz @ 4.5 ~ 5.5V
 - ✓ Max. 10MHz @ 2.4 ~ 3.3V
- Operating Temperature: -20 °C ~ 85 °C
- 6 Programmable I/O pins
- Low Voltage Detector (LVD)
- 16-bit Programmable Watchdog Timer (WDT)
- Two 16-bit Timer/Counters
- Full-Duplex UART
 - \checkmark Automatic address recognition
- 1-channel 8-bit High Speed Pulse Width Modulator (PWM)
- 2-channel 10-bit Analog to Digital Converter (ADC)
 - ✓ Max. 100K SPS (samples per second) @ 8MHz
 - ✓ Programmable input clock frequency
- 9 Interrupt Sources including 3 External
 - ✓ Timer 0/1, UART, ADC, PWM, WDT, and four External
 - ✓ Two-level interrupt priority
- Reset scheme
 - ✓ On-chip Rower-On-Reset (POR)
 - ✓ External Reset
 - ✓ Low Voltage Detector Reset
 - ✓ Watchdog Timer Reset
- Power consumption
 - ✓ Active current: Max 10mA @ 5V, 20MHz
 - ✓ Stop current: Max 1uA
- ESD protection up to 2,000V

• Latch-up protection up to ±200mA

1.2 Electrical Spec

Absolute Maximum Ratings

Items	Conditions	Ranges	
Voltage on any pin relative to		$0 \in \mathcal{V}$ to $(\mathcal{V} \to 0 \in \mathcal{V})$	
Ground	-	-0.5 V (0 (V _{DD} +0.5V)	
Voltage in V _{DD} relative to Ground	-	-0.5V to 6.5V	
Output Voltage	-	-0.5 V to (V _{DD} +0.5V)	
Output Current High	One I/O pin active	-25mA	
Output Current High	All I/O pin active	-100mA	
Output Current Low	One I/O pin active	+30mA	
	All I/O pin active	+150mA	
Operating Temperature	-	-40 °C to 85 °C	
Storage Temperature	-	-65 °C to +150 °C	
Soldering Temperature	-	160 °C for 10 seconds	

General DC Characteristics

(T_A= -20°C ~ + 85°C, V_{DD}=2.4V ~ 5.5V unless otherwise specified)

Darameter	Sumbol	Din	Conditions	,	Value			
Parameter	Symbol	PIII	Conditions	Min.	Тур.	Max.	Unit	
Input Low	V_{IL1}	P0, P2		-0.5	-	$0.2V_{DD}$ -0.1	V	
Voltage	V_{IL2}	XTAL1, XTAL2, RESETB	$V_{DD} = 2.4V \sim 5.5V$	-0.5	-	0.3V _{DD}	v	
Innut Llich	$V_{\rm IH1}$	P0, P2		0.2V _{DD} +1.0	-	V _{DD} +0.5	V	
Voltage	$V_{\rm IH2}$	XTAL1, XTAL2, RESETB	$V_{DD} = 2.4V \sim 5.5V$	0.7V _{DD}	-	V _{DD} +0.5	v	
Output Low	V _{OL1}	XTAL1, XTLA2, P0, P2	I_{OL} =20mA @V _{DD} =5V (I_{OL} =5mA @V _{DD} =2.6V)	-	-	0.3V _{DD}	v	
Voltage V _{OL2}		RESETB	I_{OL} =10mA @V _{DD} =5V (I_{OL} =2.5mA @V _{DD} =2.6V)		-	0.3V _{DD}	v	
	V _{OH}	XTAL, XTAL2, P0, P2	I_{OL} =-15mA @V _{DD} =5V (I_{OL} =2.5mA @V _{DD} =2.6V)	0.7V _{DD}	-	-	v	
Output High Voltage	V _{OH1}	P0, P2 (Pull-up R Only)	I_{OL} =-140uA @V _{DD} =5V (I_{OL} =-20uA @V _{DD} =2.6V)	0.7V _{DD}	-	-	v	
	V _{OH2}	XTAL1, XTAL2 (Pull-up R Only)	I_{OL} =-10uA @V _{DD} =5V (I_{OL} =1.5mA @V _{DD} =2.6V)	0.7V _{DD}	-	-	v	
Input Leakage Current	I _{IL}	All pins except XTAL1 and XTAL2	$V_{IN} = V_{IH} \text{ or } V_{IL}$	-	-	±1.0	uA	
Pin Capacitance	C _{IO}	All pins	$V_{DD} = 5V$	-	10	-	pF	

ADC Specifications

Parameter		Sumbol	Conditions		Value		Unit
Palalli	elei	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply V	oltage/	V _{DDADC}	-	2.4	-	5.5	V
Input Vo	oltage	V_{INADC}	-	V_{SS}	-	V_{DD}	V
Resolu	ition	RESADC	-	-	10	-	Bit
Opera	ting	Fund	$V_{DD} = 4.5V \sim 5.5V$	_	_	10	MHz
Freque	ency	I ADC	$V_{DD} = 2.4 \sim 3.3 V$			5	1.11.15
Conver	rsion	tuna	_	_	96/E	_	sec
Tim	e	LADC		_	JO/T ADC	_	300
Over	all	04.55	V_{DD} = 5V, F_{ADC} = 10MHz	_	+20	+40	I SB
Accur	асу	ORADC	$V_{DD} = 3V, F_{ADC} = 5MHz$	_	± 2.0	<u> </u>	LJD
Integ	Integral		$V_{DD} = 5V$, $F_{ADC} = 10MHz$	_	+20	+40	I SB
Nonline	earity	INLADC	$V_{DD} = 3V, F_{ADC} = 5MHz$			•	LOD
Differe	ntial		$V_{DD} = 5V$, $F_{ADC} = 10MHz$	_	+05	+10	I SB
Nonline	earity	DIVLADC	$V_{DD} = 3V, F_{ADC} = 5MHz$		± 0.5	± 1.0	LJD
Zero II	nput	7IE.co	$V_{DD} = 5V$, $F_{ADC} = 10MHz$	_	+20	+40	I SB
Erro	or	ZILADC	$V_{DD} = 3V, F_{ADC} = 5MHz$		± 2.0	± 1.0	LJD
Full Scale	- Frror	FSE	$V_{DD} = 5V$, $F_{ADC} = 10MHz$	_	+20	+40	I SB
	C EITOI	I SEADC	$V_{DD} = 3V, F_{ADC} = 5MHz$		- 210	± 110	LOD
Analog	Input	CINADO	_	-	10	15	nF
Capacit	ance	CINADC			10	15	Pi
	Activo		$V_{DD} = 5V$, $F_{ADC} = 10MHz$	-	1.0	2.0	mA
ADC	Active	Τ	$V_{DD} = 3V, F_{ADC} = 5MHz$	-	0.3	0.6	mA
Current	Power-	¹ ADC	V 5V			100	n۸
	down		v _{DD} – Jv	_	_	100	ПА

2. Block Diagram

3. Pin List & Description

The Pin Configuration of the 8-pin SPDIP Package

Pin Descriptions

Symbol	Direction	Description	Pin Sharing
VDD	Input	Power	
VSS	Input	Ground	
RESETB /	Input/Output	 External Reset (Default) 	VPP (11.5V)
VPP / P1.2		Bit Programmable	
XTAL1 / P1.0	Input/Output	 Crystal Input/Output (Default) 	Crystal Input
		Bit programmable with Schmitt	
XTAL2 / P1.1		Trigger	Crystal Output
		- Pull-up control	
P0.0	Input/Output	Bit Programmable with Schmitt	/INT0, PWM, TVO
P0.1	Input/Output	Trigger	ADC0, /INT1, RXD
P0.2	Input/Output	- Pull-up control	ADC1, INT2, TXD
		- Push-pull output (Default)	

4. Physical Dimension

Currele e l	Dime	ension in Ind	ches	Dir	mension in 1	mm
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.
Α	-	-	0.200	-	-	5.080
A ₁	0.015	-	I	0.381	-	-
A ₂	0.150	0.155	0.160	3.810	3.937	4.064
В	0.016	0.018	0.022	0.406	0.457	0.559
B ₁	0.045	0.055	0.065	1.143	1.397	1.651
С	0.008	0.010	0.012	0.203	0.254	0.356
D	0.445	0.455	0.475	11.303	11.557	12.065
E	0.290	0.300	0.310	7.366	7.62	7.874
E ₁	0.249	0.250	0. 251	6.10	6.35	6.60
e ₁	0.090	0.100	0.110	2.286	2.540	2.794
L	0.120	0.130	0.140	3.048	3.302	3.556
а	0°	-	15°	0°	-	15 °
e _A	0.330	0.350	0.370	8.382	8.89	9.398
S	-	-	0.090	-	-	2.286

Notes:

1. Dimension D Max. & S include mold flash or tie bar Burns.

- 2. Dimension E_1 dose not include interlead flash. 3. Dimension D & E_1 include mold mismatch and are determined at the mold parting line.
- 4. Dimension B_1 does not include dambar protrusion/intrusion.
- 5. General appearance spec. should be based on final visual inspection spec.

5. Marking Spec

	CORERIVER
1. Purpose	
To provide the information of the ma	rking process
2. Scope GC87C510A0-SP8IP (8 DIP)	
3. Explanation	
3.1 Marking Method : Laser	
3.2 Character Type : Arial	
3.3 Marking Size and Instruction	
Marking Size	Marking Instruction
 1.0 mm 	* Work Week
ing Space	(a) 1) YY: Year (2007->07,2008->08)
Line Space 0.5 mm	2) WW: Week (01,02,03,,53)
3.4 Marking Layout & Area 3.4.1 GC87C510A0-SP8IP	Max 5.5 mm GC-M11P PYYWWA NOTE : Center alignment NOTE : 1's of "GC-M11P" on the first row are numbers.

MiDAS 1.1 Family

Confidential

QC-MiDAS1.1-V1.0

Reliability Report

GC87C510A0

V 1.0

June 2007

The information contained in this report is proprietary to CORERIVER Semiconductor Co. LTD. and shall be protected from any reproduction or disclosure in whole or in part without written approval of CORERIVER.

Contents

- 1. Used Process Reliability
 - Electrical Stress Test Results
 - Environmental Stress Test Results
- 2. Used Library Reliability
 - ✓ Electrical Stress Test Results
 - Environmental Stress Test Results
 - ✓ EST Test Results
 - Latch-Up Test Results

3. 87C510A0 Reliability: Silicon Device Part

- Electrical Stress Test Results
- Environmental Stress Test Results
- Estimation of Failure Rate from HTOL
- ESD Test Results
 - TEST CIRCUIT
 - FORCING METHOD OF ESD PULSE
 - TEST RESULTS
- ✓ Latch-Up Test Results
 - TEST CIRCUIT : EIA JEDEC
 - TEST CONDITION
 - TEST RESULTS

5. Appendix

CORERIVER Semiconductor Co., Ltd.

Electrical Stress Test Results

Test Items	Conditions	# of Lot	S.S Per Lot	Total Units	#of Fail	Duration	Results
H.T.O.L (High Temperature Operating Life Test)	Ta=145℃, Dynamic V _{DD} =6V	3	77	231	0	1,008 Hrs	PASS
T.H.B (Temp. & Humidity With Bias)	Ta=85℃, R.H=85% Static, V _{CC} =5.5V (*)	3	38	114	0	1,008 Hrs	PASS

✓ Notes

- a. No Failures counted for this qualification test.
- **b.** "*": Starting reliability test after preconditioning test according to JEDEC-STD JESD22 A113 Level III.

Environmental Stress Test Results

Test Items	Conditions	#of Lot	S.S Per Lot	Total Units	#of Fail	Duration	LTPD	Result
P.C.T (Pressure Cooker Test)	Ta=121℃,2ATM, R.H=100% (*)	3	32	96	0	200 Hrs	7%	PASS
T.C (Temperature Cycle)	Ta= -65℃/150℃ 15Min/15Min=1Cyc Air to Air (*)	3	77	231	0	1,000 Cycle	5%	PASS
H.T.S.T (High Temperature Storage Test)	Ta=150℃ Storage No Biased	3	22	66	0	1,008 Hrs	10%	PASS

✓ Notes

- a. No Failures counted for this qualification test.
- **b.** "*" Starting reliability test after preconditioning test according to JEDEC-STD JESD22A113 Level III.

CORERIVER Semiconductor Co., Ltd.

Confidential

Electrical Stress Test Results

Test Items	Conditions	# of Lot	S.S Per Lot	Total Units	#of Fail	Duration	LTPD	Results
H.T.O.L (High Temperature Operating Life Test)	Ta=145℃,Dynamic V _{DD} =6V	1	77	77	0	504Hrs	5%	PASS

✓ Notes

a. No Failures counted for this qualification test.

Environmental Stress Test Results

Test Items	Conditions	#of Lot	S.S Per Lot	Total Units	#of Fail	Duration	LTPD	Result
T.H.S (temp&Humidity With No Bias)	Ta=85℃,R.H=85% Static(*)	1	38	38	0	504 Hrs	10%	PASS
P.C.T (Pressure Cooker Test)	Ta=121℃,2ATM, R.H=85%(*)	1	32	32	0	200 Hrs	7%	PASS
T.C (Temperature Cycle)	Ta= -65℃/150℃ 15Min/15Min=1 Cycle Air to Air(*)	1	77	77	0	1,000 Cyc	5%	PASS
H.T.S.T (High Temperature Storage Test)	Ta=150℃ Storage No Biased	1	22	22	0	504 Hrs	10%	PASS

✓ Notes

- a. No Failures counted for this qualification test.
- **b.** "*" Starting reliability test after preconditioning test according to JEDEC-STD JESD22A113 Level III.

CORERIVER Semiconductor Co., Ltd.

ESD Test Results

Model	Mode	S/S	Spec	Results
HBM	V _{DD} ,V _{SS} ,I/O	9	2000V	PASS
ММ	V _{DD} ,V _{SS} ,I/O	9	200V	PASS
CDM	Socket Mode	3	800V	PASS

Latch- Up Test Results

Mode		Voltage/Current	S/S(EA)	Result
Voltage (E-Mode)	+	10.0(V)	3	PASS
	-	-10.0(V)	3	PASS
Current (I-Mode)	+	250(mA)	3	PASS
	-	-250(mA)	3	PASS
V _{DD} -V _{SS} (Overvoltage)		10.0(V)	3	align

Electrical Stress Test Results

Test Items	Conditions	# of Lot	S.S Per Lot	Total Units	#of Fail	Duration	Results
H.T.O.L (High Temperature Operating Life Test)	Ta=145 ℃ ,Dynamic V _{DD} =6v	1	77	77	0	168 Hrs (*)	PASS

✓ Notes

- a. No Failures counted for this qualification test.
- **b.** "*" H.T.O.L for product reliability was tested only for 168 hours. It is because 1,008 hour H.T.O.L was tested for the used process reliability. Refer to the used process reliability for 1,008 hour H.T.O.L.

Environmental Stress Test Results

Test Items	Conditions	#of Lot	S.S Per Lot	Total Units	#of Fail	Duration	LTPD	Result
T.H.S (Temp.&Humidity With No Bias)	Ta=85℃,R.H=85% Static(*)	1	38	38	0	504 Hrs	10%	PASS
P.C.T (Pressure Cooker Test)	Ta=121℃,2ATM, R.H=85%(*)	1	32	32	0	200 Hrs	7%	PASS
T.C (Temperature Cycle)	Ta= -65℃/150℃ 15Min/15Min=1Cyc Air to Air(*)	1	77	77	0	1,000 Cycle	5%	PASS
H.T.S.T (High Temperature Storage Test)	Ta=150℃ Storage No Biased	1	22	22	0	504 Hrs	10%	PASS

✓ Note

- a. No Failures counted for this qualification test.
- **b.** "*" Starting reliability test after preconditioning test according to JEDEC-STD JESD22A113 Level III.
- c. This is the used library reliability information obtained from the GC87C520A0 samples. GC87C520A0 and GC87C510A0 are designed with the same library and fabricated by the same process.

CORERIVER Semiconductor Co., Ltd.

MiDAS 1.1 Family [10]

Estimation of Failure Rate from HTOL

✓ FIT CALCULATION

Temperature acceleration for semiconductor failure mechanism is usually described by the Arrhenius equation.

$$AF_{T} = \exp [(Ea/k)^{*} (1/T_{1} - 1/T_{2})] = 77.94$$

Where :

 AF_T = Temperature acceleration factor

exp = Exponential function of the natural logarithm

Ea = Activation energy in electron volts (Model acceleration factor

: 0.7eV for Gate oxide defect)

- k = Boltzmann's constant(8.617 \times 10⁻⁵ electron volts/Kelvins(328K)
- T1 = Temperature at normal use conditions(55 $^{\circ}$) in Kelvins(328K)
- T2 = Temperature at accelerated condition(125°) in Kelvins(398K)

3. 87C510A0 Reliability: Silicon Device Part

Confidential

Estimation of Failure Rate from HTOL (Cont'd)

✓ FIT CALCULATION (Cont'd)

The Failure rate is described by the following equation:

$\lambda = [\chi^2 (\alpha, d.f) * 10^9 / 2 \text{ EDH}] \text{ FITs} = 907 \text{ FITs}$

Where :

- λ = Failure rate in FITs χ^2 = Chi-square distribution value
- α = confidence level 60%(0.4) d.f = Degree of freedom = 2(n+1)
- n = Number of observed failure during test

EDH = Equivalent Device Hour(AF* Sample size*Stress time t)

✓ MTTF CALCULATION

MTTF = 1/ λ = 126 Years

3. 87C510A0 Reliability: Silicon Device Part

Confidential

ESD Test Results

✓ TEST CIRCUIT

✓ FORCING METHOD OF ESD PULSE

- THREE POSITIVE AND THREE NEGATIVE PULSES ON EACH PIN

CORERIVER Semiconductor Co., Ltd.

ESD Test Results (Cont'd)

✓ TEST RESULTS

METHOD	TARGET	RESULTS
HUMAN BODY (JEDEC STD)	>=2,000V	>=2,000V
MACHINE (JEDEC STD)	>=200V	>=200V

ESD Test Results (Cont'd)

✓ TEST RESULTS FOR HBM

METHOD	RESULTS	CLASSIFICATION
JESD22-A114-B	≥2,000V	CLASS 2

✓ TEST RESULTS FOR HM

METHOD	RESULTS	CLASSIFICATION	
JESD22-A114-A	≥200V	CLASS B	

✓ SUMMARY

Model	Test Condition	Samples	No. of fail	Result
HBM	± 2,000V	9	0	Pass
MM	±200V	9	0	Pass
CDM (*)	800V, Socket Mode	3	0	Pass

✓ Notes

"*" The CDM information is obtained from used 87C520A0 samples. 87C520A0 samples and 87C510A0 samples are designed with the same library and fabricated by the same process. So 87C510A0 has same I/O characteristics with the 87C510A0.

CORERIVER Semiconductor Co., Ltd.

3. 87C510A0 Reliability: Silicon Device Part

Confidential

- ◆ Latch- Up Test Results
 - ✓ TEST CIRCUIT : EIA JEDEC

- ✓ TEST CONDITION
 - PULSE WIDTH : 10ms
 - CLAMP VOLTAGE : 7V

Latch- Up Test Results

✓ TEST RESULTS

METHOD	TARGET	SAMPLE	No. of fail	RESULTS
POSITIVE	>=Inom*1.5	9	0	>250mA
NEGATIVE	<=Inom*1.5	9	0	>-250mA
VOLTAGE IMMUNITY	±5.4V (Max Vcc*1.5)			±10V

Confidential

◆ V1.0: Released in February, 2007.

CORERIVER Semiconductor Co., Ltd.

MiDAS 1.1 Family [18]