



# **GMS81C50** Series

# CMOS SINGLE-CHIP 8-BIT MICROCONTROLLER WITH UR (Universal Remocon) & KEYBOARD

# 1. OVERVIEW

# **1.1 Description**

The GMS81C50 Series is an advanced CMOS 8-bit microcontroller with 16K/24K/32K bytes of ROM. The device is one of GMS800 family. The MagnaChip Semicon GMS81C50 Series is a powerful microcontroller which provides a highly flexible and cost effective solution to many UR & Keyboard applications. The GMS81C50 Series provides the following standard features: 16K/24K/32K bytes of ROM, 448 bytes of RAM, 8-bit timer/counter, on-chip oscillator and clock circuitry. In addition, the GMS81C50 Series supports power saving modes to reduce power consumption.

# 1.2 Features

| Device Name | ROM Size  | RAM Size                   | Package                  |
|-------------|-----------|----------------------------|--------------------------|
| GMS81C5016  | 16K Bytes | 448 Bytes                  | 28 SOP                   |
| GMS81C5024  | 24K Bytes | ( included                 | 28 Skinny DIP<br>40 PDIP |
| GMS81C5032  | 32K Bytes | 256 bytes<br>stack memory) | 44 PLCC<br>44 QFP        |

- Instruction Cycle Time:
  - 1us at 4MHz
- Programmable I/O pins

|        | 28 PIN | 40 PIN | 44 PIN |
|--------|--------|--------|--------|
| INPUT  | 3      | 3      | 3      |
| OUTPUT | 2      | 2      | 2      |
| I/O    | 21     | 33     | 33     |

- Operating Voltage
  - 2.2 ~ 4.0 V @ 4MHz
- Timer
  - Timer / Counter ........ 16 Bit \* 1 ch ......... 8 Bit \* 2 ch

  - Basic Interval Timer ...... 8 Bit \* 1 ch
  - Watch Dog Timer ..... 6-bit \* 1ch

#### 8 Interrupt sources

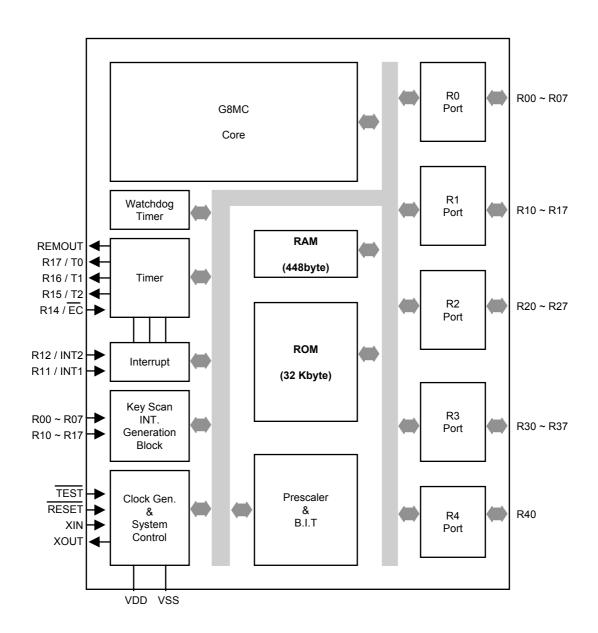
- \* Nested Interrupt control is available.
- External input: 2

- Keyscan input
- Basic Interval Timer
- Watchdog timer
- Timer : 3
- Power On Reset
- Power Saving Operation Modes
  - STOP
  - SLEEP
- Low Voltage Detection Circuit
- Watch Dog Timer Auto Start (During 1 second after Power on Reset)
- Package
- 28SOP
- 40PDIP
- 44PLCC, QFP
- Avalilable Pb free package
- Pb free package:

The "P" Suffix will be added at the original part number. For example,GMS81C5032(Normal package), GMS81C5032 P(Pb free package)

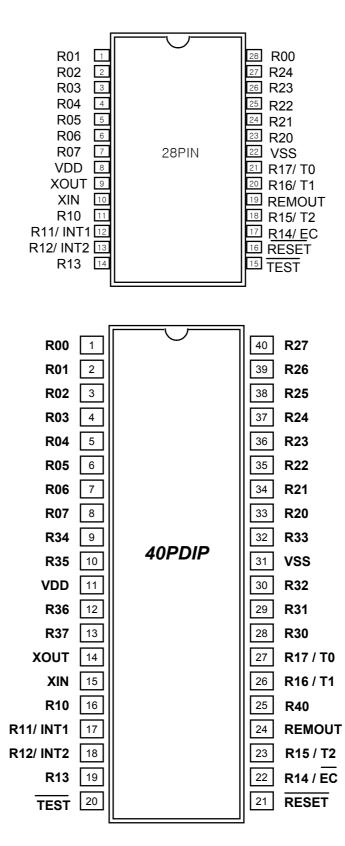


# **1.3 Development Tools**

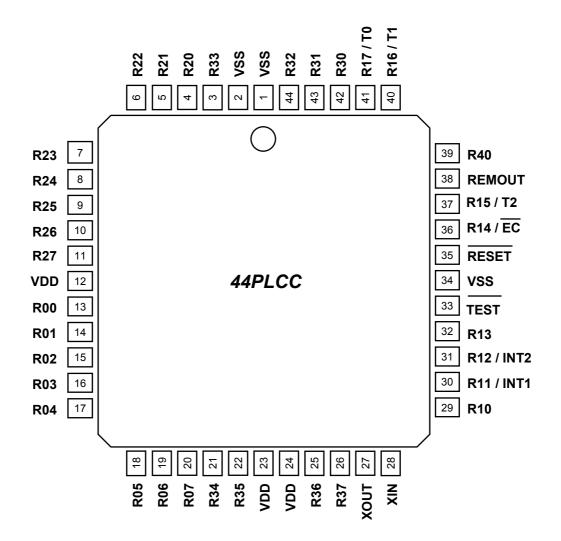

The GMS81C50 Series is supported by a full-featured macro assembler, an in-circuit emulator CHOICE-Dr<sup>TM</sup>.

In Circuit Emulators

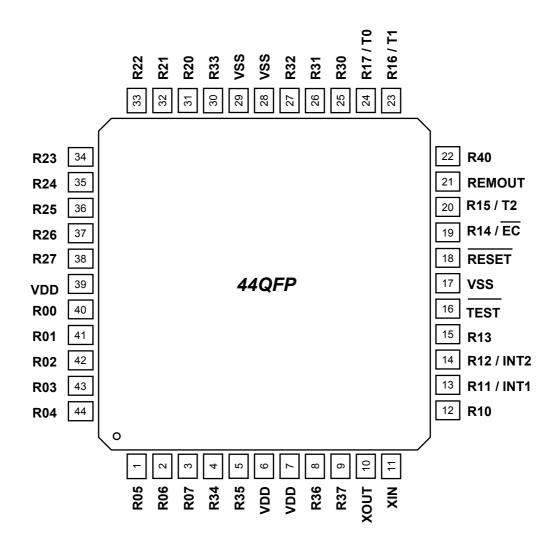
CHOICE-Dr. (with EVA81C)


| LCD Simulator | Under development         |  |  |  |
|---------------|---------------------------|--|--|--|
| Assembler     | MagnaChip Macro Assembler |  |  |  |

# **1.4 BLOCK DIAGRAM**



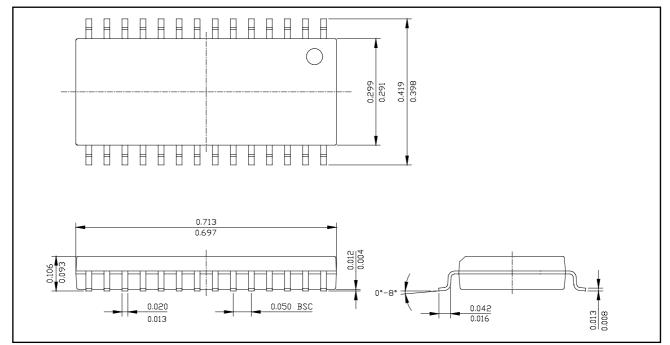




# 2. PIN ASSIGNMENT (Top View)

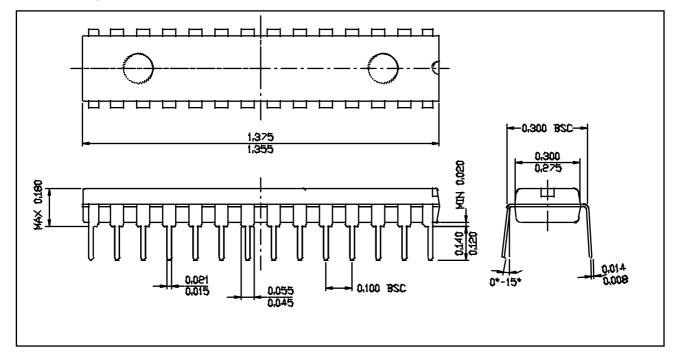






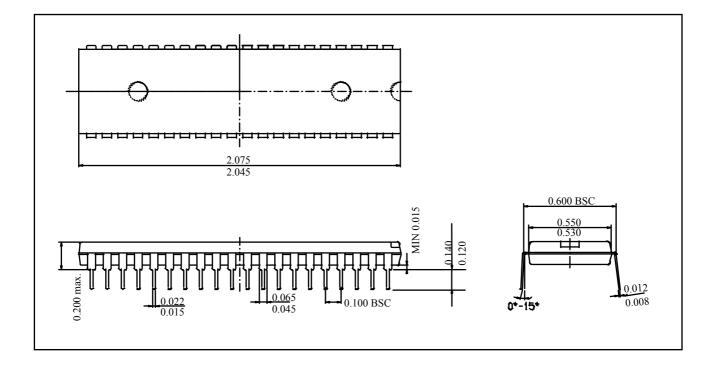

ΛΒΟ



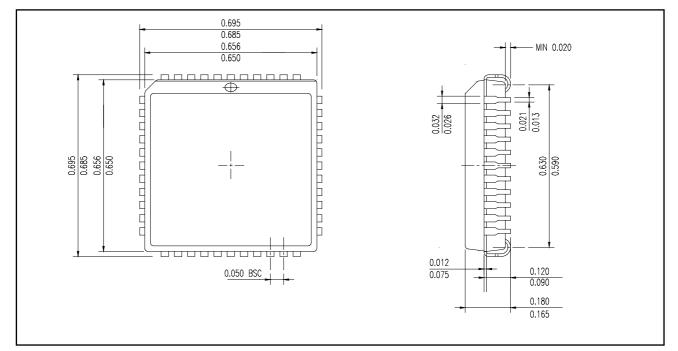



# **3. PACKAGE DIMENSION**

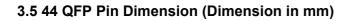
# 3.1 28 SOP Pin Dimension (Dimension in Inch)

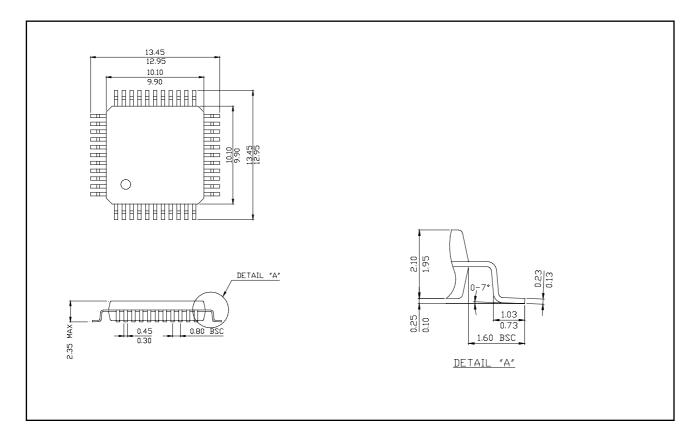



# 3.2 28 Skinny DIP Pin Dimension (Dimension in Inch)







# 3.3 40 PDIP Pin Dimension (Dimension in Inch)




# 3.4 44 PLCC Pin Dimension (Dimension in mm)











# **4. PIN FUNCTION**

VDD: Supply voltage.

V<sub>SS</sub>: Circuit ground.

**TEST**: Used for shipping inspection of the IC. For normal operation, it should be connected to  $V_{DD}$ .

**RESET**: Reset the MCU.

 $\mathbf{X}_{IN}$ : Input to the inverting oscillator amplifier and input to the internal main clock operating circuit.

 $X_{OUT}$ : Output from the inverting oscillator amplifier.

**R00~R07**: R0 is an 8-bit CMOS bidirectional I/O port. R0 pins 1 or 0 written to the Port Direction Register can be used as outputs or inputs.

**R10~R17**: R1 is an 8-bit CMOS bidirectional I/O port. R1 pin 1 or 0 written to the Port Direction Register can be used as output or input.

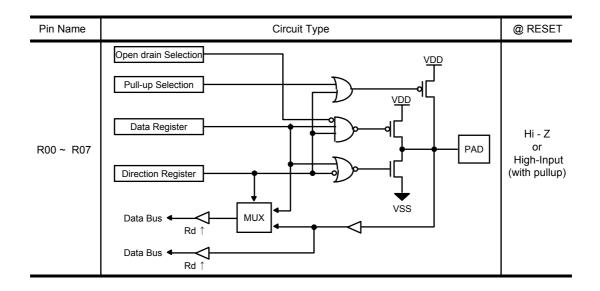
In addition, R1 serves the functions of the various following spe-

cial features.

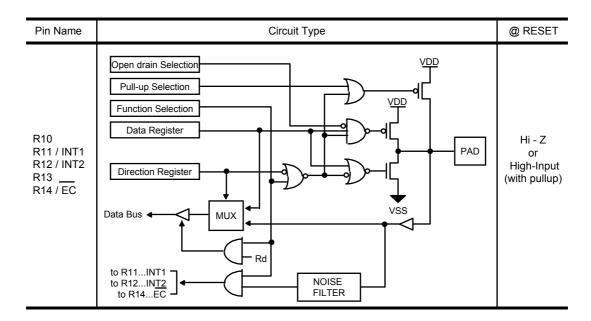
| Port pin | Alternate function                |
|----------|-----------------------------------|
| R11      | INT1 (External Interrupt input 1) |
| R12      | INT2 (External Interrupt input 2) |
| R14      | /EC (Event Counter input )        |
| R15      | T2 (Timer / Counter input 2)      |
| R16      | T1 (Timer / Counter input 1)      |
| R17      | T0 (Timer / Counter input 0)      |

**R20~R22**, **R30~R37** : R2 & R3 is a 8-bit CMOS bidirectional I/ O port. Each pin 1 or 0 written to its Port Direction Register can be used as output or input.

**R40** : R40 is 1-bit CMOS bidirectional I/O port. This pin 1 or 0 written to the its Port Direction Register can be used as output or input.

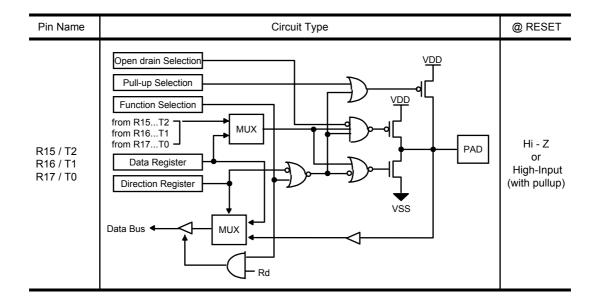



|          | INPUT/ | NPUT/ Pin Numbers |        | Pin Numbers |          | DEALE                                                                              | - <b>- - - - - - - - - -</b> |                    |
|----------|--------|-------------------|--------|-------------|----------|------------------------------------------------------------------------------------|------------------------------|--------------------|
| PIN NAME | OUTPUT | 28Pin             | 40PDIP | 44PLCC      | 44QFP    | Function                                                                           | @ RESET                      | @ STOP             |
| R00      | I/O    | 28                | 1      | 13          | 41       |                                                                                    |                              |                    |
| R01      | I/O    | 1                 | 2      | 14          | 42       |                                                                                    |                              |                    |
| R02      | I/O    | 2                 | 3      | 15          | 43       |                                                                                    |                              |                    |
| R03      | I/O    | 3                 | 4      | 16          | 44       |                                                                                    |                              |                    |
| R04      | I/O    | 4                 | 5      | 17          | 1        | - Each bit of the port can be                                                      |                              |                    |
| R05      | I/O    | 5                 | 6      | 18          | 2        | individually configured as an                                                      |                              |                    |
| R06      | I/O    | 6                 | 7      | 19          | 3        | input or an output by user software<br>- Push-pull output                          |                              |                    |
| R07      | I/O    | 7                 | 8      | 20          | 4        | - CMOS input with pull-up resistor                                                 |                              |                    |
| R10      | I/O    | 11                | 16     | 29          | 12       | (can be selectable by user software)                                               |                              |                    |
| R11/INT1 | I/O    | 12                | 17     | 30          | 13       | <ul> <li>Can be programmable as Key<br/>Scan Input or Open drain output</li> </ul> |                              |                    |
| R12/INT2 | I/O    | 13                | 18     | 31          | 14       | - Pull-ups are automatically                                                       |                              |                    |
| R13      | I/O    | 14                | 19     | 32          | 15       | disabled at output mode                                                            |                              |                    |
| R14/EC   | I/O    | 17                | 22     | 36          | 19       |                                                                                    |                              |                    |
| R15/T2   | I/O    | 18                | 23     | 37          | 20       |                                                                                    |                              |                    |
| R16/T1   | I/O    | 20                | 26     | 40          | 23       |                                                                                    |                              |                    |
| R17/T0   | I/O    | 21                | 27     | 41          | 24       |                                                                                    |                              | State              |
| R20      | I/O    | 23                | 33     | 4           | 31       |                                                                                    | INPUT                        | of before          |
| R21      | I/O    | 24                | 34     | 5           | 32       |                                                                                    | _                            | STOP               |
| R22      | I/O    | 25                | 35     | 6           | 33       |                                                                                    |                              |                    |
| R23      | I/O    | 26                | 36     | 7           | 34       |                                                                                    |                              |                    |
| R24      | I/O    | 27                | 37     | 8           | 35       |                                                                                    |                              |                    |
| R25      | I/O    | -                 | 38     | 9           | 36       |                                                                                    |                              |                    |
| R26      | I/O    | -                 | 39     | 10          | 37       | - Each bit of the port can be                                                      |                              |                    |
| R27      | I/O    | -                 | 40     | 11          | 38       | individually configured as an<br>input or an output by user software               |                              |                    |
| R30      | I/O    | -                 | 28     | 42          | 25       | - CMOS input with pull-up resistor                                                 |                              |                    |
| R31      | I/O    | -                 | 29     | 43          | 26       | <ul><li>(can be selectable by user software)</li><li>Push-pull output</li></ul>    |                              |                    |
| R32      | I/O    | -                 | 30     | 44          | 27       | - Can be programmable as                                                           |                              |                    |
| R33      | I/O    | -                 | 32     | 3           | 30       | Open drain output Direct Driving of LED(N-TR)                                      |                              |                    |
| R34      | I/O    | -                 | 9      | 21          | 4        | <ul> <li>Pull-ups are disabled at output</li> </ul>                                |                              |                    |
| R35      | I/O    | -                 | 10     | 22          | 5        | mode                                                                               |                              |                    |
| R36      | I/O    | -                 | 12     | 25          | 8        |                                                                                    |                              |                    |
| R37      | I/O    | -                 | 13     | 26          | 9        |                                                                                    |                              |                    |
| R40      | I/O    | -                 | 25     | 39          | 22       |                                                                                    |                              |                    |
| XIN      | I      | 10                | 15     | 28          | 11       | - Oscillator Input                                                                 |                              | Low                |
| XOUT     | 0      | 9                 | 14     | 27          | 10       | - Oscillator Output                                                                |                              | High               |
| REMOUT   | 0      | 19                | 24     | 38          | 21       | - High Current Output                                                              | · ·                          | `L` Output         |
| RESET    | I      | 16                | 21     | 35          | 18       | - Includes pull-up resistor                                                        | `L` level                    | state<br>of before |
| TEST     | I      | 15                | 20     | 33          | 16       | <ul> <li>Includes pull-up resistor</li> </ul>                                      |                              | STOP               |
| VDD      | Р      | 8                 | 11     | 12,23,24    | 6,7,39   | - Positive power supply                                                            |                              |                    |
| VSS      | Р      | 22                | 31     | 1,2.34      | 17,28,29 | - Ground                                                                           |                              |                    |

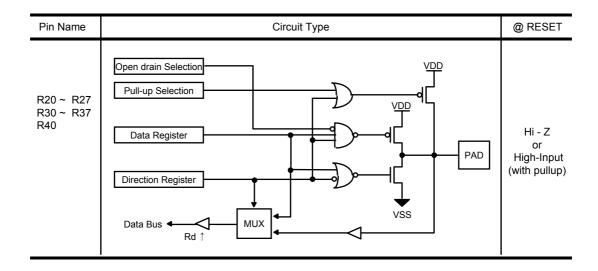



# **5. PORT STRUCTURES**

#### 5.1 R0 Ports

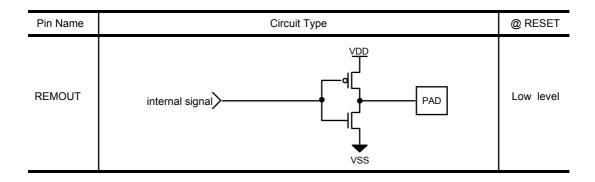



# 5.2 R1 Ports (R10, R11, R12, R13, R14)

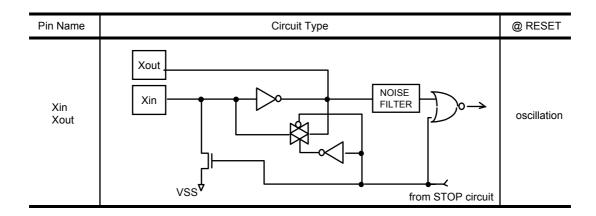




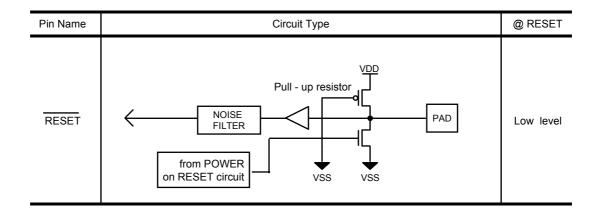

# 5.3 R1 Ports (R15, R16, R17)




# 5.4 R2, R3, R4 Ports

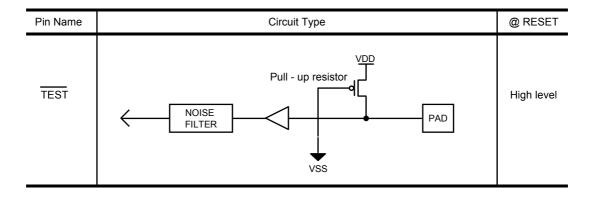






# 5.5 REMOUT Port



# 5.6 Xin, Xout Ports




# 5.7 RESET Port





# 5.8 TEST Port





# **6. ELECTRICAL CHARACTERISTICS**

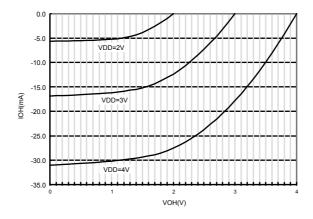
# 6.1 Absolute Maximum Ratings ( Ta=25℃)

| Parameter Symbol         |      | Rating           | Unit |
|--------------------------|------|------------------|------|
| Supply Voltage           | VDD  | -0.3 ~ +7.0      | V    |
| Input Voltage VI         |      | -0.3 ~ VDD + 0.3 | V    |
| Output Voltage           | VO   | -0.3 ~ VDD + 0.3 | V    |
| Operating Temperature    | Topr | 0~70             | Ĵ    |
| Storage Temperature Tstg |      | -65 ~ 150        | Ĵ    |
| Power Dissipation        | PD   | 700              | mW   |

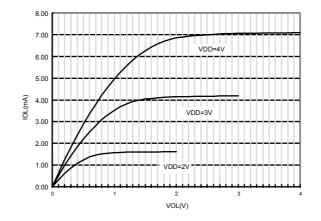
**Note:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and the functional operation of the device at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

# 6.2 Recommended Operating Ranges

| Parameter             | Symbol | Condition   | min. | typ. | max. | Unit |
|-----------------------|--------|-------------|------|------|------|------|
| Supply Voltage        | VDD    | fXin = 4MHz | 2.2  |      | 4.0  | V    |
| Oscillation Frequency | fXin   |             | 1.0  |      | 4.0  | MHz  |
| Operating Temperature | Topr   |             | 0    |      | 70   | Ĉ    |




# 6.3 DC Characteristics (VDD=2.2~4.0, Vss=0, Ta=0~70℃)


|                                      |        |                             | 0        |            |          | Spe      | cificati | on     |      |
|--------------------------------------|--------|-----------------------------|----------|------------|----------|----------|----------|--------|------|
| Parameter                            | Symbol |                             | Condi    | lion       |          | min      | typ      | max    | Unit |
|                                      | ViH1   | R11, R12, F                 | 814, RES | SET        |          | 0.8VDD   |          | Vdd    | V    |
| high level<br>input voltage          | Vін2   | R0, R1(Exce<br>R3 , R4      | ept R11, | R12,R      | 14), R2  | 0.7Vdd   |          | Vdd    | V    |
|                                      | Vi∟1   | R11, R12, F                 | 14, RES  | BET        |          | 0        |          | 0.2Vdd | V    |
| low level<br>input voltage           | VIL2   | R0, R1(Exce<br>R3 , R4      | ept R11, | R12,R      | 14), R2  | 0        |          | 0.3Vdd | V    |
| high level input<br>leakage current  | Іін    | R0 ~ R4 , R                 | ESET     | Vih=       | VDD      |          |          | 1      | uA   |
| low level input<br>leakage current   | lil    | R0 ~ R4 ,Rf<br>(without pul |          | VIL=       | 0V       |          |          | - 1    | uA   |
|                                      | Vон1   | R0                          |          | Іон=       | -0.5mA   | VDD-0.4  |          |        | V    |
| high level<br>output voltage         | Vон2   | R1(ExceptR17),R2<br>R3 , R4 |          | Іон=       | - 1mA    | Vdd- 0.4 |          |        | V    |
|                                      | Vон3   | OSC                         |          | Iон=-200uA |          | Vdd-0.9  |          |        | V    |
|                                      | Vol1   | R0                          |          | Iol=       | 1mA      |          |          | 0.4    | V    |
| low level<br>output voltage          | Vol2   | R1, R2, R3, R4              |          | Iol=       | 5mA      |          |          | 0.8    | V    |
|                                      | Vol3   | OSC                         |          | IoL=200uA  |          |          |          | 0.8    | V    |
| high level output<br>leakage current | Iohl   | $R0 \sim R4$                |          | Vон        | = Vdd    |          |          | 1      | uA   |
| low level output<br>leakage current  | Ioll   | R0 ~ R4                     |          | Vol=       | = 0V     |          |          | - 1    | uA   |
| high level output<br>current         | Іон    | REMOUT, F                   | R17      | Vон        | = 2V     | - 30     | - 12     | - 5    | mΑ   |
| low level output<br>current          | Iol    | REMOUT                      |          | Vol=1V     |          | 0.5      | -        | 3      | mA   |
| input pull- up                       | IP1    | RESET                       |          | VDD:       | = 3V     | 15       | 30       | 60     | uA   |
| current                              | IP2    | R0 ~ R4                     |          | VDD        | = 3V     | 15       | 30       | 60     | uA   |
|                                      | מסן    | operating                   | fxin=4   | 1MHz       | VDD=4V   |          | 4        | 10     | mΑ   |
|                                      |        | current                     |          |            | VDD=2.2V |          | 2.4      | 6      | mΑ   |
| POWER<br>SUPPLY                      | ISLEEP | sleep<br>mode               | fxin=4   | 1MHz       | VDD=4V   |          | 2        | 3      | mΑ   |
| CURRENT                              |        | current                     |          |            | VDD=2.2V |          | 1        | 2      | mΑ   |
|                                      | ISTOP  | stop<br>mode                | oscilla  | ator       | VDD=4V   |          | 3        | 10     | uA   |
| RAM retention                        |        | current                     | stop     |            | Vdd=2V   |          | 2        | 8      | uA   |
| supply voltage                       | VRET   |                             |          |            |          | 0.7      |          |        | V    |



# 6.4 REMOUT Port Ioh Characteristics Graph



# 6.5 REMOUT Port Iol Characteristics Graph





| No.  | Parameter                              | Symbol | Pin        | S    | Unit |      |      |
|------|----------------------------------------|--------|------------|------|------|------|------|
| INO. | Parameter                              | Symbol | FIII       | min. | typ. | max. | Unit |
| 1    | External clock input cycle time        | tcp    | Xin        | 250  | 500  | 1000 | ns   |
| 2    | System clock cycle time                | tsys   |            | 500  | 1000 | 2000 | ns   |
| 3    | External clock pulse width High        | tcpH   | Xin        | 40   |      |      | ns   |
| 4    | External clock pulse width Low         | tcpL   | Xin        | 40   |      |      | ns   |
| 5    | External clock rising time             | trcp   | Xin        |      |      | 40   | ns   |
| 6    | External clock falling time            | tfcp   | Xin        |      |      | 40   | ns   |
| 7    | interrupt pulse width High             | tIH    | INT1~ INT2 | 2    |      |      | tsys |
| 8    | Interrupt pulse width Low              | tIL    | INT1~ INT2 | 2    |      |      | tsys |
| 9    | Reset input pulse width low            | tRSTL  | RESET      | 8    |      |      | tsys |
| 10   | Event counter input pulse width high   | tECH   | EC         | 2    |      |      | tsys |
| 11   | Event counter input pulse width low    | tECL   | EC         | 2    |      |      | tsys |
| 12   | Event counter input pulse rising time  | trEC   | EC         |      |      | 40   | ns   |
| 13   | Event counter input pulse falling time | tfEC   | EC         |      |      | 40   | ns   |

# 6.6 AC Characteristics (VDD=2.2~4.0V, Vss=0V, Ta=0~70℃)

(Continued)



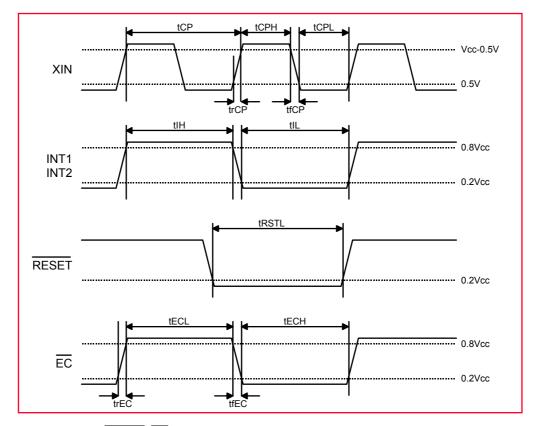
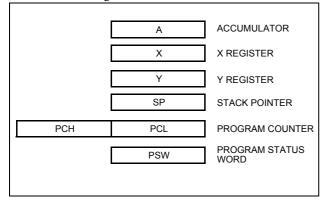
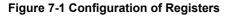



Figure 6-1 Clock, Interrupt, RESET, EC Input Timing





# 7. MEMORY ORGANIZATION

The GMS81C50 Series has separate address spaces for Program memory, Data Memory and Display memory. Program memory can only be read, not written to. It can be up to 32K bytes of Pro-

# 7.1 Registers

This device has six registers that are the Program Counter (PC), an Accumulator (A), two index registers (X, Y), the Stack Pointer (SP), and the Program Status Word (PSW). The Program Counter consists of 16-bit register.





#### Accumulator:

The Accumulator is the 8-bit general purpose register, used for data operation such as transfer, temporary saving, and conditional judgement, etc. The Accumulator can be used as a 16-bit register with Y Register as shown below.

In the case of multiplication instruction, it operates as a multiplier register. After multiplication operation, the lower 8-bit of the result enters. (Y\*A => YA). In the case of division instruction, it operates as the lower 8-bit of dividend. After division operation, quotient enters.

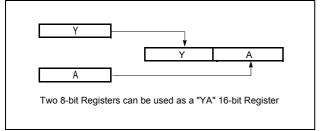
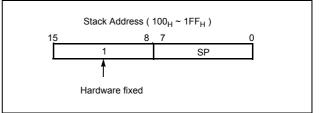



Figure 7-2 Configuration of YA 16-bit Register

## X, Y Registers:

In the addressing mode which uses these index registers, the register contents are added to the specified address, which becomes the actual address. These modes are extremely effective for referencing subroutine tables and memory tables. The index registers also have increment, decrement, comparison and data transfer functions, and they can be used as simple accumulators. gram memory. Data memory can be read and written up to 448 bytes including the stack area.

\* X Register : In the case of division instruction, it operates as register.


\* Y Register : In the case of 16-bit operation instruction, it operates as the upper 8-bit of YA. (16-bit accumulator). In the case of multiplication instruction, it operates as a multiplicand register. After multiplication operation, the upper 8 bits of the result enter. In the case of division instruction, it operates as the upper 8-bit of dividend. After division operation, remains enter. Y register can be used as loop counter of conditional branch command. (e.g.DBNE Y, rel)

#### **Stack Pointer:**

The Stack Pointer is an 8-bit register used for occurrence interrupts, calling out subroutines and PUSH, POP, RETI, RET instruction. Stack Pointer identifies the location in the stack to be accessed (save or restore).

Generally, SP is automatically updated when a subroutine call is executed or an interrupt is accepted. However, if it is used in excess of the stack area permitted by the data memory allocating configuration, the user-processed data may be lost. The SP is post-decreased when a subroutine call or a push instruction is executed, or when an interrupt is accepted. The SP is pre-increased when a return or a pop instruction is executed.

The stack can be located at any position within  $100_{\rm H}$  to  $1{\rm FF}_{\rm H}$  of the internal data memory. The SP is not initialized by hardware, requiring to write the initial value (the location with where the use of the stack starts) by using the initialization routine. Normally, the initial value of "FF<sub>H</sub>" is used.



#### Caution:

The Stack Pointer must be initialized by software because its value is undefined after RESET.

Example: To initialize the SP

; SP  $\leftarrow$  FF<sub>H</sub>



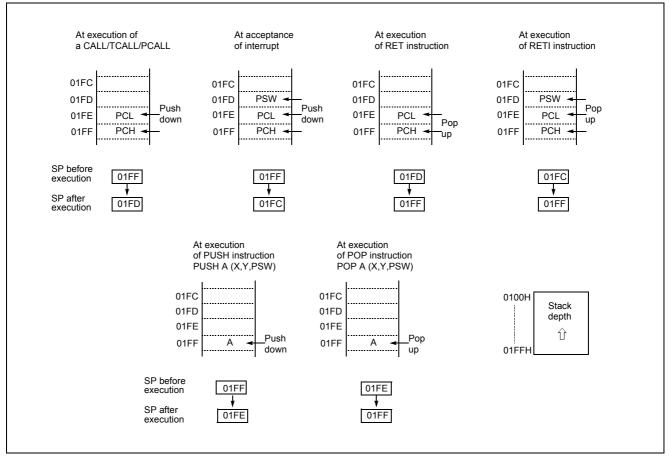



Figure 7-3 Stack Operation

### **Program Counter:**

The Program Counter is 16-bit wide, which consists of two 8-bit registers, PCH and PCL. This counter indicates the address of the next instruction to be executed. In reset state, the program counter has reset routine address ( $PC_H:OFF_H$ ,  $PC_L:OFE_H$ ).

#### **Program Status Word:**

The Program Status Word (PSW) contains several bits that reflect the current state of the CPU. The PSW is described in Figure 7-4. It contains the Negative flag, the Overflow flag, the Break flag, the Half Carry flag (for BCD operation), the Interrupt enable flag, the Zero flag, and the Carry flag.

# [Carry flag C]

This flag stores any carry or borrow from the ALU of CPU after an arithmetic operation and is also changed by the Shift Instruction or Rotate Instruction.

### [Zero flag Z]

This flag is set when the result of an arithmetic operation or data transfer is "0" and is cleared by any other result.



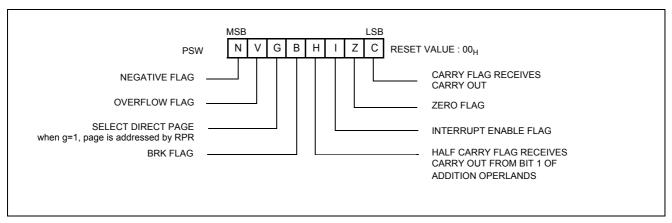



Figure 7-4 PSW (Program Status Word) Register

#### [Interrupt disable flag I]

This flag enables/disables all interrupts except interrupt caused by Reset or software BRK instruction. All interrupts are disabled when cleared to "0". This flag immediately becomes "0" when an interrupt is served. It is set by the EI instruction and cleared by the DI instruction.

#### [Half carry flag H]

After operation, this is set when there is a carry from bit 3 of ALU or there is no borrow from bit 4 of ALU. This bit can not be set or cleared except CLRV instruction with Overflow flag (V).

#### [Break flag B]

This flag is set by software BRK instruction to distinguish BRK from TCALL instruction with the same vector address.

#### [Direct page flag G]

This flag assigns RAM page for direct addressing mode. In the di-

rect addressing mode, addressing area is from zero page  $00_{\rm H}$  to  $0FF_{\rm H}$  when this flag is "0". If it is set to "1", addressing area is 1 Page. It is set by SETG instruction and cleared by CLRG.

#### [Overflow flag V]

This flag is set to "1" when an overflow occurs as the result of an arithmetic operation involving signs. An overflow occurs when the result of an addition or subtraction exceeds  $+127(7F_H)$  or  $-128(80_H)$ . The CLRV instruction clears the overflow flag. There is no set instruction. When the BIT instruction is executed, bit 6 of memory is copied to this flag.

#### [Negative flag N]

This flag is set to match the sign bit (bit 7) status of the result of a data or arithmetic operation. When the BIT instruction is executed, bit 7 of memory is copied to this flag.



# 7.2 Program Memory

A 16-bit program counter is capable of addressing up to 64K bytes, but this device has 16K/24K/32K bytes program memory space only physically implemented. Accessing a location above  $FFF_H$  will cause a wrap-around to  $0000_H$ .

Figure 7-5, shows a map of Program Memory. After reset, the CPU begins execution from reset vector which is stored in address  $FFFE_H$  and  $FFFF_H$  as shown in Figure 7-6.

As shown in Figure 7-5, each area is assigned to a fixed location in Program Memory. Program Memory area contains the user program.

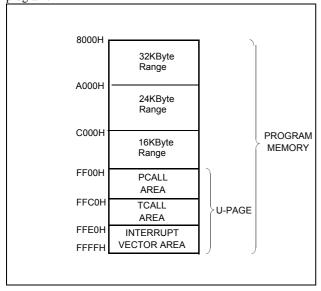
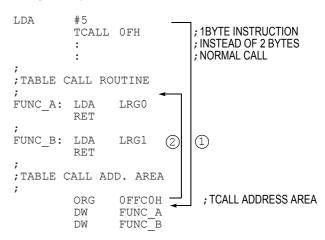




Figure 7-5 Program Memory Map

Page Call (PCALL) area contains subroutine program to reduce program byte length by using 2 bytes PCALL instead of 3 bytes CALL instruction. When it is frequently called, it is more useful to save program byte length.

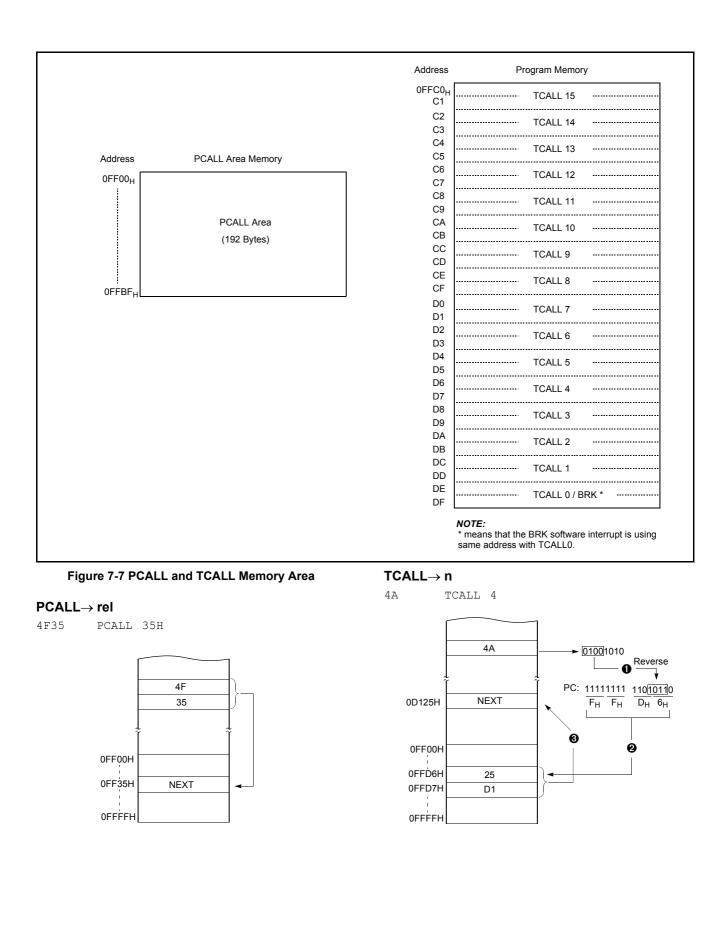
Table Call (TCALL) causes the CPU to jump to each TCALL address, where it commences the execution of the service routine. The Table Call service area spaces 2-byte for every TCALL:  $0FFC0_{\rm H}$  for TCALL15,  $0FFC2_{\rm H}$  for TCALL14, etc., as shown in Figure 7-7.

Example: Usage of TCALL



The interrupt causes the CPU to jump to specific location, where it commences the execution of the service routine. The External interrupt 0, for example, is assigned to location  $0FFFA_H$ . The interrupt service locations spaces 2-byte interval:  $0FFF8_H$  and  $0FFF9_H$  for External Interrupt 1,  $0FFFA_H$  and  $0FFFB_H$  for External Interrupt 0, etc.

If any area from  $0FF00_H$  to  $0FFFF_H$  is not to be used, its service location is available as general purpose Program Memory.


Address Vector Area Memory

| $OFFDE_H$ | S/W Interrupt Vector Area                  |
|-----------|--------------------------------------------|
| E0        | -                                          |
| E2        | -                                          |
| E4        | -                                          |
| E6        | Basic Interval Timer Interrupt Vector Area |
| E8        | Watch Dog Timer Interrupt Vector Area      |
| EA        | -                                          |
| EC        | -                                          |
| EE        | Timer2 Interrupt Vector Area               |
| F0        | Timer1 Interrupt Vector Area               |
| F2        | Timer0 Interrupt Vector Area               |
| F4        | -                                          |
| F6        | External Interrupt 2 Vector Area           |
| F8        | External Interrupt 1 Vector Area           |
| FA        | Key Scan Interrupt Vector Area             |
| FC        | -                                          |
| FE        | RESET Vector Area                          |

NOTE: "-" means reserved area.

Figure 7-6 Interrupt Vector Area







Example: The usage software example of Vector address and the initialize part.

ORGOFFEOH

DWNOT\_USED DWNOT\_USED DWNOT\_USED DWBIT\_INT; BIT DWWDT\_INT; Watch Dog Timer DWNOT\_USED DWNOT\_USED DWTMR2\_INT; Timer-2 DWTMR1\_INT; Timer-1 DWTMR0\_INT; Timer-0 DWNOT\_USED; DWINT2; Int.2 DWINT2; Int.2 DWINT1; Int.1 DWKEY\_INT; Key Scan DWNOT\_USED; DWRESET; Reset

ORG08000H

MAIN PROGRAM \* ; RESET: DI ;Disable All Interrupts LDX#0 RAM CLR: LDA#0 ;RAM Clear(!0000H->!00BFH)  $STA{X} +$ CMPX#0C0H BNERAM CLR ; LDX#03FH;Stack Pointer Initialize TXSP LDMR0, #0;Normal Port 0 LDMR0DD,#1000\_0010B;Normal Port Direction LDMPUR0,#1000\_0010B;Pull Up Selection Set LDMPMR0,#0000\_0001B;R0 port / int LDMPCOR, #1; Enable Peripheral clock

:



# 7.3 Data Memory

Figure 7-8 shows the internal Data Memory space available. Data Memory is divided into 3 groups, a user RAM, control registers, Stack.

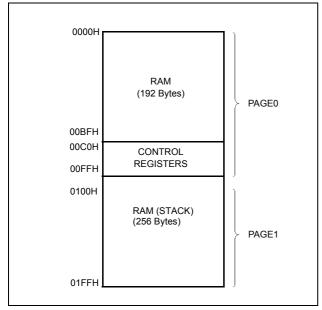



Figure 7-8 Data Memory Map

#### **User Memory**

The GMS81C50 Series has  $448 \times 8$  bits for the user memory (RAM).

#### **Control Registers**

The control registers are used by the CPU and Peripheral function blocks for controlling the desired operation of the device. Therefore these registers contain control and status bits for the interrupt system, the timer/ counters, analog to digital converters and I/O ports. The control registers are in address range of 0C0<sub>H</sub> to 0FF<sub>H</sub>.

Note that unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.

More detailed information of each register is explained in each peripheral section.

**Note:** Write only registers can not be accessed by bit manipulation instruction. Do not use read-modify-write instruction. Use byte manipulation instruction.

Example; To write at CKCTLR

LDM CLCTLR, #09H; Divide ratio ÷8

#### Stack Area

The stack provides the area where the return address is saved before a jump is performed during the processing routine at the execution of a subroutine call instruction or the acceptance of an interrupt.

When returning from the processing routine, executing the subroutine return instruction [RET] restores the contents of the program counter from the stack; executing the interrupt return instruction [RETI] restores the contents of the program counter and flags.

The save/restore locations in the stack are determined by the stack pointed (SP). The SP is automatically decreased after the saving, and increased before the restoring. This means the value of the SP indicates the stack location number for the next save. Refer to Figure 7-3 on page 21.

| Address | Function Register           | Read<br>Write | Symbol | RESET Value |
|---------|-----------------------------|---------------|--------|-------------|
| 00C0h   | PORT R0 DATA REG.           | R/W           | R0     | Undefined   |
| 00C1h   | PORT R0 DATA DIRECTION REG. | w             | R0DD   | 0000000b    |
| 00C2h   | PORT R1 DATA REG.           | R/W           | R1     | Undefined   |
| 00C3h   | PORT R1 DATA DIRECTION REG. | w             | R1DD   | 0000000b    |
| 00C4h   | PORT R2 DATA REG.           | R/W           | R2     | Undefined   |
| 00C5h   | PORT R2 DATA DIRECTION REG. | w             | R2DD   | 0000000b    |
| 00C6h   | Reserved                    |               |        |             |
| 00C7h   | CLOCK CONTROL REG.          | w             | CKCTLR | 110111b     |
|         | BASIC INTERVAL REG.         | R             | BTR    | Undefined   |
| 00C8h   | WATCH DOG TIMER REG.        | w             | WDTR   | -0001111b   |



| 00C9h | PORT R1 MODE REG.              | W   | PMR1         | 0000000b  |
|-------|--------------------------------|-----|--------------|-----------|
| 00CAh | INT. MODE REG.                 | R/W | IMOD         | -0000000b |
| 00CBh | EXT. INT. EDGE SELECTION       | w   | IEDS         | 0000000b  |
| 00CCh | INT. ENABLE REG. LOW           | R/W | IENL         | -00b      |
| 00CDh | INT. REQUEST FLAG REG. LOW     | R/W | IRQL         | -00b      |
| 00CEh | INT. ENABLE REG. HIGH          | R/W | IENH         | 000-000-b |
| 00CFh | INT. REQUEST FLAG REG. HIGH    | R/W | IRQH         | 000-000-b |
| 00D0h | TIMER0 (16bit) MODE REG.       | R/W | ТМО          | 0000000b  |
| 00D1h | TIMER1 (8bit) MODE REG.        | R/W | TM1          | 0000000b  |
| 00D2h | TIMER2 (8bit) MODE REG.        | R/W | TM2          | 0000000b  |
| 00D3h | TIMER0 HIGH-MSB DATA REG.      | w   | <b>T0HMD</b> | Undefined |
| 00D4h | TIMER0 HIGH-LSB DATA REG.      | w   | T0HLD        | Undefined |
|       | TIMER0 LOW-MSB DATA REG.       | w   | TOLMD        | Undefined |
| 00D5h | TIMER0 HIGH-MSB COUNT REG.     | R   |              | Undefined |
| 00DCh | TIMER0 LOW-LSB DATA REG.       | w   | T0LLD        | Undefined |
| 00D6h | TIMER0 LOW-LSB COUNT REG.      | w   |              | Undefined |
| 00D7h | TIMER1 HIGH DATA REG.          | w   | T1HD         | Undefined |
| 00004 | TIMER1 LOW DATA REG.           | w   | T1LD         | Undefined |
| 00D8h | TIMER1 LOW COUNT REG.          | R   |              | Undefined |
| 00006 | TIMER2 DATA REG.               | w   | T2DR         | Undefined |
| 00D9h | TIMER2 COUNT REG.              | R   |              | Undefined |
| 00DAh | TIMER0 / TIMER1 MODE REG.      | R/W | TM01         | 0000000b  |
| 00DBh | Reserved                       |     |              |           |
| 00DCh | STANDBY MODE RELEASE REG0      | w   | SMPR0        | 0000000b  |
| 00DDh | STANDBY MODE RELEASE REG0      | w   | SMPR1        | 0000000b  |
| 00DEh | PORT R1 OPEN DRAIN ASSIGN REG. | w   | R10DC        | 0000000b  |
| 00DFh | PORT R2 OPEN DRAIN ASSIGN REG. | w   | R2ODC        | 0000000b  |
| 00E0h | PORT R3 OPEN DRAIN ASSIGN REG. | w   | R3ODC        | 0000000b  |
| 00E1h | PORT R4 OPEN DRAIN ASSIGN REG. | w   | R4ODC        | 0b        |
| 00E2h | Reserved                       |     |              |           |
| 00E3h | Reserved                       |     |              |           |
| 00E4h | PORT R0 OPEN DRAIN ASSIGN REG. | w   | R0ODC        | 0000000b  |
| 00E5h | PORT R3 DATA REG.              | R/W | R3           | Undefined |
| 00E6h | PORT R3 DATA DIRECTION REG.    | w   | R3DD         | 0000000b  |
| 00E7h | PORT R4 DATA REG.              | R/W | R4           | Xb        |
| 00E8h | PORT R4 DATA DIRECTION REG.    | w   | R4DD         | 0b        |
| 00E9h | Reserved                       |     |              |           |



| 00EAh | Reserved                           |   |       |          |
|-------|------------------------------------|---|-------|----------|
| 00EBh | Reserved                           |   |       |          |
| 00ECh | Reserved                           |   |       |          |
| 00EDh | Reserved                           |   |       |          |
| 00EEh | Reserved                           |   |       |          |
| 00EFh | LOW VOLTAGE INDICATION REG.        | R | LVIR  | 00b      |
| 00F0h | SLEEP MODE REG.                    | W | SLPM  | 0b       |
| 00F1h | Reserved                           |   |       |          |
| 00F2  | Reserved                           |   |       |          |
| 00F3h | Reserved                           |   |       |          |
| 00F4h | Reserved                           |   |       |          |
| 00F5h | Reserved                           |   |       |          |
| 00F6h | STANDBY RELEASE LEVEL CONT. REG. 0 | W | SRLC0 | 0000000b |
| 00F7h | STANDBY RELEASE LEVEL CONT. REG. 1 | W | SRLC1 | 0000000b |
| 00F8h | PORT R0 PULL-UP REG. CONT. REG.    | W | R0PC  | 0000000b |
| 00F9h | PORT R1 PULL-UP REG. CONT. REG.    | W | R1PC  | 0000000b |
| 00FAh | PORT R2 PULL-UP REG. CONT. REG.    | W | R2PC  | 0000000b |
| 00FBh | PORT R3 PULL-UP REG. CONT. REG.    | W | R3PC  | 0000000b |
| 00FCh | PORT R4 PULL-UP REG. CONT. REG.    | W | R4PC  | 0b       |
| 00FDh | Reserved                           |   |       |          |
| 00FEh | Reserved                           |   |       |          |
| 00FFh | Reserved                           |   |       |          |
|       |                                    |   |       |          |

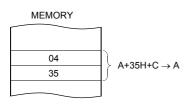




### 7.4 Addressing Mode

The GMS81C50 Series uses six addressing modes;

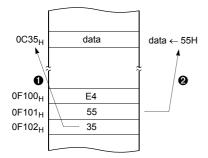
- Register addressing
- Immediate addressing
- Direct page addressing
- Absolute addressing
- Indexed addressing
- Register-indirect addressing


#### (1) Register Addressing

Register addressing accesses the A, X, Y, C and PSW.

#### (2) Immediate Addressing $\rightarrow$ #imm

In this mode, second byte (Operand) is accessed as a data immediately.

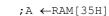

#### Example:

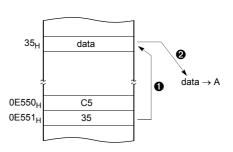


When G-flag is 1, then RAM address is defined by 16-bit address which is composed of 8-bit RAM paging register (RPR) and 8-bit immediate data.

#### Example: G=1, RPR=0CH

E45535 LDM 35H,#55H





#### (3) Direct Page Addressing $\rightarrow$ dp

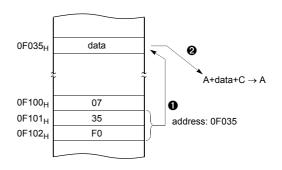
In this mode, a address is specified within direct page.

Example; G=0

C535 LDA 35H





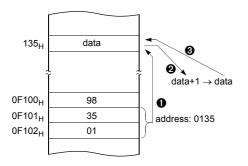

#### (4) Absolute Addressing $\rightarrow$ !abs

Absolute addressing sets corresponding memory data to Data , i.e. second byte(Operand I) of command becomes lower level address and third byte (Operand II) becomes upper level address. With 3 bytes command, it is possible to access whole memory area.

ADC, AND, CMP, CMPX, CMPY, EOR, LDA, LDX, LDY, OR, SBC, STA, STX, STY

Example;

| 0735F0 | ADC  | !0F035H  | ;A ← ROM[0F035H] |
|--------|------|----------|------------------|
| 010010 | 11DC | .0105511 |                  |



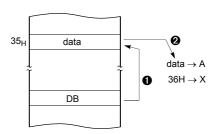



The operation within data memory (RAM) ASL, BIT, DEC, INC, LSR, ROL, ROR

Example; Addressing accesses the address  $0135_{\rm H}$  regardless of G-flag and RPR.

983501 INC !0135H ;A ←ROM[135H]




# X indexed direct page, auto increment $\rightarrow$ {X}+

In this mode, a address is specified within direct page by the X register and the content of X is increased by 1.

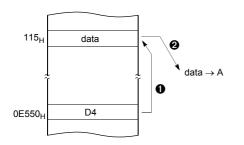
LDA, STA

Example; G=0, X=35<sub>H</sub>

DB LDA {X}+



#### (5) Indexed Addressing


#### X indexed direct page (no offset) $\rightarrow$ {X}

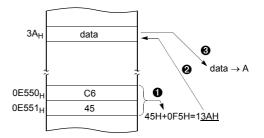
In this mode, a address is specified by the X register.

ADC, AND, CMP, EOR, LDA, OR, SBC, STA, XMA

Example; X=15<sub>H</sub>, G=1, RPR=01<sub>H</sub>

D4 LDA  $\{X\}$ ; ACC  $\leftarrow$  RAM[X].




#### X indexed direct page (8 bit offset) $\rightarrow$ dp+X

This address value is the second byte (Operand) of command plus the data of X-register. And it assigns the memory in Direct page.

ADC, AND, CMP, EOR, LDA, LDY, OR, SBC, STA STY, XMA, ASL, DEC, INC, LSR, ROL, ROR

Example; G=0, X=0F5<sub>H</sub>

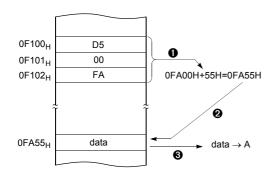
C645 LDA 45H+X



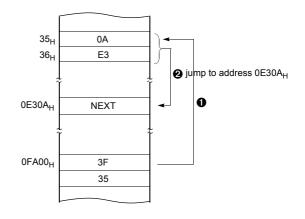


#### Y indexed direct page (8 bit offset) $\rightarrow$ dp+Y

This address value is the second byte (Operand) of command plus the data of Y-register, which assigns Memory in Direct page.


This is the same with above (2). Use Y register instead of X.

#### Y indexed absolute $\rightarrow$ !abs+Y


Sets the value of 16-bit absolute address plus Y-register data as Memory. This addressing mode can specify memory in whole area.

#### Example; Y=55<sub>H</sub>

D500FA LDA !OFA00H+Y



# 3F35 JMP [35H]



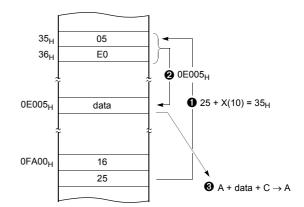
#### X indexed indirect $\rightarrow$ [dp+X]

Processes memory data as Data, assigned by 16-bit pair memory which is determined by pair data [dp+X+1][dp+X] Operand plus X-register data in Direct page.

ADC, AND, CMP, EOR, LDA, OR, SBC, STA

Example; G=0, X=10<sub>H</sub>

1625 ADC [25H+X]




# Direct page indirect $\rightarrow$ [dp]

Assigns data address to use for accomplishing command which sets memory data(or pair memory) by Operand. Also index can be used with Index register X, Y.

JMP, CALL

Example; G=0





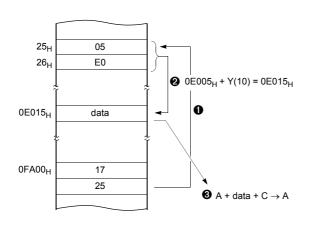
# Y indexed indirect $\rightarrow$ [dp]+Y

Processes memory data as Data, assigned by the data [dp+1][dp] of 16-bit pair memory paired by Operand in Direct page plus Y-register data.

ADC, AND, CMP, EOR, LDA, OR, SBC, STA

Example; G=0, Y=10<sub>H</sub>

1725 ADC [25H]+Y


# Absolute indirect $\rightarrow$ [!abs]


The program jumps to address specified by 16-bit absolute address.

JMP

Example; G=0

1F25E0 JMP [!0C025H]







# 8. I/O PORTS

The GMS81C50 Series has 33 I/O ports which are PORT0(8 I/O), PORT1 (8 I/O), PORT2 (8 I/O), PORT3 (8 I/O), PORT4 (1 I/O). Pull-up resistor of each port is selectable by program. Each port contains data direction register which controls I/O and data register which stores port data.

# 8.1 R0 Ports

R0 is an 8-bit CMOS bidirectional I/O port (address  $0C0_{\rm H}$ ). Each I/O pin can independently used as an input or an output through the R0DD register (address  $0C1_{\rm H}$ ).

R0 has internal pull-ups that are independently connected or disconnected by R0PC. The control registers for R0 are shown below.

| R0 Data Register (R/W)<br>R0 R07 R06 R05 R04 F | ADDRESS : 0C0 <sub>H</sub><br>RESET VALUE : Undefined<br>R03 R02 R01 R00                                            |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| R0 Direction Register (W)                      | ADDRESS : 0C1 <sub>H</sub><br>RESET VALUE : 00 <sub>H</sub><br>Port Direction<br>0: Input<br>1: Output              |
| R0 Pull-up Selection Register (W)              | ADDRESS :0F8 <sub>H</sub><br>RESET VALUE : 00 <sub>H</sub><br>                                                      |
| R0 Open drain Assign Register (V               | V) ADDRESS :0E4 <sub>H</sub><br>RESET VALUE : 00 <sub>H</sub><br>Open drain select<br>0: Push-pull<br>1: Open drain |

#### (1) R0 I/O Data Direction Register (R0DD)

R0 I/O Data Direction Register (R0DD) is 8-bit register, and can assign input state or output state to each bit. If R0DD is ``1``, port R0 is in the output state, and if ``0``, it is in the input state. R0DD is write-only register. Since R0DD is initialized as ``00 h`` in reset state, the whole port R0 becomes input state.

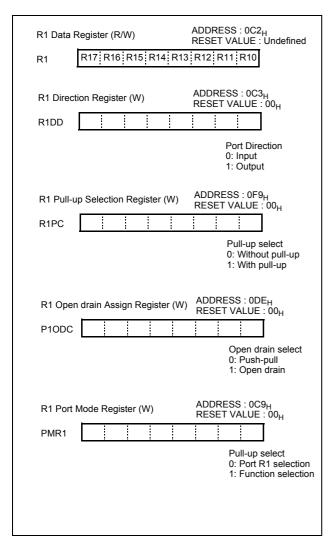
#### (2) R0 Data Register (R0)

R0 data register (R0) is 8-bit register to store data of port R0. When this is set as the output state by R0DD and data is written in R0, data is outputted into R0 pin. When this is set as the input state, input state of pin is read. The initial value of R0 is unknown in reset state.

#### (3) R0 Open drain Assign Register (R0ODC)

R0 Open Drain Assign Register (R0ODC) is 8bit register, and can assign R0 port as open drain output port for each bit, if corresponding port is selected as output. If R0ODC is selected as ``1``, port R0 is open drain output, and if selected as ``0``, it is pushpull output. R0ODC is write-only register and initialized as ``00 h`` in reset state.

#### (4) R0 Pull-up Resistor Control Register (R0PC)


R0 pull-up resistor control register (R0PC) is 8-bit register and can control pull-up on or off for each bit, if corresponding port is selected as input. If R0PC is selected as ``1``, pull-up is disabled and if selected as ``0``, it is enabled. R0PC is write-only register and initialized as ``00 h`` in reset state. The pull-up is automatically disabled, if corresponding port is selected as output.

# 8.2 R1 Ports

R1 is an 8-bit CMOS bidirectional I/O port (address  $0C2_{\rm H}$ ). Each I/O pin can be independently used as an input or an output through the R1DD register (address  $0C3_{\rm H}$ ).

R1 has internal pull-ups that are independently connected or disconnected by register R1PC. The control registers for R1 are shown below.





### (1) R1 I/O Data Direction Register (R1DD)

R1 I/O Data Direction Register (R1DD) is 8-bit register, and can assign input state or output state to each bit. If R1DD is ``1``, port R1 is in the output state, and if ``0``, it is in the input state. R1DD is write-only register. Since R1DD is initialized as ``00 h`` in reset state, the whole port R1 becomes input state.

### (2) R1 Data Register (R1)

R1 data register (R1) is 8-bit register to store data of port R1. When this is set as the output state by R1DD and data is written in R1, data is output into R1 pin. When this is set as the input state, input state of pin is read. The initial value of R1 is unknown in reset state.

### (3) R1 Mode Register (PMR1)

R1 Port Mode Register (PMR1) is 8-bit register, and can assign the selection mode for each bit. When this is set as ``0``, corresponding bit of PMR1 acts as port R1 selection mode, and when this is set as ``1``, it becomes function selection mode. PMR1 is write-only register and initialized as ``00 h`` in reset state, therefore, becomes Port selection mode. Port R1 can be I/ O port by manipulating each R1DD bit, if corresponding PMR1 bit is selected as ``0``.

| Pin Name    | PMR1 | Selection<br>Mode | Remarks                 |
|-------------|------|-------------------|-------------------------|
| TAC         | 0    | R17 (I/O)         | -                       |
| TOS         | 1    | T0 (O)            | Timer0                  |
| T1S         | 0    | R16 (I/O)         | -                       |
| 115         | 1    | T1 (O)            | Timer1                  |
| <b>T</b> 00 | 0    | R15 (I/O)         | -                       |
| T2S         | 1    | T2 (O)            | Timer2                  |
| 500         | 0    | R14 (I/O)         | -                       |
| ECS         | 1    | /EC (I)           | Timer0 Event            |
|             |      |                   |                         |
|             | 0    | R12 (I/O)         |                         |
| INT2S       | 1    | INT2 (I)          | Timer0 Input<br>Capture |
|             | 0    | R11 (I/O)         |                         |
| INT1S       | 1    | INT1 (I)          |                         |
|             |      |                   |                         |
|             |      |                   |                         |

Table 8-1 Selection mode of PMR1

#### (4) R1 Pull-up Resistor Control Register (R1PC)

R1 pull-up resistor control register (R1PC) is 8-bit register and can control pull-up on or off at each bit, if corresponding port is selected as input. If R1PC is selected as ``1``, pull-up is disabled and if selected as ``0``, it is enabled. R1PC is write-only register and initialized as ``00 h`` in reset state. The pull-up is automatically disabled, if corresponding port is selected as output.

# 8.3 R2 Port

R2 is an 8-bit CMOS bidirectional I/O port (address  $0C4_{\rm H}$ ). Each I/O pin can be independently used as an input or an output through the R2DD register (address  $0C5_{\rm H}$ ).

R2 has internal pull-ups that are independently connected or disconnected by R2PC (address  $0FA_H$ ). The control registers for R2 are shown as below.



| R2 Data R        | egister (I | R/W)    |       |       |       | RESS : 0C4 <sub>H</sub><br>ET VALUE : Undef            |
|------------------|------------|---------|-------|-------|-------|--------------------------------------------------------|
| R2               | R27 R2     | 26 R25  | 6 R24 | 4 R23 | 3 R22 | 2 R21 R20                                              |
| R2 Directi       | on Regis   | ter (W) |       |       |       | RESS : 0C5 <sub>H</sub><br>ET VALUE : 00 <sub>H</sub>  |
| R2DD             |            |         |       |       |       |                                                        |
|                  |            |         |       |       |       | Port Direction<br>0: Input<br>1: Output                |
| R2 Pull-u        | o Selectio | on Reg  | ister | (W)   |       | ORESS :0FA <sub>H</sub><br>SET VALUE : 00 <sub>H</sub> |
| R2PC             |            |         |       |       |       |                                                        |
|                  |            |         |       |       |       | Pull-up select<br>0: Without pull-<br>1: With pull-up  |
|                  |            |         |       |       |       |                                                        |
| R2 Open          | drain Ass  | sign Re | giste | r (W) |       | ORESS :0DF <sub>H</sub><br>SET VALUE : 00 <sub>H</sub> |
| R2 Open<br>R2ODC | drain Ass  | sign Re | giste | r (W) |       |                                                        |

# (1) R2 I/O Data Direction Register (R2DD)

R2 I/O Data Direction Register (R2DD) is 8-bit register, and can

assign input state or output state to each bit. If R2DD is ``1``, port R2 is in the output state, and if ``0``, it is in the input state. R2DD is write-only register. Since R2DD is initialized as ``00 h`` in reset state, the whole port R2 becomes input state.

# (2) R2 Data Register (R2)

R2 data register (R2) is 8-bit register to store data of port R2. When this is set as the output state by R2DD and data is written in R2, data is outputted into R2 pin. When this is set as the input state, input state of pin is read. The initial value of R2 is unknown in reset state.

# (3) R2 Open Drain Assign Register (R2ODC)

R2 Open Drain Assign Register (R2ODC) is 8-bit register, and can assign R2 port as open drain output port for each bit, if corresponding port is selected as output. If R2ODC is selected as ``1``, port R2 is open drain output, and if selected as ``0`', it is pushpull output. R2ODC is write-only register and initialized as ``00 h`` in reset state.

# (4) R2 Pull-up Resistor Control Register (R2PC)

R2 pull-up resistor control register (R2PC) is 8-bit register and can control pull-up on or off for each bit, if corresponding port is selected as input. If R2PC is selected as ``1``, pull-up is disabled and if selected as ``0``, it is enabled. R2PC is write-only register and initialized as ``00 h`` in reset state. The pull-up is automatically disabled, if corresponding port is selected as output.



### **R3 Port**

R3 is an 8-bit CMOS bi-directional I/O port (address  $0E5_H$ ). Each I/O pin can be independently used as an input or an output through the R3DD register (address  $0E6_H$ ).

R3 has internal pull-ups that are independently connected or disconnected by R3PC (address  $0FB_H$ ). The control registers for R3 are shown as below.

| R3 Data Register (R/W)<br>R3 R37 R36 R35 R34 R3 | ADDRESS : 0E5 <sub>H</sub><br>RESET VALUE : Undefined<br>I3 R32 R31 R30                                          |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| R3 Direction Register (W)                       | ADDRESS : 0E6 <sub>H</sub><br>RESET VALUE : 00 <sub>H</sub><br>Port Direction<br>0: Input<br>1: Output           |
| R3 Pull-up Selection Register (W)               | ADDRESS :0FB <sub>H</sub><br>RESET VALUE : 00 <sub>H</sub><br>                                                   |
| R3 Open drain Assign Register (W)               | ADDRESS :0E0 <sub>H</sub><br>RESET VALUE : 00 <sub>H</sub><br>Open drain select<br>0: Push-pull<br>1: Open drain |

# (1) R3 I/O Data Direction Register (R3DD)

R3 I/O Data Direction Register (R3DD) is 8-bit register and can assign input state or output state to each bit. If R3DD is ``1``, port R3 is in the output state, and if ``0``, it is in the input state. R3DD is write-only register. Since R3DD is initialized as ``00 h`` in reset state, the whole port R3 becomes input state.

# (2) R3 Data Register (R3)

R3 data register (R3) is 8-bit register to store data of port R3. When this is set as the output state by R3DD and data is written in R3, data is outputted into R3 pin. When this is set as the input state, input state of pin is read. The initial value of R3 is unknown in reset state.

# (3) R3 Open drain Assign Register (R3ODC)

R3 Open Drain Assign Register (R3ODC) is 8-bit register, and can assign R3 port as open drain output port for each bit if corresponding port is selected as output. If R3ODC is selected as ``1``, port R3 is open drain output, and if selected as ``0`', it is pushpull output. R3ODC is write-only register and initialized as ``00 h`` in reset state.

# (4) R3 Pull-up Resistor Control Register (R3PC)

R3 pull-up resistor control register (R3PC) is 8-bit register and can control pull-up on or off for each bit if corresponding port is selected as input. If R3PC is selected as ``1``, pull-up is disabled and if selected as ``0``, it is enabled. R3PC is write-only register and initialized as ``00 h`` in reset state. The pull-up is automatically disabled, if corresponding port is selected as output.



#### **R4 Port**

R4 is an 1-bit CMOS bi-directional I/O port (address  $0E7_{\rm H}$ ). Each I/O pin can independently used as an input or an output through the R4DD register (address  $0E8_{\rm H}$ ).

R3 has internal pull-ups that is independently connected or disconnected by R4PC (address  $0FC_H$ ). The control registers for R4 are shown as below.

| R4 Data R<br>R4    | egister (R/W)            | ADDRESS : 0E7 <sub>H</sub><br>RESET VALUE : Undefined<br>R40                                                              |
|--------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------|
| R4 Directi<br>R4DD | on Register (W)          | ADDRESS : 0E8 <sub>H</sub><br>RESET VALUE : 00 <sub>H</sub><br>Port Direction<br>0: Input<br>1: Output                    |
| R4 Pull-uj<br>R4PC | o Selection Register (W) | ADDRESS :0FC <sub>H</sub><br>RESET VALUE : 00 <sub>H</sub><br><br>Pull-up select<br>0: Without pull-up<br>1: With pull-up |
| R4 Open<br>R4ODC   | drain Assign Register (W | ADDRESS :0E1 <sub>H</sub><br>RESET VALUE : 00 <sub>H</sub><br>Open drain select<br>0: Push-pull<br>1: Open drain          |

## (1) R4 I/O Data Direction Register (R4DD)

R4 I/O Data Direction Register (R4DD) is 1-bit register and can assign input state or output state to each bit. If R4DD is ``1``, port R4 is in the output state, and if ``0``, it is in the input state. R4DD is write-only register. Since R4DD is initialized as ``00 h`` in reset state, the whole port R4 becomes input state.

## (2) R4 Data Register (R4)

R4 data register (R4) is 1-bit register to store data of port R4. When this is set as the output state by R4DD, and data is written in R4, data is outputted into R4 pin. When this is set as the input state, input state of pin is read. The initial value of R4 is unknown in reset state.

## (3) R4 Open drain Assign Register (R4ODC)

R4 Open Drain Assign Register (R4ODC) is 1-bit register and can assign R4 port as open drain output port for each bit, if corresponding port is selected as output. If R4ODC is selected as ``1``, port R4 is open drain output, and if selected as ``0``, it is pushpull output. R4ODC is write-only register and initialized as ``00 h`` in reset state.

## (4) R4 Pull-up Resistor Control Register (R4PC)

R4 pull-up resistor control register (R4PC) is 1-bit register and can control pull-up on or off for each bit if corresponding port is selected as input. If R4PC is selected as ``1``, pull-up is disabled and if selected as ``0``, it is enabled. R4PC is write-only register and initialized as ``00 h`` in reset state. The pull-up is automatically disabled, if corresponding port is selected as output.



# 9. CLOCK GENERATOR

Clock generating circuit consists of Clock Pulse Generator (C.P.G), Prescaler, Basic Interval Timer (B.I.T) and Watch Dog

Timer. The clock applied to the Xin pin divided by two is used as the internal system clock.

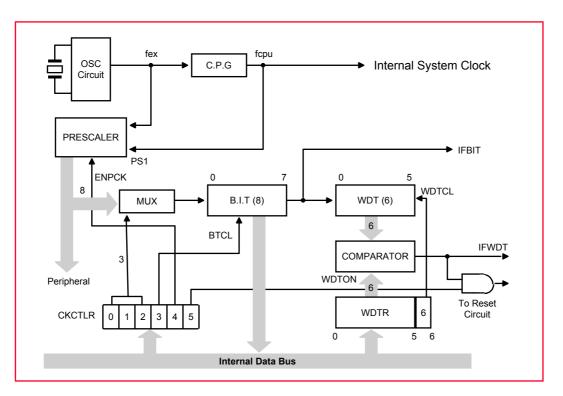



Figure 9-1 Block Diagram of Clock Generator

Prescaler consists of 12-bit binary counter. The clock supplied from oscillation circuit is input to prescaler (fex). The divided

output from each bit of prescaler is provided to peripheral hard-ware.

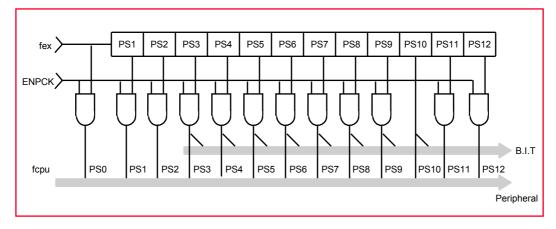



Figure 9-2 Block diagram of Prescaler



| fox (MUT) | 4 N       | 1Hz     | 2 MHz     |         |  |
|-----------|-----------|---------|-----------|---------|--|
| fex (MHz) | frequency | period  | frequency | period  |  |
| ps 0      | 4 MHz     | 250 ns  | 2 MHz     | 500 ns  |  |
| ps 1      | 2 MHz     | 500 ns  | 1 MHz     | 1 us    |  |
| ps 2      | 1 MHz     | 1 us    | 500 KHz   | 2 us    |  |
| ps 3      | 500 KHz   | 2 us    | 250 KHz   | 4 us    |  |
| ps 4      | 250 KHz   | 4 us    | 125 KHz   | 8 us    |  |
| ps 5      | 125 KHz   | 8 us    | 62.5 KHz  | 16 us   |  |
| ps 6      | 62.5 KHz  | 16 us   | 31.25 KHz | 32 us   |  |
| ps 7      | 31.25 KHz | 32 us   | 15.63 KHz | 64 us   |  |
| ps 8      | 15.63 KHz | 64 us   | 7.183 KHz | 128 us  |  |
| ps 9      | 7.183 KHz | 128 us  | 3.906 KHz | 256 us  |  |
| ps 10     | 3.906 KHz | 256 us  | 1.953 KHz | 512 us  |  |
| ps 11     | 1.953 KHz | 512 us  | 0.976 KHz | 1024 us |  |
| ps 12     | 0.976 KHz | 1024 us | 0.488 KHz | 2048 us |  |

#### Table 9-1 ps output period

Clock to peripheral hardware can be stopped by bit4 (ENPCK) of

CKCTLR Register. ENPCK is set to ``1`` in reset state.

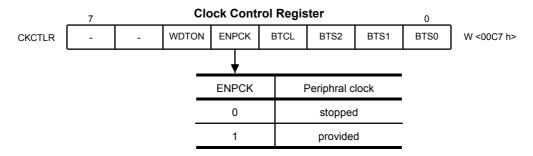



Figure 9-3 Clock Control Register



# 9.1 Operation Mode

The system clock controller starts or stops the main-frequency clock oscillator. Figure 10-2 shows the operating mode transition diagram.

#### Main-clock operating mode

This mode is fast-frequency operating mode. The CPU and the peripheral hardwares operate on the high-frequency clock. At reset release, this mode is invoked.

#### **STOP mode**

In this mode, the system operations all stop, holding the internal states valid immediately before the stop at the low power consumption level.

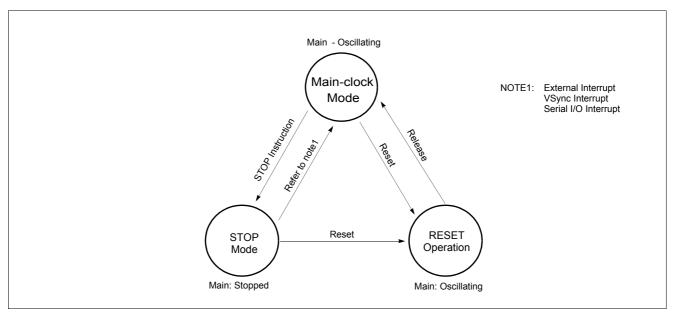



Figure 9-4 Operating Mode



# 10. TIMER

## **10.1 Basic Interval Timer**

The GMS81C50 Series has one 8-bit Basic Interval Timer that is free-run and can not stop. Block diagram is shown in Figure 10-1.

The Basic Interval Timer generates the time base for key scanning, watchdog timer counting, and etc. It also provides a Basic interval timer interrupt (IFBIT). The count overflow from  $FF_H$  to  $00_H$  causes the interrupt to be generated.

-8-bit binary counter

GMS8X50XX

-Use the bit output of prescaler as input to secure the oscillation stabilization time after power-on

-Secures the oscillation stabilization time in standby mode (stop mode) release

-Contents of B.I.T can be read

-Provides the clock for watch dog timer.

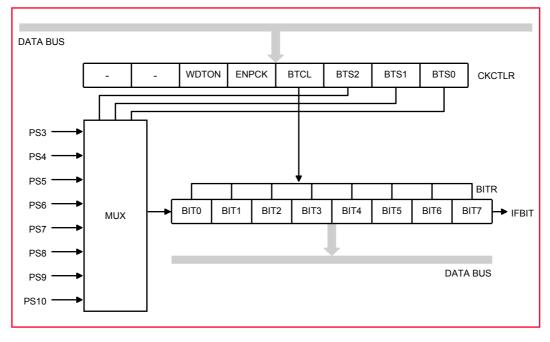



Figure 10-1 Block Diagram of Basic Interval Timer

## (1) Control of B.I.T

The Basic Interval Timer is controlled by the clock control register (CKCTLR) shown in Figure 11-2. If bit3(BTCL) of CKCTLR is set to ``1``, B.I.T is cleared, and then, after one machine cycle, BTCL becomes ``0``, and B.I.T starts counting. BTCL is set to ``0`` in reset state.

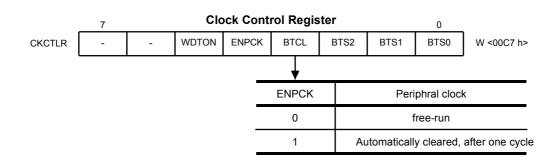





Figure 10-2 ENPCK mode of B.I.T

#### (2) Input clock selection of B.I.T

The input clock of B.I.T can be selected from the prescaler within a range of 2us to 256us by clock input selection bits (BTS2~BTS0). (at fex = 4MHz). In reset state, or power on reset, BTS2=``1``, BTS1=``1``, BTS0=``1`` to secure the longest oscillation stabilization time. B.I.T can generate the wide range of basic interval time interrupt request (IFBIT) by selecting prescaler output. Interrupt interval can be selected to kinds of interval time as shown in

Figure 10-3.

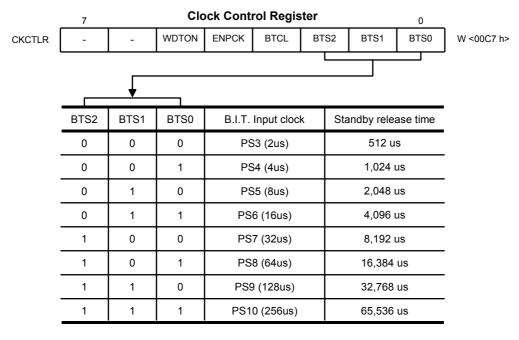



Figure 10-3 Basic Interval Timer Interrupt Time

#### (3) Reading Basic Interval Timer

By the reading of the Basic Interval Timer Register (BITR), we can read counter value of B.I.T. Because B.I.T can be cleared or read, the spending time up to maximum 65.5ms can be available.

B.I.T is read-only register. If B.I.T register is written, then CKCTLR register with same address is written.



## 10.2 Timer0, Timer1, Timer2

#### (1) Timer Operation Mode

Timer consists of 16-bit binary counter Timer0 (T0), 8-bit binary Timer1 (T1), Timer2 (T2), Timer Data Register, Timer Mode Register (TM01, TM0, TM1, TM2) and control circuit. Timer Data Register Consists of Timer0 High-MSB Data Register (T0HMD), Timer0 High-LSB Data Register (T0HLD), Timer0 Low-MSB Data Register (T0LMD), Timer0 Low-LSB Data Register (T0LLD), Timer1 High Data Register (T1HD), Timer1 Low Data Register (T1LD), Timer2 Data Register (T2DR). Any of the PS0 ~ PS5, PS11 and external event input EC can be selected as



clock source for T0. Any of the PS0  $\sim$  PS3, PS7  $\sim$  PS10 can be selected as clock T1. Any of the PS5  $\sim$  PS12 can be selected as clock source for T2.

\* Relevant Port Mode Register (PMR1 : 00C9 h) value should be assigned for event counter,

| Timer0 | - 16-bit Interval Timer<br>- 16-bit Event Counter<br>- 16-bit Input Capture<br>- 16-bit Rectangular-wave Output | - Single/Modulo-N Mode<br>- Timer Output Initial Value Setting<br>- Timer0~Timer1 Combination Logic Output<br>- One Interrupt Generating Every 2nd |
|--------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Timer1 | - 8-bit Interval Timer<br>- 8-bit Rectangular-wave Output                                                       | Counter Overflow                                                                                                                                   |
| Timer2 | - 8-bit Interval Timer<br>- 8-bit Rectangular-wave Output<br>- Modulo-N Mode                                    |                                                                                                                                                    |

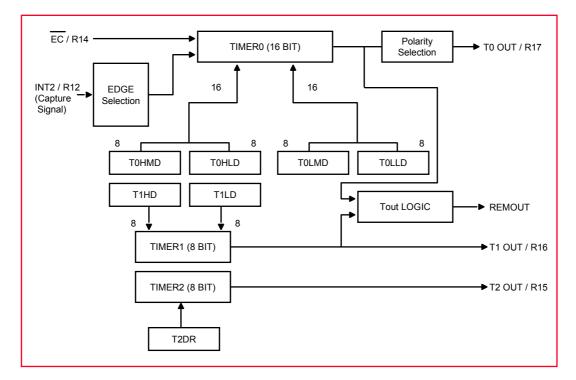



Figure 10-4 Timer / Counter Block diagram



# (2) Function of Timer & Counter

## fex = 4MHz

| 16bit Tim       | er (T0)       | 8bit Time       | er (T1)    | 8bit Time       | er (T2)    |
|-----------------|---------------|-----------------|------------|-----------------|------------|
| Resolution (CK) | Max. Count    | Resolution (CK) | Max. Count | Resolution (CK) | Max. Count |
| PS0 ( 0.25 us)  | 16,384 us     | PS0 ( 0.25 us)  | 64 us      | PS5 ( 8 us)     | 2.048 us   |
| PS1 (0.5us)     | 32,768 us     | PS1 ( 0.5 us)   | 128 us     | PS6 ( 16 us)    | 4,096 us   |
| PS2 ( 1 us)     | 65,536 us     | PS2 ( 1 us)     | 256 us     | PS7 ( 32 us)    | 8,192 us   |
| PS3 ( 2 us)     | 131,072 us    | PS3 ( 2 us)     | 512us      | PS8 ( 64 us)    | 16,384 us  |
| PS4 ( 4 us)     | 262,144 us    | PS7 ( 32 us)    | 8,192 us   | PS9 ( 128 us)   | 32,768 us  |
| PS5 ( 8 us)     | 524,288 us    | PS8 ( 64 us)    | 16,384 us  | PS10(256 us)    | 65,536 us  |
| PS11(512 us)    | 33,554,432 us | PS9 ( 128 us)   | 32,768 us  | PS11(512 us)    | 131,072 us |
| EC              | -             | PS10(256 us)    | 65,536 us  | PS12 (1,024 us) | 262,144 us |



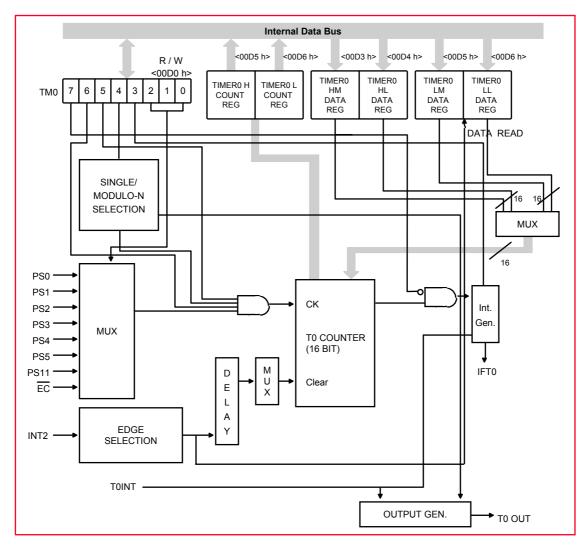



Figure 10-5 Block Diagram of Timer0

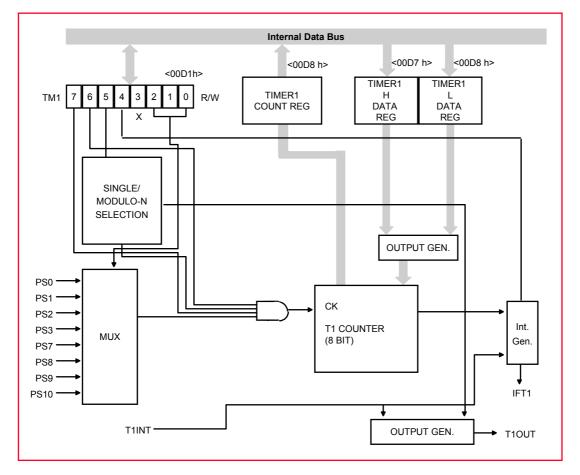
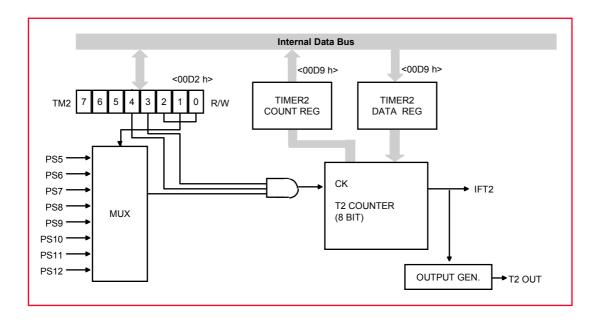




Figure 10-6 Block Diagram of Timer1







#### Figure 10-7 Block Diagram of Timer2

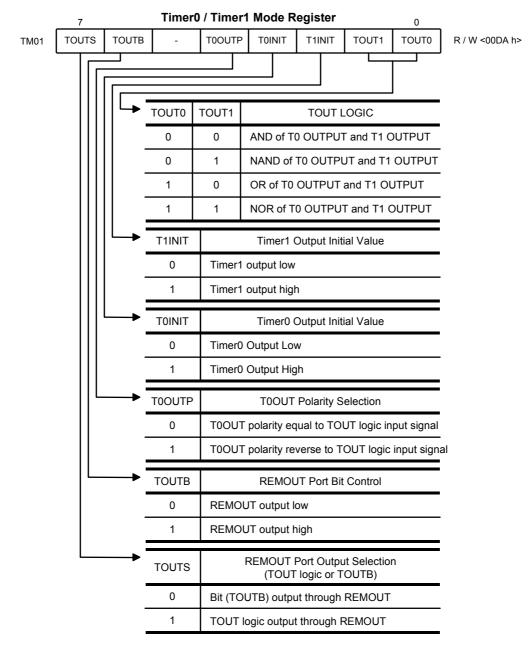



Figure 10-8 Timer0 / Timer1 Mode Register

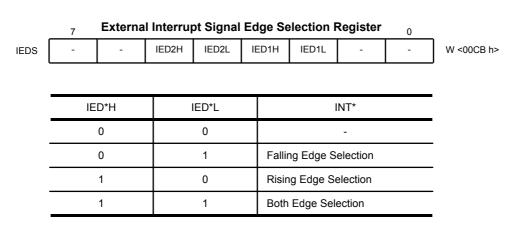


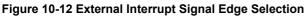
|     | 7 Timer0 Mode Register 0 |          |       |                           |            |             |             |         |                |
|-----|--------------------------|----------|-------|---------------------------|------------|-------------|-------------|---------|----------------|
| тмо | CAP0                     | TOST     | TOCN  | T0MOD                     | TOIFS      | T0SL2       | T0SL1       | TOSLO   | R / W <00D0 h> |
| ·   |                          |          |       |                           |            |             |             |         | _              |
|     |                          |          |       |                           |            |             |             |         |                |
|     |                          | 🕞        | T0SL2 | T0SL1                     | TOSLO      | ) Inpu      | it clock se | lection | Notes          |
|     |                          | _        | 0     | 0                         | 0          | PS0         | (250ns)     |         |                |
|     |                          | _        | 0     | 0                         | 1          | PS1         | (500ns)     |         | *              |
|     |                          | _        | 0     | 1                         | 0          | PS2         | ( 1us)      |         |                |
|     |                          | _        | 0     | 1                         | 1          | PS3         | ( 2us)      |         | <b></b>        |
|     |                          | _        | 1     | 0                         | 0          | PS4         | ( 4us)      |         | <b></b>        |
|     |                          | _        | 1     | 0                         | 1          | PS5         | ( 8us)      |         |                |
|     |                          | _        | 1     | 1                         | 0          |             | 1 (512us)   |         | Event          |
|     |                          | -        | 1     | 1                         | 1          | EC          |             |         | Counter        |
|     |                          | └-▶`     | TOIFS |                           | Timer0 Ir  | nterrupt Se | election    |         |                |
|     |                          |          | 0     | Interrupt                 | every cou  | inter overf | low         |         |                |
|     |                          | _        | 1     | Interrupt                 | every 2nd  | d counter o | overflow    |         |                |
|     |                          | <b>`</b> | T0MOD | Tim                       | er0 Single | e/Modulo-   | N Selectic  | on      |                |
|     |                          | _        | 0     | Modulo-N                  | 1          |             |             |         |                |
|     |                          | -        | 1     | Single                    |            |             |             |         |                |
|     |                          | <b>→</b> | T0CN  | Timer0 C                  | Counter C  | ontinuatio  | n/Pause (   | Control |                |
|     |                          | _        | 0     | Count pa                  | use        |             |             |         |                |
|     |                          | -        | 1     | Count co                  | ntination  |             |             |         |                |
|     |                          | <b>`</b> | TOST  | Timer0 Start/Stop Control |            |             |             |         |                |
|     |                          | -        | 0     | Timer0 S                  | top        |             |             |         |                |
|     |                          | -        | 1     | Timer Start after clear   |            |             |             |         |                |
|     |                          | <b>`</b> | CAP0  |                           |            |             |             |         |                |
|     |                          | -        | 0     | Timer/Co                  | unter      |             |             |         |                |
|     |                          | -        | 1     | Input cap                 | oture *    |             |             |         |                |

\* PS1 : not supporting input capture.

Figure 10-9 Timer0 Mode Register




|     | 7 Timer1 Mode Register 0 |          |       |                                      |               |            |              |         |                |  |  |
|-----|--------------------------|----------|-------|--------------------------------------|---------------|------------|--------------|---------|----------------|--|--|
| TM1 | T1ST                     | T1CN     | T1MOD | T1IFS                                | -             | T1SL2      | T1SL1        | T1SL0   | R / W <00D1 h> |  |  |
|     |                          |          |       |                                      |               |            |              |         | •              |  |  |
|     |                          |          |       |                                      |               |            |              |         |                |  |  |
|     | └-▶`                     |          | T1SL2 | T1SL1                                | T1SL0         | ) Inpu     | it clock sel | ection  |                |  |  |
|     |                          |          | 0     | 0                                    | 0             | PS0        | (250ns)      |         |                |  |  |
|     |                          |          | 0     | 0                                    | 1             | PS1        | (500ns)      |         |                |  |  |
|     |                          |          | 0     | 1                                    | 0             | PS2        | ( 1us)       |         |                |  |  |
|     |                          | _        | 0     | 1                                    | 1             | PS3        | ( 2us)       |         |                |  |  |
|     |                          | _        | 1     | 0                                    | 0             | PS7        | ( 32us)      |         |                |  |  |
|     |                          | _        | 1     | 0                                    | 1             | PS8        | ( 64us)      |         |                |  |  |
|     |                          | _        | 1     | 1                                    | 0             | PS9        | (128us)      |         |                |  |  |
|     |                          | -        | 1     | 1                                    | 1             | PS1        | 0 (256us)    |         |                |  |  |
|     |                          | L        | T1IFS |                                      |               |            |              |         |                |  |  |
|     |                          |          | 0     | Interrupt every counter overflow     |               |            |              |         |                |  |  |
|     |                          |          | 1     | Interrupt every 2nd counter overflow |               |            |              |         |                |  |  |
|     |                          | <b>`</b> | T1MOD | Timer1 Single/Modulo-N Selection     |               |            |              |         |                |  |  |
|     |                          |          | 0     | Modulo-N                             |               |            |              |         |                |  |  |
|     |                          |          | 1     | Single                               |               |            |              |         |                |  |  |
|     |                          | <b>`</b> | T1CN  | Timer1 (                             | Counter C     | ontinuatio | n/Pause C    | control |                |  |  |
|     |                          |          | 0     | Count pa                             | ause          |            |              |         |                |  |  |
|     |                          | -        | 1     | Count contination                    |               |            |              |         |                |  |  |
|     |                          |          | T1ST  |                                      | Timer1 S      | start/Stop | Control      |         |                |  |  |
|     | 0 Timer1 Stop            |          |       |                                      |               |            |              |         |                |  |  |
|     |                          | -        | 1     | Timer1 S                             | start after o | clear      |              |         |                |  |  |


Figure 10-10 Timer1 Mode Register



|     | 7     |   | Tir   | ner2 Moo    | 0           |            |              |         |                |
|-----|-------|---|-------|-------------|-------------|------------|--------------|---------|----------------|
| TM2 | -     | - | -     | T2ST        | T2CN        | T2SL2      | T2SL1        | T2SL0   | R / W <00D2 h> |
|     | <br>1 | • |       |             |             |            | ·            | ·       | -              |
|     |       |   |       |             |             |            |              |         |                |
|     |       |   | T2SL2 | T2SL1       | T2SL        | 0 Inpu     | it clock sel | ection  |                |
|     |       |   | 0     | 0           | 0           | PS5        | ( 8us)       | )       |                |
|     |       |   | 0     | 0           | 1           | PS6        | ( 16us)      | )       |                |
|     |       |   | 0     | 1           | 0           | PS7        | ( 32us)      | )       |                |
|     |       |   | 0     | 1           | 1           | PS8        | ( 64us)      | )       |                |
|     |       |   | 1     | 0           | 0           | PS9        | (128us)      | )       |                |
|     |       |   | 1     | 0           | 1           | PS1        | 0 (256us)    | )       |                |
|     |       |   | 1     | 1           | 0           | PS1        | 1 (512us)    | )       |                |
|     |       |   | 1     | 1           | 1           | PS1        | 2 (1024us)   | )       |                |
|     |       |   | T2CN  | Timer2      | Counter C   | ontinuatio | n/Pause C    | Control |                |
|     |       | I | 0     | Count pa    | ause        |            |              |         |                |
|     |       | - | 1     | Count co    | ontination  |            |              |         |                |
|     | l     |   | T2ST  |             | Timer2 S    | Start/Stop | Control      |         |                |
|     |       |   | 0     | Timer2 Stop |             |            |              |         |                |
|     |       | - | 1     | Timer2 S    | Start after | clear      |              |         |                |

Figure 10-11 Timer2 Mode Register





Register





## (3) Timer1

TIMER0 and TIMER1 have an up-counter. When value of the up-counter reaches the content of Timer Data Register (TDR),

the up-counter is cleared to ``00 h``, and interrupt (IFT0, IFT1) is occurred at the next clock.

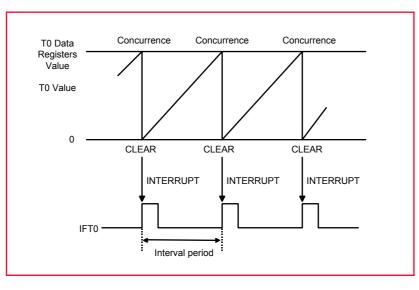



Figure 10-13 Operation of Timer0

For Timer0, the internal clock (PS) and the external clock (EC) can be selected as counter clock. But Timer1 and Timer2 use only internal clock as internal clock. Timer0 can be used as internaltimer which period is determined by Timer Data Register (TDR). Chosen as external clock, Timer0 executes as event-counter. The counter execution of Timer0 and Timer1 is controlled by T0CN, T0ST, CAP0, T1CN, T1ST, of Timer Mode Register TM0 and TM1. T0CN, T1CN are used to stop and start Timer0 and Timer1 without clearing the counter. T0ST, T1ST is used to clear the counter. For clearing and starting the counter, T0ST or T1ST should be temporarily set to ``0`` and then set to ``1``. T0CN, T1CN, T0ST and T1ST should be set ``1``, when Timer counting-up. Controlling of CAP0 enables Timer0 as input capture. By programming CAP0 to ``1``, the period of signal from INT2 can be measured and then, event counter value for INT2 can be read. During counting-up, value of counter can be read.

Timer execution is stopped by the reset signal (RESET = ``L``)

**Note:** In the process of reading 16-bit Timer Data, first read the upper 8-bit data. Then read the lower 8-bit data, and read the upper 8-bit data again. If the former read upper 8-bit data are matched with the later read upper 8-bit data, read 16-bit data are correct. If not, be cautious in the selection of upper 8-bit data.

(Example)

| 1) Upper 8-bit Read | 0A 0A |
|---------------------|-------|
| 2) Lower 8-bit Read | FF 01 |
| 3) Upper 8-bit Read | 0B 0B |
|                     |       |
|                     |       |

0AFF 0B01



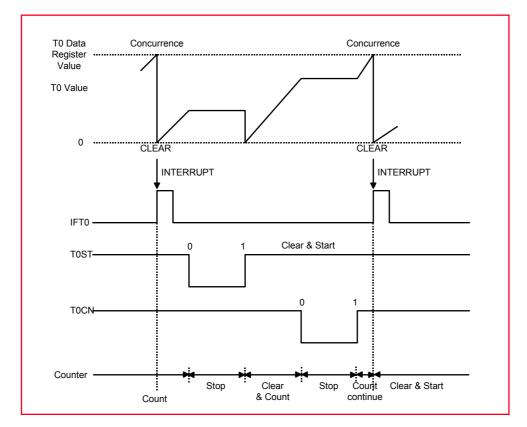



Figure 10-14 Start/Stop Operation of Timer0

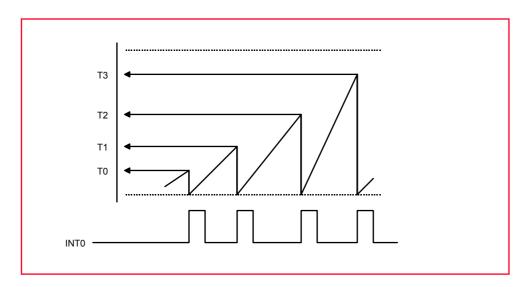



Figure 10-15 Input Capture Operation of Timer0

#### \* Single/Modulo-N Mode

Timer0 (Timer1) can select initial (T0INIT, T1INIT of TM0, TM1) output level of Timer Output port. If initial level is ``L``, Low-Data Register value of Timer Data Register is transferred to comparator and TOOUT (T1OUT) is to be ``Low``, if initial level is iHigh? High -Data Register is transferred and to be ``High``. Single Mode can be set by Mode Select bit (T0MOD, T1MOD)



of Timer Mode Register (TM0, TM1) to ``1`` When used as Single Mode, Timer counts up and compares with value of Data Register. If the result is same, Time Out interrupt occurs and level of Timer Output port toggle, then counter stops as reset state. When used as Modulo-N Mode, T0MOD (T1MOD) should be set ``0``. Counter counts up during the value of Data Register and Time-out interrupt occurs. The level of Timer Output port toggles and repeats counting process of the value which is selected in Data Register. During Modulo-N Mode, If interrupt select bit (T0IFS, T1IFS) of Mode Register is ``0``, Interrupt occurs on every Time-out. If it is ``1``, Interrupt occurs on every second time-out.

**Note:** (\*note. Timer Output is toggled whenever time out happens)

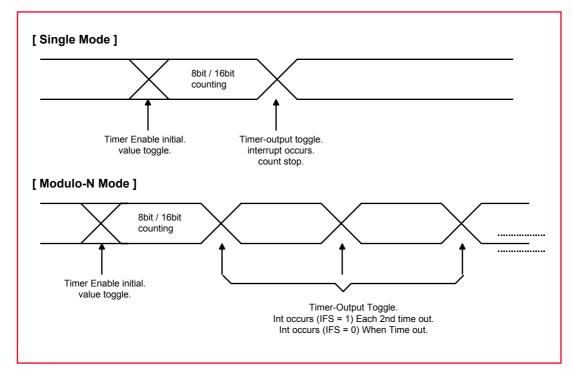



Figure 10-16 Operation Diagram for Single/Modulo-N Mode

#### (4) Timer 2

Timer2 operates as a up-counter. The contents of T2DR are compared with the contents of up-counter. If a match is found, Timer2 interrupt (IFT2) is generated and the up-counter is cleared to ``00 h``. Therefore, Timer2 executes as a interval timer. Interrupt period is determined by the count source clock for the Timer2 and content of T2DR. When T2ST is set to ``1``, count value of Timer 2 is cleared and starts counting-up. For clearing and starting the Timer2. T2ST have to set to ``1`` after set to ``0``. In order to write a value directly into the T2DR, T2ST should be set to ``0``. Count value of Timer2 can be read at any time.



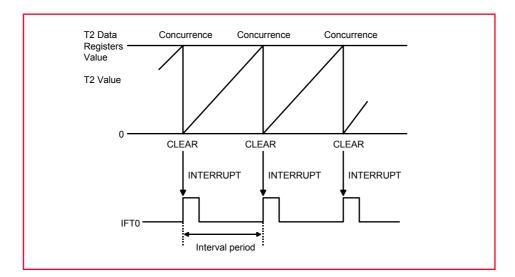
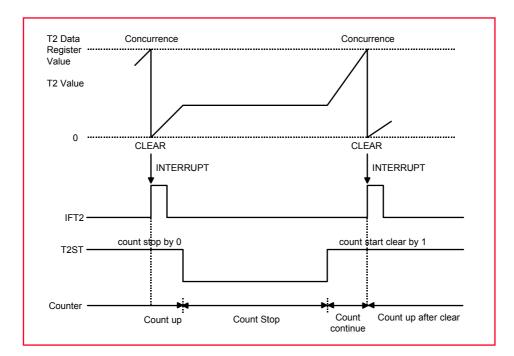




Figure 10-17 Operation of Timer2



```
Figure 10-18 Start/Stop of Timer2
```



# **11. INTERRUPTS**

The GMS81C50 Series interrupt circuits consist of Interrupt Mode Register (MOD), Interrupt enable register (IENH, IENL), Interrupt request flags of IRQH, IRQL, Priority circuit and Master enable flag ("I" flag of PSW). 8 interrupt sources are provided. The configuration of interrupt circuit is shown in Figure 11-1.

The GMS81C50 Series contain 8 interrupt sources; 3 externals and 5 internals. Nested interrupt services with priority control are also possible. Software interrupt is non-maskable interrupt, the others are all maskable interrupts.

- 8 interrupt sources (2Ext, 3Timer, BIT, WDT and Key Scan)

- 8 interrupt vectors
- Nested interrupt control is possible.
- Programmable interrupt mode
- Hardware accept mode
- Software selection accept mode
- Read and write of interrupt request flag are possible.
- In interrupt accept, request flag is automatically cleared.

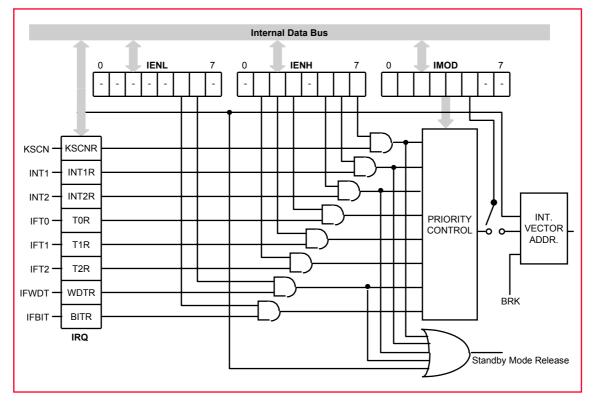



Figure 11-1 Block Diagram of Interrupt

#### **11.1 Interrupt Priority and Sources**

Each interrupt vector is independent and has its own priority. Software interrupt (BRK) is also available. Interrupt source clas-

sification is shown in Table 11-1.



|              | Mask         | Priority | Interrupt Source            | INT Vector High | INT Vector Low |
|--------------|--------------|----------|-----------------------------|-----------------|----------------|
|              | non-maskable | -        | RST (RESET pin)             | FFFF            | FFFE           |
|              |              | 0        | KSCNR (Key Scan)            | FFFB            | FFFA           |
|              |              | 1        | INT1R (External Interrupt1) | FFF9            | FFF8           |
|              |              | 2        | INT2R (External Interrupt2) | FFF7            | FFF6           |
| Hardwar<br>e | maskable     | 3        | T0R (Timer0)                | FFF3            | FFF2           |
| Interrupt    |              | 4        | T1R (Timer1)                | FFF1            | FFF0           |
|              |              | 5        | T2R (Timer2)                | FFEF            | FFEE           |
|              |              | 6        | WDTR (Watctdog Timer)       | FFE9            | FFE8           |
|              |              | 7        | BITR (Basic Interval Timer) | FFE7            | FFE6           |
|              | -            | -        | BRK instruction             | FFDF            | FFDE           |

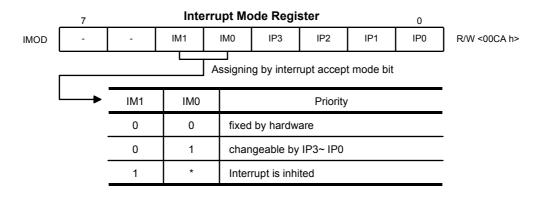
#### Table 11-1 Interrupt Priority & Source

## **11.2 Interrupt Control Register**

I flag of PSW is an interrupt mask enable flag. When I flag = ``0``, all interrupts become disabled. When I flag = ``1``, interrupts can be selectively enabled and disabled by contents of corresponding Interrupt Enable Register. When an interrupt is occurred, an interrupt request flag is set, and the Interrupt request is detected at the edge of interrupt signal. The accepted interrupt request flag is automatically cleared during interrupt cycle pro-

cess. The interrupt request flag maintains ``1`` until the interrupt is accepted or is cleared in program. In reset state, interrupt request flag register (IRQH, IRQL) is cleared to ``0``. It is possible to read the state of interrupt register and to manipulate the contents of register and to generate interrupt. (Refer to software interrupt).

| IENL |       |       | I     | 1 | 1   | 1   | 1   | 1 | R/W <00CCh> |
|------|-------|-------|-------|---|-----|-----|-----|---|-------------|
|      | -     | WDTR  | BITE  | - | -   | -   | -   | - | R/W <00CEh> |
| IENH | KSCNE | INT1E | INT2E | - | T0E | T1E | T2E | - | R/W <00CEh> |
| IRQL | -     | WDTR  | BITE  | - | -   | -   | -   | - | R/W <00CDh> |
| IRQH | KSCNE | INT1R | INT2R | - | T0R | T1R | T2R | - |             |


IENL : INTERRUPT ENABLE REGISTER LOW IENH : INTERRUPT ENABLE REGISTER HIGH IRQL : INTERRUPT REQUEST REGISTER LOW IRQH : INTERRUPT REQUEST REGISTER HIGH

## **11.3 Interrupt Accept Mode**

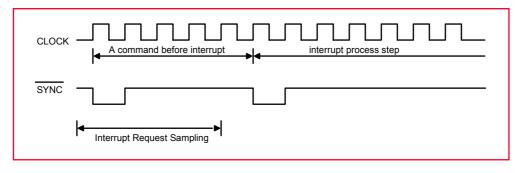
The interrupt priority order is determined by bit (IM1, IM0) of

IMOD register.





## (1) Selection of Interrupt by IP3-IP0


The condition allowance for accepting interrupt is set the state of the interrupt mask enable flag and

the interrupt enable bit must be ``1``. In Reset state, these IP3 - IP0 registers become all ``0``.

| IP3 | IP2 | IP1 | IP0 | Selection Interrupt          |
|-----|-----|-----|-----|------------------------------|
| 0   | 0   | 0   | 1   | KSCNR (Key Scan)             |
| 0   | 0   | 1   | 0   | INT1R (External interrupt 1) |
| 0   | 0   | 1   | 1   | INT2R (External interrupt 2) |
| 0   | 1   | 0   | 0   | Reserved                     |
| 0   | 1   | 0   | 1   | T0R (Timer 0)                |
| 0   | 1   | 1   | 0   | T1R (Timer 1)                |
| 0   | 1   | 1   | 1   | T2R (Timer 2)                |
| 1   | 0   | 0   | 0   | Reserved                     |
| 1   | 0   | 0   | 1   | Reserved                     |
| 1   | 0   | 1   | 0   | WDTR (Watch Dog Timer)       |
| 1   | 0   | 1   | 1   | BITR (Basic Interval Timer)  |
| 1   | 1   | 0   | 0   | Reserved                     |

Table 11-1 Interrupt Selection by IP3 - IP0

# (2) Interrupt Timing





\*Interrupt Request sampling time



-Maximum 12 machine cycles (When execute DIV

instruction)

-Minimum 0 machine cycle

\*Interrupt preprocess step is 8 machine cycles

\*Interrupt overhead

trolled.

-Maximum 1 + 12 + 8 = 21 machine cycles

-Minimum 1 + 0 + 8 = 9 machine cycles

#### (3) The Valid Timing after the Execution of Interrupt Control Instructions

I flag is valid just after the execution of EI/DI on the contrary. Interrupt Enable register is valid one instruction after it is con-

#### **11.4 Interrupt Processing Sequence**

When an interrupt is accepted, the on-going process stops and the interrupt service routine is executed. After the interrupt service routine is completed it is necessary to restore everything to the state before the interrupt occurs. As soon as an interrupt is accepted, the content of the program counter and PSW are saved in the stack area. At the same time, the content of the vector address corresponding to the accepted interrupt, which is in the interrupt vector table, enters into the program counter and interrupt service is executed. In order to execute the interrupt service routine, it is necessary to write the jump addresses in the vector table (FFE0 h  $\sim$  FFFF h) corresponding to each interrupt

- \* Interrupt Processing Step
- 1) Store upper byte of Program Counter, SP <= SP
- 2) Store lower byte of Program Counter, SP  $\leq$  SP 1
- 3) Store Program Status Word, SP <= SP 2
- 4) After reset of I-flag, clear accepted Interrupt Request Flag. (Set B-flag for BRK Instruction)
- 5) Call Interrupt service routine

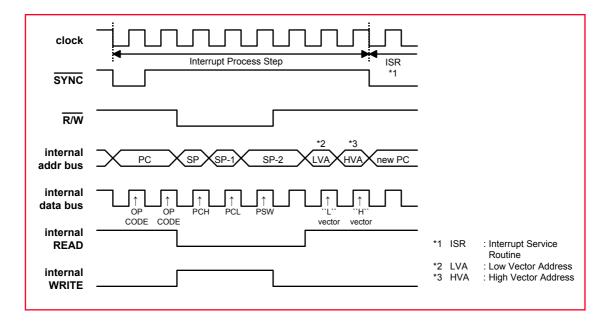
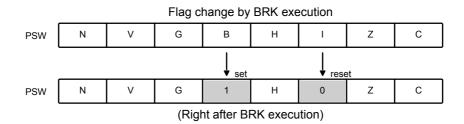




Figure 11-3 Interrupt Processing Step Timing

## 11.5 SOFTWARE INTERRUPT (Interrupt by Break (BRK) Instruction)

Software interrupt is available just by writing ``Break(BRK)`` instruction. The values of PC and PSW are stacked by BRK instruction and then B flag of PSW is set and I flag is reset.





Interrupt vector of BRK instruction is shared with vector of Table Call (TCALL0). When both instructions of BRK and TCALL0 are used, as shown in Figure 11-4. Each processing routine is

judged by contents of B flag. There is no instruction to reset directly B flag.

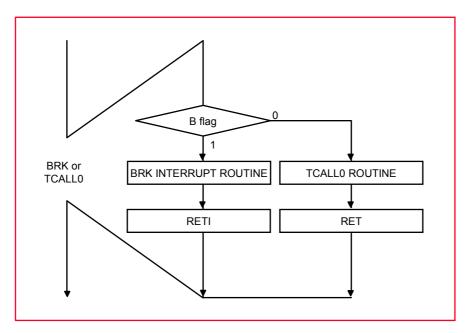



Figure 11-4 Execution of BRK or TCALL0

## **11.6 MULTIPLE INTERRUPT**

If there is an interrupt, Interrupt Mask Enable Flag is automatically cleared before the Interrupt Service Routine enters. After then, no interrupt is accepted. If EI instruction is executed, interrupt mask enable bit becomes ``1``, and each enable bit can accept interrupt request. When two or more interrupts are generated simultaneously, the highest priority interrupt set by Interrupt Mode Register is accepted.

## **11.7 Key Scan Input Processing**

#### (1) Standby Mode Release Register (SMRR)

Key Scan Interrupt generated by detecting low or high Input from each Input pin (R0, R1) is one of the sources which release standby (SLEEP, STOP) mode. Key Scan ports are all 16-bit which are controlled by Standby Mode Release Register (SMRR0, SMRR1). Key Input is considered as Interrupt, therefore, KSC-NE bit of IEHN should be set for correct interrupt execution, the



rest of execution, SLEEP mode and STOP mode, is the same as that of external Interrupt. Each SMRR Register bit is allowed for each port (for Bit=``0``, no Key Input, for Bit=``1``, Key Input

available). At reset, SMRR becomes ``00 h``. So, there is no Key Input source.

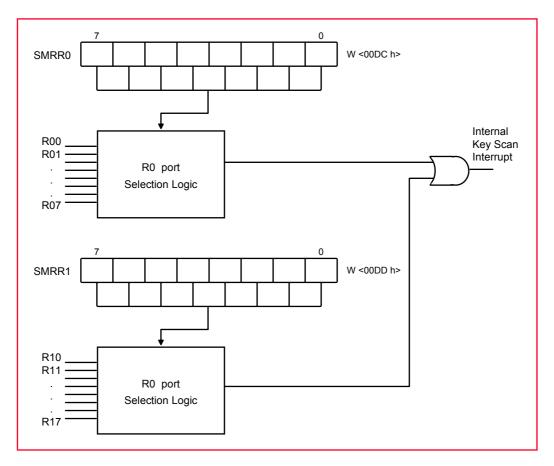



Figure 11-5 Key Scan Block

|       | 7    |      |      |       | 0        |      |      |      |            |
|-------|------|------|------|-------|----------|------|------|------|------------|
| SMRR0 | KR07 | KR06 | KR05 | KR04  | KR03     | KR02 | KR01 | KR00 | W <00DC h> |
|       | 7    |      |      | SMRR1 | Register |      |      | 0    |            |
| SMRR1 | KR17 | KR16 | KR15 | KR14  | KR13     | KR12 | KR11 | KR10 | W <00DD h> |



| SMR   | SMRR0 |      | ٦1 | Key Input Selection |  |
|-------|-------|------|----|---------------------|--|
| KR07  | 0     | KR17 | 0  | no select           |  |
|       | 1     |      | 1  | select              |  |
| KD06  | 0     | KR16 | 0  | no select           |  |
| KR06  | 1     |      | 1  | select              |  |
| KR05  | 0     | KR15 | 0  | no select           |  |
| KR05  | 1     |      | 1  | select              |  |
| KR04  | 0     | KR14 | 0  | no select           |  |
|       | 1     |      | 1  | select              |  |
| KR03  | 0     | KR13 | 0  | no select           |  |
|       | 1     |      | 1  | select              |  |
| KR02  | 0     | KR12 | 0  | no select           |  |
| KR02  | 1     |      | 1  | select              |  |
| KR01  | 0     | KR11 | 0  | no select           |  |
| KRU I | 1     |      | 1  | select              |  |
| KR00  | 0     | KR10 | 0  | no select           |  |
|       | 1     |      | 1  | select              |  |

## (2) Standby Release Level Control Register (SRLC)

Standby release level control register (SRLC) can select the key scan input level ``L`` or ``H`` for standby release by each bit pin

(R0, R1). Standby release level control register (SRLC) is write-only register and initialized as ``00 h`` in reset state.





| SRLC0 |   | SRLC1 |   | Key Input Level |  |
|-------|---|-------|---|-----------------|--|
| KLR07 | 0 | KLR17 | 0 | Low             |  |
|       | 1 | NLK17 | 1 | High            |  |
| KLR06 | 0 | KLR16 | 0 | Low             |  |
|       | 1 |       | 1 | High            |  |
| KLR05 | 0 | KLR15 | 0 | Low             |  |
| KLR00 | 1 |       | 1 | High            |  |
| KLR04 | 0 | KLR14 | 0 | Low             |  |
| KLKU4 | 1 |       | 1 | High            |  |
|       | 0 | KLR13 | 0 | Low             |  |
| KLR03 | 1 |       | 1 | High            |  |
| KLR02 | 0 | KLR12 | 0 | Low             |  |
| KLR02 | 1 |       | 1 | High            |  |
| KLR01 | 0 | KLR11 | 0 | Low             |  |
|       | 1 |       | 1 | High            |  |
| KLR00 | 0 | KLR10 | 0 | Low             |  |
|       | 1 |       | 1 | High            |  |



# **12. WATCH DOG TIMER**

Watch Dog Timer (WDT) consists of 6-bit binary counter, 6-bit

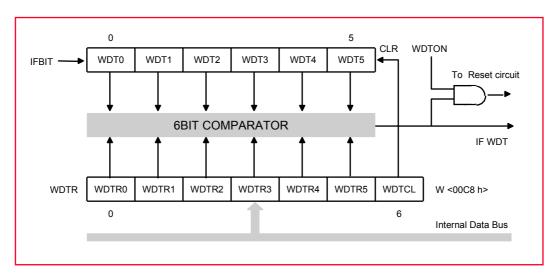
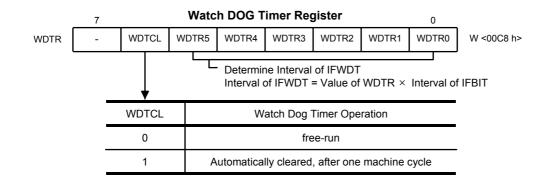



Figure 12-1 Block diagram of Watch Dog Timer

## 12.1 Control of WDT

Watch Dog Timer can be used as 6-bit general Timer or specific Watch dog timer by setting bit5 (WDTON) of Clock Control Register (CKCTLR).


comparator, and Watch Dog Timer Register (WDTR).



By assigning bit6(WDTCL) of WDTR, 6-bit counter can be clear

cleared.



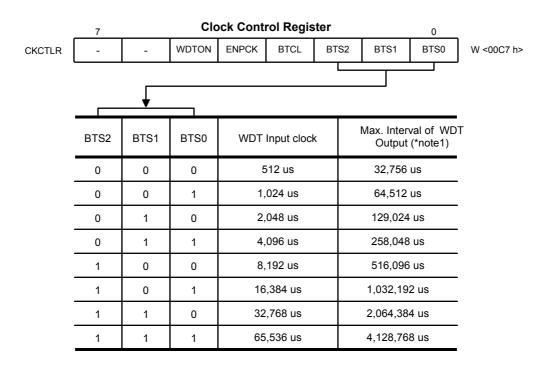


## 12.2 Interrupt Interval

WDT Interrupt (IFWDT) interval is determined by the interrupt IFBIT interval of Basic Interval Timer and the value of WDT Register.

-Interval of IFWDT = (IFBIT interval) \* (WDTR value)

-Interval of IFWDT : 512 us \* 1 = 512 us (MIN>)


-65,536us \* 63 = 4,128,768 us (MAX>)

As IFBIT (Basic Interval Timer Interrupt Request) is used for input clock of WDT, possible Input clock cycle is from 512 us to 65,536 us by BTS. (at fex = 4MHz) \*At Hardware reset time ,WDT starts automatically. Therefore, the user must select the CKCTLR, WDTR before the WDT overflow.

-Reset WDTR value = 0F h,15

-interval of WDT = 65,536 \* 15 = 983040 us

(about 1second)





**Note:** When WDTR Register value is 63 (3F h) (Caution) : Do not use ``0`` for WDTR Register value.

Device comes into the reset state by WDT.



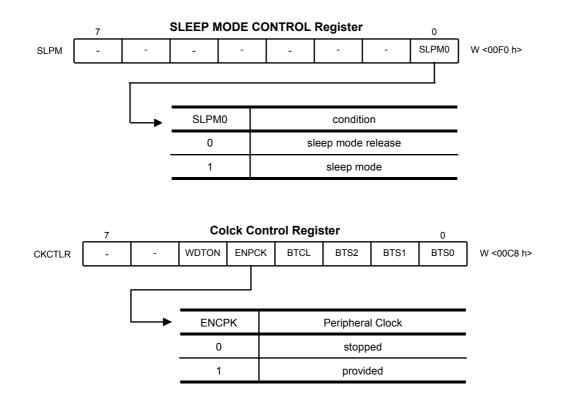
# **13. STANDBY FUNCTION**

To save power consumption, there is STOP modes. In this modes,

#### 13.1 Sleep Mode

SLEEP mode can be entered by setting the bit of SLEEP mode register (SLPM). In the mode, CPU clock stops but oscillator keeps running. B.I.T and a part of peripheral hardware execute, but prescaler is output which provide clock to peripherals can be stopped by program. (Except, PS10 can't be stopped.) In SLEEP mode, more consuming power can be saved by not using other peripheral hardware except for B.I.T. By setting ENPCK (peripheral clock control bit) of CKCTLR (clock control register) to ``0``, peripheral hardware halts, and SLEEP mode is entered. To release SLEEP mode by BITR (basic interval timer interrupt),

the execution of program stops.


bit10 of prescaler should be selected as B.I.T input clock before SLEEP mode is entered. "NOP" instruction should follow after setting of SLEEP mode for rising precharge time of data bus line.

(ex) setting of SLEEP mode : set the bit of SLEEP

mode register (SLPM)

NOP

: NOP instruction



#### 13.2 Stop Mode

STOP mode can be entered by STOP instruction during program. In STOP mode, oscillator stops to make all clocks stop, which leads to less power consumption. All registers and RAM data are preserved. ``NOP`` instruction should follow after STOP instruction for rising precharge time of Data Bus line.

(ex) STOP : STOP instruction execution

NOP : NOP instruction



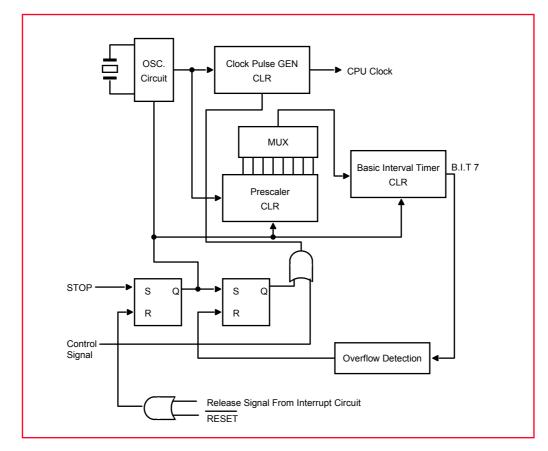



Figure 13-1 Block Diagram of Standby Circuit

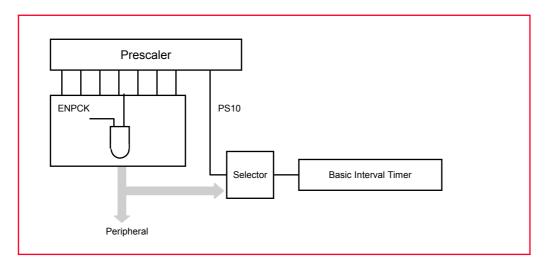



Figure 13-2 ENPCK and Basic Interval Timer Clock



# 13.3 Standby Mode Release

Release of STANDBY mode is executed by RESET input and Interrupt signal. Register value is defined when Reset. When there is a release signal of STOP mode (Interrupt, RESET input), the instruction execution starts after stabilization oscillation time is set by value of BTS2  $\sim$  BTS0 and ENPCK is set to ``1``.

| Release Signal   | SLEEP | STOP |  |
|------------------|-------|------|--|
| RESET            | 0     | 0    |  |
| KSCN (key input) | 0     | 0    |  |
| INT1 , INT2      | 0     | 0    |  |
| B.I.T            | 0     | Х    |  |

#### Table 13-1 Standby Mode Register

| Release Factor                  | Release Method                                                                                                                                                                                                                                                                                                                                        |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| RESET                           | By RESET Pin = Low level, Standby mode is release and system is initialized                                                                                                                                                                                                                                                                           |  |  |
| KSCN<br>(key input)             | Standby mode is released by low input of selected pin by key scan Input<br>(SMRR0, SMRR1) In case of interrupt mask enable flag = ``0``,<br>program executes just after standby instruction,<br>if flag = ``1``, enters each interrupt service routine.                                                                                               |  |  |
| INT1<br>INT2                    | When external interrupt (INT1, INT2) enable flag is ``1``, standby mode is released<br>at the rising edge of each terminal. When Standby mode is released at interrupt.<br>Mask Enable flag = ``0``, program executes from the next instruction of standby<br>instruction. When ``1``, enters each interrupt service routine.                         |  |  |
| Basic Interval Timer<br>(IFBIT) | When B.I.T is executed only by bit10 of prescaler (PS10), SLEEP mode can be release. Interrupt release SLEEP mode, when BIT interrupt enable flag is ``1``. When standby mode is released at interrupt. Mask enable flag = ``0``, program executes from the next instruction of SLEEP instruction. When ``1``, enters each interrupt service routine. |  |  |

Table 13-2 Standby Mode Release



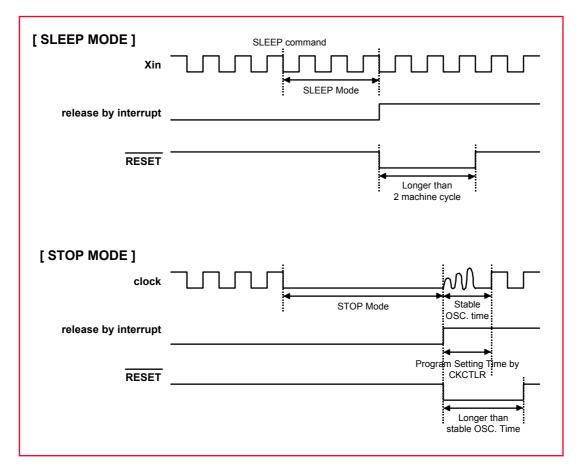
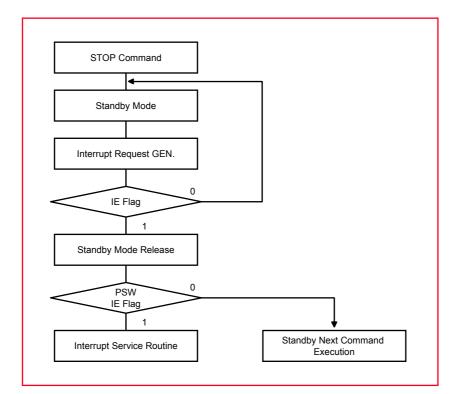



Figure 13-3 Release Timing of Standby Mode

# 13.4 Release Operation of Standby Mode

After standby mode is released, the operation begins according to the content of related interrupt register just before standby mode start (Figure 13-4)

## (1) Interrupt Enable Flag(I) of PSW = ``0``


Released by only an interrupt whose interrupt enable flag = ``1``, and starts to execute from next to standby instruction (SLEEP or STOP).

## (2) Interrupt Enable Flag(I) of PSW = ``1``

Released by only interrupt which each interrupt enable flag = ``1``, and jumps to the relevant interrupt service routine.

**Note:** When STOP instruction is used, B.I.T should guarantee the stabilization oscillation time. Thus, just before STOP mode is entered, either clock of bit10 (PS10) of prescaler is selected or peripheral hardware clock control bit (ENPCK) is set to ``1``, Therefore the clock necessary for stabilization oscillation time should be input into B.I.T. otherwise, standby mode is released by reset signal. In case of interrupt request flag and interrupt enable flag are both ``1``, standby mode is not entered.





## Figure 13-4 Standby Mode Release Flow

| Internal circuit      | SLEEP mode                              | STOP mode |  |
|-----------------------|-----------------------------------------|-----------|--|
| Oscillator            | Active                                  | Stop      |  |
| Internal CPU clock    | Stop                                    | Stop      |  |
| Register              | Retained                                | Retained  |  |
| RAM                   | Retained                                | Retained  |  |
| I/O port              | Retained                                | Retained  |  |
| Prescaler             | Active                                  | Retained  |  |
| Basic Interval Timer  | PS10 selected : Active<br>Others : Stop | Stop      |  |
| Watch Dog Timer       | Stop                                    | Stop      |  |
| Timer                 | Stop                                    | Stop      |  |
| Address Bus, Data Bus | Retained                                | Retained  |  |

Table 13-1 Operation State in Standby Mode



# **14. OSCILLATION CIRCUIT**

Oscillation circuit is designed to be used with either a ceramic resonator or crystal oscillator. Fig. 4.2-(a) shows circuit diagrams using a crystal (or ceramic) oscillator. As shown in the diagram, oscillation circuits can be constructed by connecting a oscillator between Xout and Xin. Clock from oscillation circuit makes CPU clock via clock pulse generator, and then enters prescaler to make peripheral hardware clock. Alternately, the oscillator may be driven from an external source as shown is Fig. 4.2.-(b). In the Standby (STOP) mode, oscillation stops, Xout state goes to ``High``, Xin state goes to ``Low``, and built-in feed back resistor is disabled.

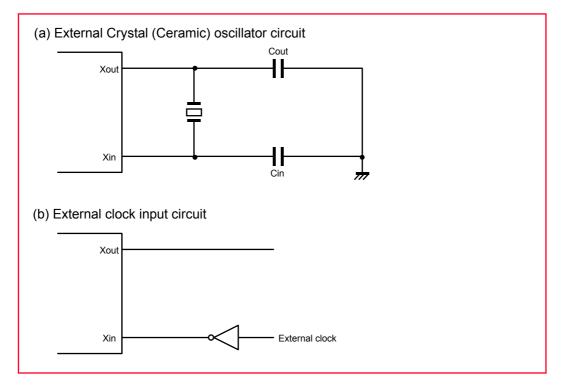



Figure 14-1 Oscillator Configurations

\* Recommendable Resonator

| Frequency | Resonator Maker | Part Name | Load Capacitor | Operating Voltage |
|-----------|-----------------|-----------|----------------|-------------------|
|           | CQ              | ZTA4.00MG | Cin=Cout=30pF  | 2.2 ~ 4.0V        |
| 4.0 MHz   | TDK             | FCR4.0MC5 | Cin=Cout=open  | 2.2 ~ 4.0V        |
|           | TDK             | FCR4.0M5  | Cin=Cout=33pF  | 2.2 ~ 4.0V        |
| _         | TDK             | CCR4.0MC3 |                | 2.2 ~ 4.0V        |

\* MC type is built in load capacitor. CCR type is chip type.



# **15. RESET FUNCTION**

# **15.1 External Reset**

The RESET pin should be held to low for at least 2 machine cycles with the power supply voltage within the operating voltage range and must be connected to 0.1uF capacitor for stable system initialization. The RESET pin contains a Schmitt trigger with an internal pull-up resistor.

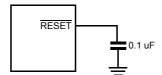



Figure 15-1 The Circuit of External RESET

## 15.2 Power On Reset

Power On Reset circuit automatically detects the rise of power voltage (the rising time should be within 50ms) the power voltage reaches a certain level, RESET terminal is maintained at °»L°» Level until a crystal ceramic oscillator oscillates stably. After power applies and starting of oscillation, this reset state is maintained for about 219 oscillation cycles(about 65.5ms : at 4MHz). The execution of built-in Power On Reset circuit is as follows :

(1) Latch the pulse from Power On Detection Pulse Generator circuit, and reset Prescaler, B.I.T and B.I.T Overflow detection circuit.

(2) Once B.I.T Overflow detection circuit is reset, then, Prescaler starts to count.

(3) Prescaler output is input into B.I.T and PS10 of Prescaler output is automatically selected. If overflow of B.I.T is detected, Overflow detection circuit is set.

(4) Reset circuit generates maximum period of reset pulse from Prescaler and B.I.T.

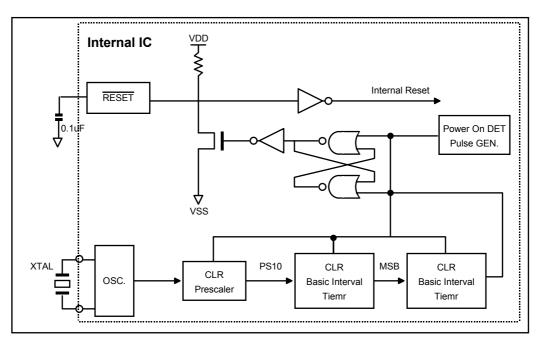



Figure 15-2 Block Diagram of Power On Reset Circuit

Note: Notice ; When Power On Reset, oscillator stabiliza-

tion time doesn't include OSC Start time.



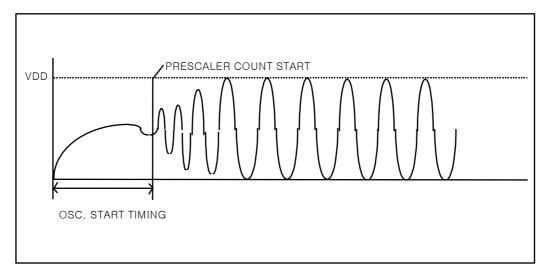



Figure 15-3 Oscillator Stabilization Diagram

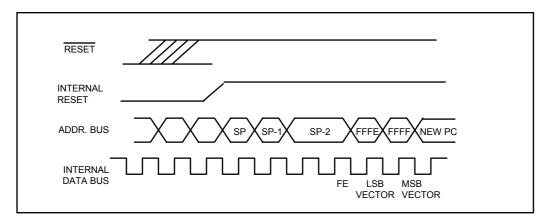
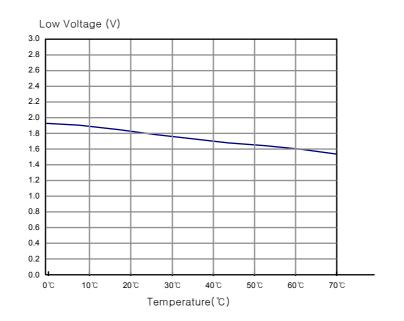



Figure 15-4 Reset Timing by Diagram

## **15.3 Low Voltage Detection Mode**

#### (1) Low voltage detection condition

An on-board voltage comparator checks if VDD is at the required level to ensure correct operation of the device. If VDD is below a certain level, Low voltage detector forces the device into low voltage detection mode.

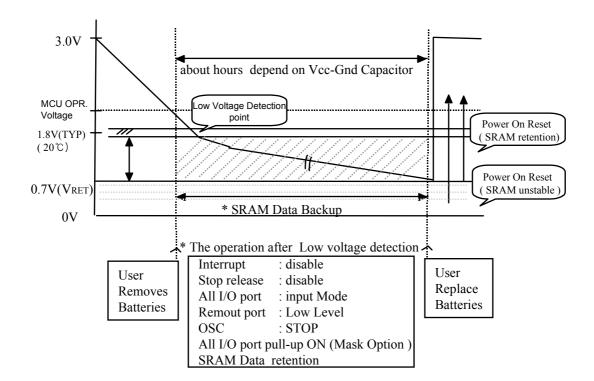

#### (2) Low Voltage Detection Mode

When there is no power consumption except stop current, stop mode release function is disabled. All I/O port is configured as input mode and Data memory is retained until voltage through external capacitor is worn out. In this mode, all ports can be selected with Pull-up resistors by Mask option. If there is no information on the Mask option sheet , the default pull up option (all ports are connected to pull-up resistor ) is selected. The Option data are equally applied to normal operation mode and LVD mode. In other words, if pull up options are checked 'Y' on the Mask option sheet, port status will be same on pull up in LVD mode and normal operation mode. And if pull up options are checked 'N', port status will be same on no pull up in LVD mode and normal operation mode.

## (3) Release of Low Voltage Detection Mode

Reset signal resulted from new battery(normally 3V) wakes the

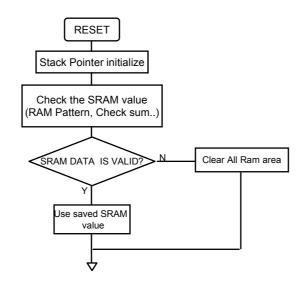





low voltage detection mode and comes into normal reset state. It

depends on user whether to execute RAM clear routine or not.

Figure 15-5 Low Voltage vs. Temperature

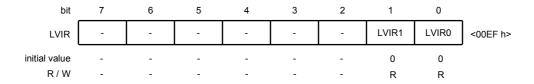

# (4) SRAM BACK-UP after Low Voltage Detection





#### Figure 15-6 Low Voltage Detection and Protection

## (5) S/W Flow Chart Example after Reset using SRAM Back-up




#### Figure 15-7 S/W Flow Chart Example for SRAM Back-

## 15.4 Low Voltage Indicator Register (LVIR)

Low Voltage Indication Register (LVIR) is read only Register. It is useful to display the consumption of Batteries. If VDD power level is below a certain level which is higher than low voltage detection level (refer to Figure 15-6), the LVIR register bit should be set according to the VDD level sequentially. The VDD detection levels for Indication are two, Bit1 and Bit0 of LVIR Register. The detection level of Bit0 is higher than Bit1.

up

