

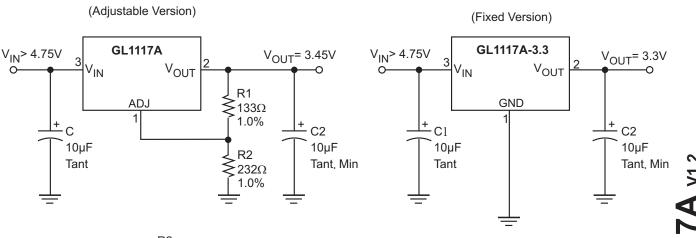
GL1117A

1.0A LOW DROPOUT PRECISION LINEAR REGULATORS

Description

GL1117A of positive adjustable and fixed regulators is designed to provide 1.0A output with low dropout voltage performance. On-chip trimming adjusts the reference voltage to 1%. For usage on working in post regulators or microprocessor power supplies, low voltage operation and fast transient response are required.

Pin-to-pin compatible with the LT1086 family of regulators, GL1117A is available in surface-mount SOT-223 and TO-252 and SOT-89 packages.


Features

- Adjustable or Fixed Output
- Output Current of 1.0A
- Dropout Voltage (Typical) 1.3V @ 1.0A
- Line Regulation 0.2% max.
- Load Regulation 0.4% max.
- Fast Transient Response
- Current Limit Protection
- Thermal Shutdown Protection

Application

High Efficiency Linear Regulators Post Regulators for Switching Supplies Microprocessor Supply Hard Drive Controllers Battery Chargers Adjustable Power Supply

TYPICAL APPLICATION CIRCUITS

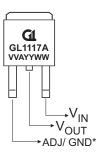
$$V_{OUT} = V_{REF} X (1 + \frac{R2}{R1}) + I_{ADJ} X R2$$

Notes:

1. C1 needed if device is far from filter capacitors

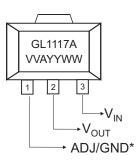
2. C2 minimum value required for stability

GL1117A v1.



GL1117A

1.0A LOW DROPOUT PRECISION LINEAR REGULATORS


MARKING INFORMATION & PIN CONFIGURATIONS (Top View)

TO-252-2 (DPAK)

SOT-223 GL1117A VVAYYWW +V_{IN} VOUT ADJ/GND*

SOT-89

- V V/VVV = Output Voltage (50 = 5.0V, 285= 2.85V ,A =Adj) = Assembly Location А YΥ = Year
- WW = Weekly

- * On fixed versions Pin 1 = GND, on adjustable versions Pin 1 = ADJ * Tab = V_{OUT}

ORDERING INFORMATION (Green Package Products are available now!)

Ordering Number	Output Voltage	Package	Shipping		
GL1117A-AST3T	Adj	SOT-223	80 Units / Tube		
GL1117A-AST3R	Adj	SOT-223	2,500 Units / Tape & Reel		
GL1117A-ATC3T	Adj	TO-252-2	80 Units / Tube		
GL1117A-ATC3R	Adj	TO-252-2	2,500 Units / Tape & Reel		
GL1117A-AST89R	Adj	SOT-89	1,000 Units / Tape & Reel		
GL1117A-1.5ST3T	1.5	SOT-223	80 Units / Tube		
GL1117A-1.5ST3R	1.5	SOT-223	2,500 Units / Tape & Reel		
GL1117A-1.5TC3T	1.5	TO-252-2	80 Units / Tube		
GL1117A-1.5TC3R	1.5	TO-252-2	2,500 Units / Tape & Reel		
GL1117A-1.5ST89R	1.5	SOT-89	1,000 Units / Tape & Reel		
GL1117A-1.8ST3T	1.8	SOT-223	80 Units / Tube		
GL1117A-1.8ST3R	1.8	SOT-223	2,500 Units / Tape & Reel		
GL1117A-1.8TC3T	1.8	TO-252-2	80 Units / Tube		
GL1117A-1.8TC3R	1.8	TO-252-2	2,500 Units / Tape & Reel		
GL1117A-1.8ST89R	1.8	SOT-89	1,000 Units / Tape & Reel		
GL1117A-2.5ST3T	2.5	SOT-223	80 Units / Tube		
GL1117A-2.5ST3R	2.5	SOT-223	2,500 Units / Tape & Reel		
GL1117A-2.5TC3T	2.5	TO-252-2	80 Units / Tube		
GL1117A-2.5TC3R	2.5	TO-252-2	2,500 Units / Tape & Reel		
GL1117A-2.5ST89R	2.5	SOT-89	1,000 Units / Tape & Reel		

CL1117A

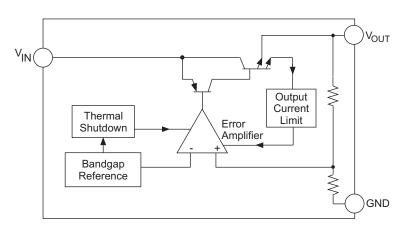
* For detail ordering number identification, please see last page.

1.0A LOW DROPOUT PRECISION LINEAR REGULATORS

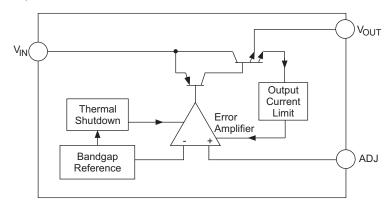
ORDERING INFORMATION (Green Package Products are available now!)

Ordering Number	Output Voltage	Package	Shipping
GL1117A-2.85ST3T	2.85	SOT-223	80 Units / Tube
GL1117A-2.85ST3R	2.85	SOT-223	2,500 Units / Tape & Reel
GL1117A-2.85TC3T	2.85	TO-252	80 Units / Tube
GL1117A-2.85TC3R	2.85	TO-252	2,500 Units / Tape & Reel
GL1117A-2.85ST89R	2.85	SOT-89	1,000 Units / Tape & Reel
GL1117A-3.0ST3T	3.0	SOT-223	80 Units / Tube
GL1117A-3.0ST3R	3.0	SOT-223	2,500 Units / Tape & Reel
GL1117A-3.0TC3T	3.0	TO-252	80 Units / Tube
GL1117A-3.0TC3R	3.0	TO-252	2,500 Units / Tape & Reel
GL1117A-3.0ST89R	3.0	SOT-89	1,000 Units / Tape & Reel
GL1117A-3.3ST3T	3.3	SOT-223	80 Units / Tube
GL1117A-3.3ST3R	3.3	SOT-223	2,500 Units / Tape & Reel
GL1117A-3.3TC3T	3.3	TO-252	80 Units / Tube
GL1117A-3.3TC3R	3.3	TO-252	2,500 Units / Tape & Reel
GL1117A-3.3ST89R	3.3	SOT-89	1,000 Units / Tape & Reel
GL1117A-5.0ST3T	5.0	SOT-223	80 Units / Tube
GL1117A-5.0ST3R	5.0	SOT-223	2,500 Units / Tape & Reel
GL1117A-5.0TC3T	5.0	TO-252	80 Units / Tube
GL1117A-5.0TC3R	5.0	TO-252	2,500 Units / Tape & Reel
GL1117A-5.0ST89R	5.0	SOT-89	1,000 Units / Tape & Reel

* For detail ordering number identification, please see last page.


1.0A LOW DROPOUT PRECISION LINEAR REGULATORS

ABSOLUTE MAXIMUM RATINGS


PARAMETER	SYMBOL	VALUE	UNIT
Power Dissipation	P _D	Internally limited	W
Input Voltage	V _{IN}	15.0	V
Lead Temperature(Soldering, 10sec)	T _{LEAD}	300	°C
Operating Junction Temperature Range Control Section Power Transistor	TJ	-40 to 125 -40 to 150	°C
Storage Temperature Range	T _{STG}	-65 to + 150	°C
Thermal Characteristics SOT-223 Thermal Resistance, Junction-to-Case DPAK Thermal Resistance, Junction-to-Case	R _{θJC}	15 6.0	°C/W
Continuous Total Power Dissipation SOT - 89	PD	500	mW

BLOCK DIAGRAM

(Fixed Version)

(Adjustable Version)

1.0A LOW DROPOUT PRECISION LINEAR REGULATORS

ELECTRICAL CHARACTERISTICS

(Typicals and limits appearing in normal type apply for $\rm T_J$ = 25°C)

Parameter		Symbol	Condition	Min	Тур	Max	Unit
Reference Voltage	GL1117A-Adj	V _{REF}	I _{OUT} =10mA, V _{IN} = 5V I _{OUT} = 1mA to 1A,V _{IN} -V _{IN} =1.5V to10V	1.238 1.225	1.250 1.250	1.262 1.275	V
Output Voltage			I _{OUT} =10mA, V _{IN} =V _{OUT} +1.5V	-1		+1	%
			$V_{IN} = V_{OUT} + 1.5V$ to 10 V 0 $\leq I_{OUT} \leq 1.0A$	-2		+2	%
Line Regulation	All	REG _{LINE}	I _{Load} =10mA, V _{IN} -V _{IN} =1.5V to10V		0.04	0.20	%
Load Regulation	All	REG _{LOAD}	V _{IN} =V _{OUT} + 1.5V I _{Load} =10mA to 1.0A		0.20	0.40	%
Dropout Voltage	All	V _D	I _{OUT} =1.0A		1.3	1.5	V
Current Limit	All	I _{CL}	V _{IN} -V _{OUT} =1.5V	1.0	1.4		А
Minimum Load Current	GL1117A-Adj	I _{O MIN}	V _{IN} =5V, Vadj=0V		3	7	mA
Ground Current	All Fixed Versions	Ι _Q	V _{IN} =V _{OUT} + 1.5V I _{Load} =10mA to 1.0A		7	10	mA
Adjust Pin Current	GL1117A-Adj	I _{ADJ}	I_{Load} =10mA, 2.65V $\leq V_{IN} \leq 7V$		40	90	μA
Temp. Coefficient	All		V _{IN} -V _{OUT} =1.5V, I _{Load} =10mA		0.005		%/°C
Thermal Regulation	All	т _с	T_A =25°C, 30ms pulse		0.003		%/W
Ripple Rejection (Note 1)	All	R _A	V _{IN} -V _{OUT} =1.5V, I _{Load} =1.0A	60	65		dB

Note 1: 120Hz input ripple $(C_{ADJ} \text{ for } ADJ \text{ =} 25 \mu \text{F})$

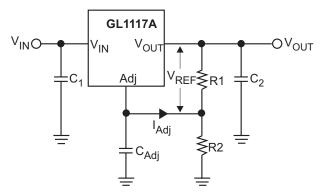
1.0A LOW DROPOUT PRECISION LINEAR REGULATORS

APPLICATION INFORMATION

GL1117A linear regulators provide fixed and adjustable output voltages at currents up to 1.0A. These regulators are protected against overcurrent conditions and include thermal shutdown protection. The GL1117A's have a composite PNP-NPN output transistor and require an output capacitor for stability. A detailed procedure for selecting this capacitor follows.

Adjustable Operation

The GL1117A has an output voltage range of 1.25 V to 5.5 V. An external resistor divider sets the output voltage as shown in Figure 1. The regulator maintains a fixed 1.25V (typical) reference between the output pin and the adjust pin.


A resistor divider network R1 and R2 causes a fixed current to flow to ground. This current creates a voltage across R2 that adds to the 1.25V across R1 and sets the overall output voltage. The adjust pin current (typically 35µA) also flows through R2 and adds a small error that should be taken into account if precise adjustment of V_{out} is necessary.

The output voltage is set according to the formula:

$$V_{OUT} = V_{REF} X \left(\frac{R1 + R2}{R1}\right) + I_{Adj} X R2$$

The term IAdj R2 represents the error added by the adjust pin current.

R1 is chosen so that the minimum load current is at least 2.0mA. R1 and R2 should be the same type, e.g. metal film for best tracking over temperature. While not required, a bypass capacitor from the adjust pin to ground will improve ripple rejection and transient response. A 0.1 μ F tantalum capacitor is recommended for first cut design. Type and value may be varied to obtain optimum performance vs. price.

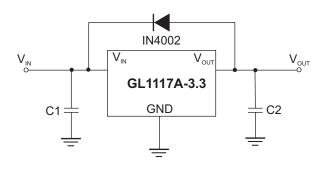
Figure 1. Resistor Divider Scheme Stability Considerations

The output compensation capacitor helps to determine three main characteristics of a linear regulator's performance: start-up delay, load transient response, and loop stability. The capacitor value and type is based on cost, availability, size and temperature constrains. A tantalum or aluminum electrolytic capacitor is preferred, as a film or ceramic capacitor with almost zero ESR can cause Instability. An aluminum electrolytic capacitor is the least expensive type, but when the circuit operates at low temperatures, both the value and ESR of the capacitor will vary widelt. For optimum performance over the full operating temperature range, a tantalum capacitor is best. A 22µF tantalum capacitor will work fine in most applications, but with high current regulators such as the GL1117A higher capacitance values will improve the transient response and stability. Most applications for the GL1117A's involve large changes in load current, so the output capacitor must supply instantaneous load current. The ESR of the output capacitor causes an immediate drop in output voltage given by:

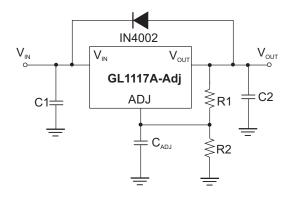
$\Delta V = \Delta I \times ESR$

In microprocessor applications an output capacitor network of several tantalum and ceramic capacitors in parallel is commonly used. This reduces overall ESR and minimizes the instantaneous output voltage drop under transient load conditions. The output capacitor network should be placed as close to the load as possible for the best results.

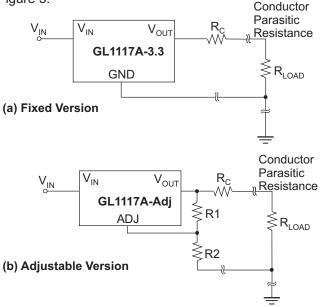
Used with large output capacitance values and the input voltage is instantaneously shorted to ground, damage can occur. In this case, a diode connected as shown above in Figure 1.


1.0A LOW DROPOUT PRECISION LINEAR REGULATORS

Protection Diodes


When large external capacitors are used with most linear regulator, it is wise to add protection diodes. If the input voltage of the regulator is shorted, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of capacitor, output voltage, and rate at which V_{IN} drops.

(a) Fixed Version


(b) Adjustable Version

In the GL1117A linear regulators, the discharge path is through a large junction, and protection diodes are normally not needed. However, damage can occur if the regulator is used with large output capacitance values and the input voltage is instantaneously shorted to ground. In this case, a diode connected as shown above in Figure 2.

Output Voltage Sensing

The GL1117A are three terminal regulators. For which, they cannot provide true remote load sensing. Load regulation is limited by the resistance of the conductors connecting the regulator to the load. For best results the GL1117A should be connected are as shown in Figure 3.

Calculating Power Dissipation and Heat Sink Requirements

The GL1117A precision linear regulators include thermal shutdown and current limit circuitry to protect the devices. However, high power regulators normally operate at high junction temperatures. It is important to calculate the power dissipation and junction temperatures accurately to be sure that you use and adequate heat sink. The case is connected to V_{OUT} on the GL1117A, and electrical isolation may be required for some applications. Thermal compound should always be used with high current regulators like the GL1117A.

GL1117A

1.0A LOW DROPOUT PRECISION LINEAR REGULATORS

The thermal characteristics of an IC depend four factors:

1. Maximum Ambient Temperature $T_A(^{\circ}C)$

2. Power Dissipation P_D (Watts)

3. Maximum Junction Junction Temperature $T_J(^{\circ}C)$

4. Thermal Resistance Junction to ambient $R_{\Theta JA}$ (°C/W)

The relationship of these four factors is expressed by equation (1):

$$T_J = T_A + P_D X R_{\Theta JA} \dots (1)$$

Maximum ambient temperature and power dissipation are determined by the design while the maximum junction temperature and thermal resistance depend on the manufacturer and the package type.

The maximum power dissipation for a regulator is expressed by equation (2):

 $P_{D(max)} = \{ V_{IN(max)} - V_{OUT(min)} \} I_{OUT(max)} + V_{IN(max)} I_{Q} \dots \dots (2)$

where:

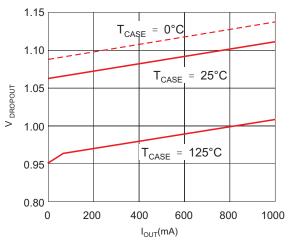
 $V_{IN(max)}$ is the maximum input voltage, $V_{OUT(min)}$ is the minimum output voltage, $I_{OUT(max)}$ is the maximum output current I_Q is the maximum quiescent current at $I_{OUT(max)}$.

A heat sink effectively increases the surface area of the package to improve the flow of heat away from the IC into the air. Each material in the heat flow path between the IC and the environment has a thermal resistance. Like series electrical resistances, these re-

sistance are summed to determine $R_{\Theta JA}$, the total thermal resistance between the junction and the air. This is expressed by equation (3):

 $R_{\Theta JA} = R_{\Theta JC} + R_{\Theta CS} + R_{\Theta SA}$(3)

Where all of the following are in °C/W: $R_{\Theta JC}$ is thermal resistance of junction to case, $R_{\Theta CS}$ is thermal resistance of case to heat sink, $R_{\Theta SA}$ is thermal resistance of heat sink to ambient air


The value for $R_{\Theta JA}$ is calculated using equation (3) and the result can be substituted in equation (1).The value for $R_{\Theta JC}$ is 3.5°C/W for a given package type based on an average die size. For a high current regulator such as the GL1117A the majority of the heat is generated in the power transistor section.

[•] GL1117A

GL1117A

1.0A LOW DROPOUT PRECISION LINEAR REGULATORS

Typical Performance Characteristics

Figure 5. Adjust Pin Current vs. Temperature

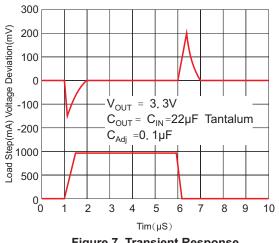
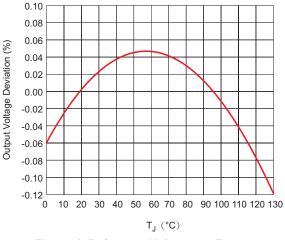



Figure 7. Transient Response

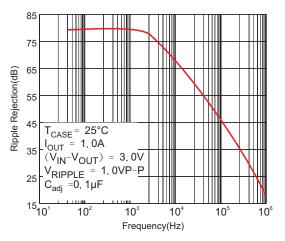
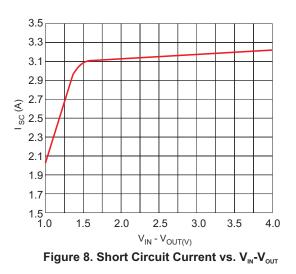
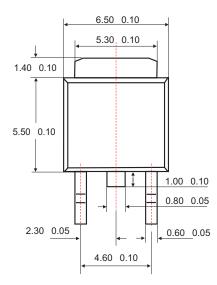
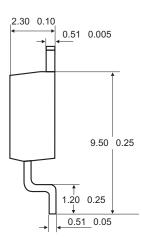



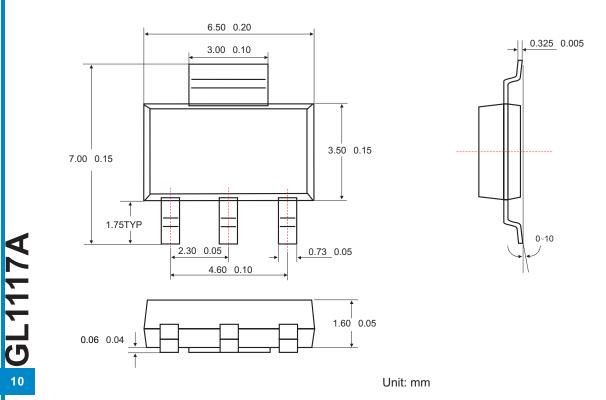
Figure 6. Ripple Rejection vs. Frequency


GL1117A



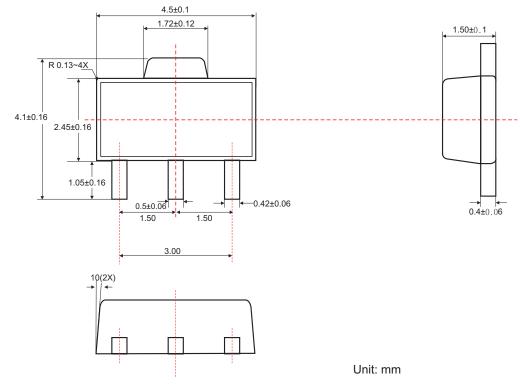
GL1117A

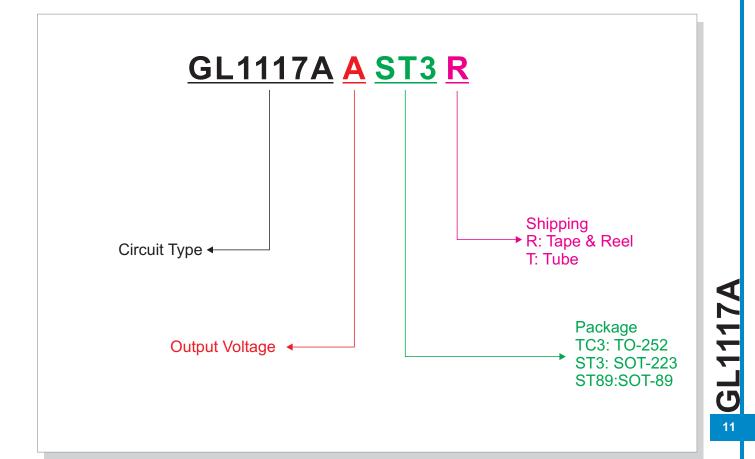
1.0A LOW DROPOUT PRECISION LINEAR REGULATORS


TO-252-3 PACKAGE OUTLINE DIMENSIONS

Unit: mm

SOT-223 PACKAGE OUTLINE DIMENSIONS




GL1117A

1.0A LOW DROPOUT PRECISION LINEAR REGULATORS

SOT-89 PACKAGE OUTLINE DIMENSIONS

ORDERING NUMBER

