

GPR1024A

128K x 8 Bits Bus Flash

SEP. 11, 2006 Version 1.0

GENERALPLUS TECHNOLOGY INC. reserves the right to change this documentation without prior notice. Information provided by GENERALPLUS TECHNOLOGY INC. is believed to be accurate and reliable. However, GENERALPLUS TECHNOLOGY INC. makes no warranty for any errors which may appear in this document. Contact GENERALPLUS TECHNOLOGY INC. to obtain the latest version of device specifications before placing your order. No responsibility is assumed by GENERALPLUS TECHNOLOGY INC. for any infringement of patent or other rights of third parties which may result from its use. In addition, GENERALPLUS products are not authorized for use as critical components in life support devices/ systems or aviation devices/systems, where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of Generalplus.

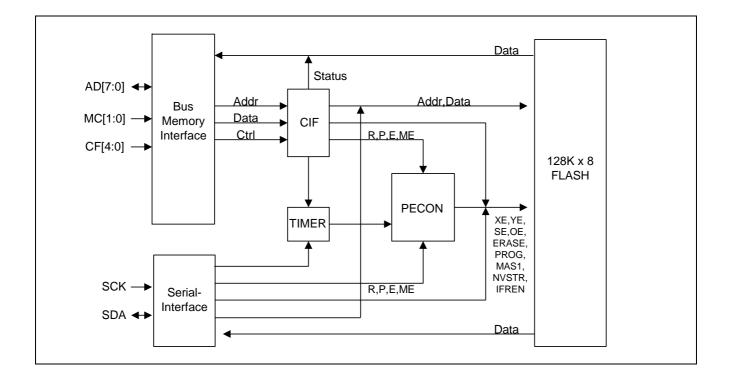
Table of Contents

<u>PAGE</u>

1.	GENERAL DESCRIPTION	3
2.	FEATURES	3
3.	BLOCK DIAGRAM	3
4.	SIGNAL DESCRIPTIONS	4
5.	FUNCTIONAL DESCRIPTIONS	5
	5.1. BUS MEMORY INTERFACE (BMI)	5
	5.1.1. BMI description	5
	5.1.2. BMI AC characteristics	6
	5.1.3. AC characteristics (VDD = 2.7V - 3.6V, T_A = 0 - 70 $^\circ \rm C$)	6
	5.1.4. BMI configuration setting	7
	5.1.5. BMI register description	7
	5.1.6. BMI memory mapping	7
	5.1.7. BMI command sequence	8
	5.2. Serial Interface (SIF)	. 13
	5.2.1. Bit transfer	. 13
	5.2.2. Instruction set	. 14
	5.2.3. AC characteristics (VDD = 2.7 - 3.6V, T_{A} = 0 - 70 $^{\circ}\mathrm{C}$)	. 15
6.	ELECTRICAL SPECIFICATIONS	. 17
	6.1. Absolute Maximum Ratings*	. 17
	6.2. Recommended DC Operating Conditions (VDD =2.7V - 3.6V, T_{A} = 0 - 70 $^{\circ}\text{C}$)	. 17
	6.3. DC CHARACTERISTICS (VDD = 2.7V - 3.6V, T_{A} = 0 - 70 $^{\circ}\mathrm{C}$)	. 17
7.	APPLICATION CIRCUITS	. 18
	7.1. BMI CASCADE ACCESS MODE	. 18
	7.2. BUS INTERFACE	. 19
8.	PACKAGE/PAD LOCATIONS	. 20
	8.1. PAD ASSIGNMENT AND LOCATIONS	. 20
	8.2. ORDERING INFORMATION	. 20
9.	DISCLAIMER	. 21
10	REVISION HISTORY	. 22

128Kx8 BITS BUS FLASH

1. GENERAL DESCRIPTION


GPR1024A, a high-performance 1M-bit bus FLASH organized as 128K-byte, embeds a Bus Memory Interface (BMI) and a serial interface (SIF). GPR1024A allows GPL13X & GPLB3X MCU to access its FLASH memory via BUS memory or 1-bit serial interface. In 2.7V to 3.6V power, GPR1024A is able to operate up to 5.0MHz. Maximum current of read operation is 1.0mA and maximum current of program/erase is 4.0mA.

2. FEATURES

- 1M-bit (128K x 8 bits).
- Endurance: 20,000 Cycles (min)
- Data Retention: 10 years under Room Temperature
- 128 separate sectors for erase operation and 1K-byte per sector
- Working voltage: 2.7V 3.6V
- Operating frequency: 5.0MHz
- Operating current: 1.0mA (max.) for read and 4.0mA (max.) for program/erase
- Standby current: 1.0µA (max.)
- TTL-compatible I/O
- Bus memory interface or serial interface

3. BLOCK DIAGRAM

This device contains six components - Bus Memory Interface (BMI), Serial Interface (SIF), Command Interface (CIF), timer, program & erase controller (PECON), and a 1M-bit FLASH. The CF[4:0] and SEL determine the device configuration. When BMI is selected, MC0 and MC1 behave as the Read/Write control signal and AD[7:0] are the bi-directional Address/Data bus. BMI executes these signals and generates chip enable (CE), output enable (OE), write enable (WE), and FLASH memory address in READ mode. In WRITE mode, BMI also generates FLASH data. CIF interprets signals generated by BMI. If CIF receives READ command, it will perform read operation from FLASH directly. If CIF receives PROGRAM, ERASE or MASS ERASE, it forwards these commands to PECON to execute these commands. When SIF is chosen, SCK acts as serial clock and SDA as 1-bit serial I/O. If READ command is received, SIF will also read from flash memory directly. If PROGRAM, ERASE or MASS ERASE is received, SIF also forwards these commands to EPCON. When EPCON is active, it needs a 200 KHz clock, provided by the TIMER block shown in block diagram.

4. SIGNAL DESCRIPTIONS

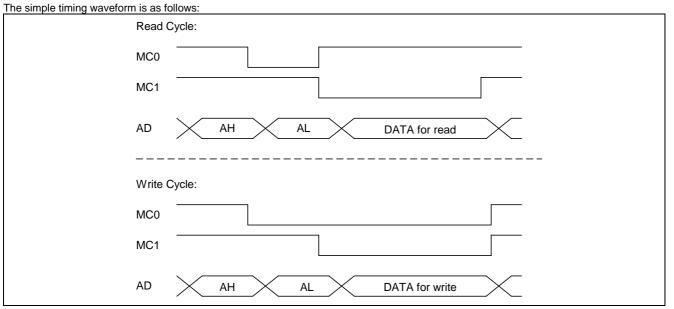
Mnemonic	PIN No.	Туре	Description	
CF1 - 4	13 - 16			
CF0	19	I	Configuration bonding option	
AD0 - 7	2 – 9	I/O	Bus Interface Address/Data I/O	
MC0 - 1	20 - 21	Ι	Bus Interface write/read control signal	
SEL	23	Ι	Bus Interface/Serial Interface selection	
RESET	22	Ι	Reset (low active)	
SDA	10	I/O	Serial Interface data I/O	
SCK	18	Ι	Serial Interface Clock	
VDD	1, 17	Ι	Power Supply (2.7V ~ 3.6V)	
VSS	11	Ι	Ground	
NC	0, 12	I	No connection	

5. FUNCTIONAL DESCRIPTIONS

5.1. Bus Memory Interface (BMI)

5.1.1. BMI description

In the use of Bus Memory Interface, pins are connected as table below:

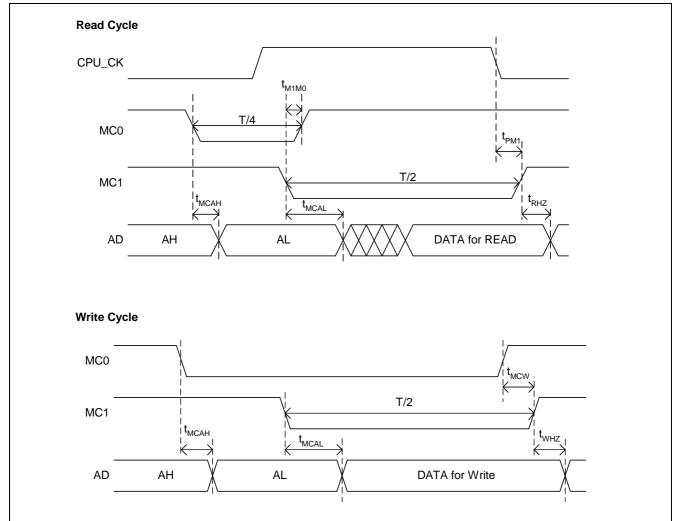

Name	Description					
CF0 - CF4	Configuration bonding option					
AD0 - AD7	Bus Interface address/data I/O					
MC0 - MC1	Bus Interface write/read control signal					
SEL	Connected to GND					
RESET	Reset (low active)					
SCK	Connected to GND					
SDA	Connected to GND					
VDD	Power supply (2.7V ~ 3.6V)					
VSS	GND					

BMI, an interface between GPR1024A and GPL13X or GPLB3X MCU, is intended to provide flexible and efficient memory management. BMI contains an 8-bit bi-directional Address/Data bus, AD bus, which is multiplexed by two control signals - MC0 and MC1. MC0 determines operation mode (Read or Write), and MC1 decides AD bus to be address or data bus. See the following table for MC0 and MC1 configuration.

MC1	MC0	AD BUS
L	L	Data for Write
L	Н	Data for Read
Н	L	AL
Н	Н	AH

AH: high byte address

AL: low byte address.


MC0 falling edge => latch AH.

MC1 falling edge => (1) latch AL. (2) if MC0=1 \rightarrow READ; if MC0=0 \rightarrow WRITE.

MC1 rising edge => if READ, set AD bus to Hi. If WRITE, latch DATA for WRITE.

5.1.2. BMI AC characteristics

5.1.3. AC characteristics (VDD = 2.7V - 3.6V, T_{A} = 0 - 70 $^{\circ}\text{C}$)

Characteristic	Symbol	Min.	Max.	Unit
Read cycle				
Read cycle period	Т	250	-	ns
MC0 falling to AH end	t _{MCAH}	15	-	ns
MC1 falling to MC0 rising	t _{M1M0}	-20	10	ns
MC1 falling to AL end	t _{MCAL}	-	35	ns
Data latch to MC1 falling	t _{PM1}	20	35	ns
MC1 rising to AD Hi-Z	t _{RHZ}	-	5.0	ns
Write Cycle				
MC0 rising to MC1 rising	t _{MCW}	15	20	ns
MC1 rising to AD Hi-Z	t _{RHZ}	15	-	ns

5.1.4. BMI configuration setting

The Bus Memory Interface (BMI) has four modes - A, C, E, and G. The configuration settings are illustrated in the CF[2:0], where CF indicates the physical pin, see Table 1. For the physical pins, simply apply logic high (1) or low (0) to the pins to participate the settings. Moreover, the CF[4:3] determines the bank control register (\$00) configuration, see the Table 2 for detailed setups. Note that the change of bank is accomplished by given the corresponding value to the \$00. For example, to access the Bank0, a value of "00h" must be given to \$00 in addition to a logic value of "00" should be given to the external pins, CF[4:3].

Table 1: CF[2:0], configuration of BMI mode

BMI Type	BMI Type CF2		CF0	Volume ID \$0D[1:0]		
А	0	0	0	00		
С	0	1	0	01		
Е	1	0	0	хх		
G	1	1	0	01		

Table 2: CF[4:3], configuration of bank setting. "b" is for extender memory bank select.

Туре	CF4	CF3	Bank switch
	0	0	00XXXXbb
	0	1	01XXXXbb
A, C, E	1	0	10XXXXbb
	1	1	11XXXXbb
0	1	0	10XXXXbb
G	1	1	11XXXXbb

5.1.5. BMI register description

The BMI uses MCU address from 4000h to FFFFh and duplicates some registers of GPL13X and GPLB3X into GPR1024A as bank switch. The register usage and mapping table is as below:

Memory Bank Switch (\$00, BSW)

b7	b6	b5	b4	b3	b2	b1	b0
*	*	-	-	-	-	BSW1	BSW0

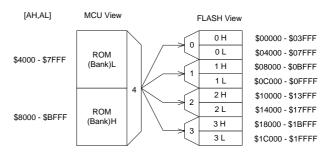
* \$00[7:6] must be set the same value as the logic setting of CF[4:3].

Volume ID (\$0D, VOL)

b7	b6	b5	b4	b3 b2		b1	b0	
-	-	-	-	-	-	VOL1	VOL0	

External Memory Mapping (\$0B.1, EXC)

b7	b6	b5	b4	b3	b2	b1	b0
-	-	-	-	-	-	EXC	-


MCU address mapping of \$C000 - \$FFFF

b1: EXC = 0: Map to internal ROM

= 1: Map to external Bus Flash

Note: GENERALPLUS recommends always keep this bit to "0" when bus flash is applied.

5.1.6. BMI memory mapping

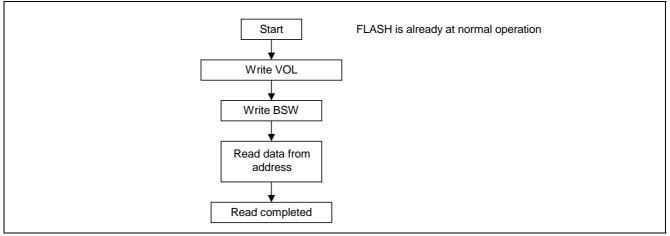
5.1.7. BMI command sequence

5.1.7.1. Bus memory interface command sequence

	Bus cycle											
Command	1 st		2 nd		3 rd		4 th		5 th		6 th	
sequence	addr	data	addr	data	addr	data	addr	data			addr	data
Read device ID	5555h	AAh	AAAAh	55h	5555h	90h	8000h/ 8001h	ID (read)				
Read status	5555h	AAh	AAAAh	55h	5555h	70h	Any addr.	Status ⁽¹⁾				
Return to normal mode (RESET)	xxxx	F0h										
Read	RA	RD (read)										
Byte program	5555h	AAh	AAAAh	55h	5555h	A0h	PA ⁽²⁾	PD ⁽³⁾				
Sector Erase	5555h	AAh	AAAAh	55h	5555h	80h	5555h	AAh	AAAAh	55h	EA ⁽⁴⁾	30h
Mass erase	5555h	AAh	AAAAh	55h	5555h	88h	5555h	AAh	AAAAh	55h	5555h	10h

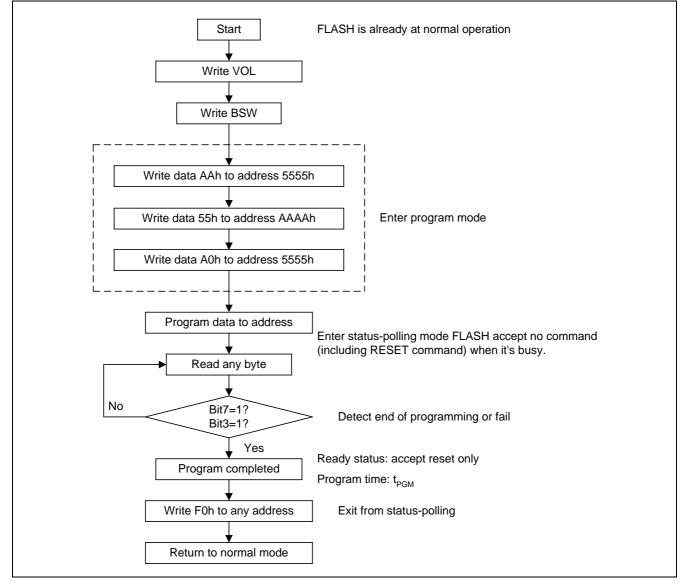
Note1: Status: b7 for 0/1: busy/ready, b3 for 0/1: fail/success

Note2: PA: program byte address


Note3: PD: program data

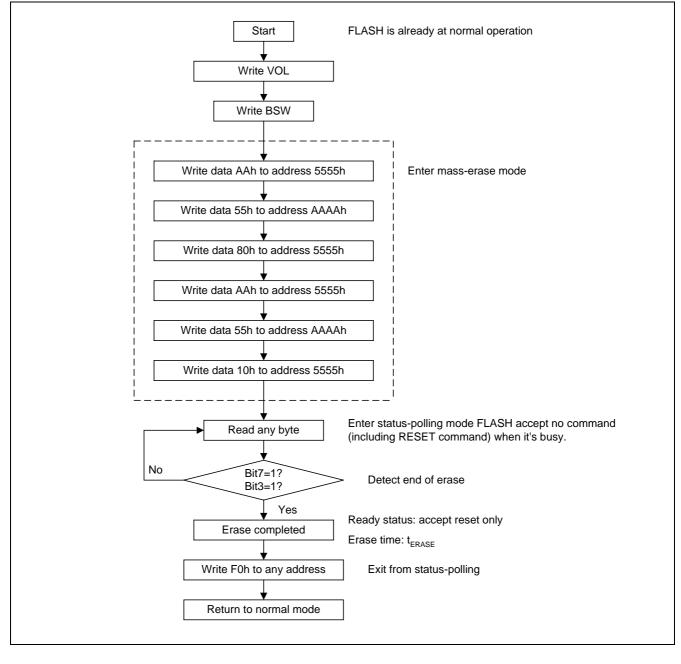
Note4: EA: sector erase address (gray bits in next table)

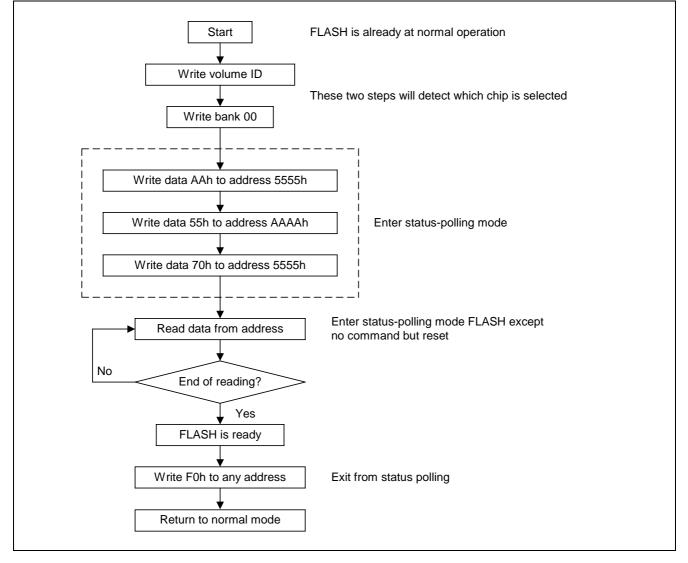
5.1.7.2. Read device ID command output


	Address	Data
Manufacture code	00000h	C7h
Device code	00001h	D5h

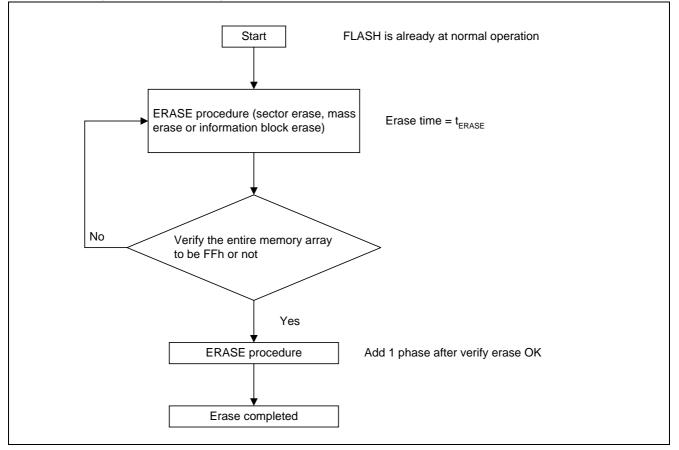
5.1.7.3. BMI read command sequence

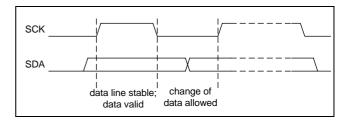
5.1.7.4. BMI byte program command sequence





5.1.7.6. BMI mass erase command sequence




5.2. Serial Interface (SIF)

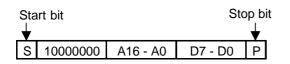
When using serial Interface, pins are connected as table below:


Name	Description
CF0 - CF4	NC
AD0 - AD7	NC
MC0 - MC1	NC
SEL	Connected to VDD
RESET	Reset (low active)
SCK	Serial clock
SDA	Serial data I/O
VDD	Power supply (2.7V ~ 3.6V)
VSS	GND

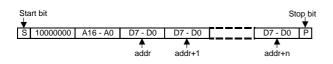
5.2.1. Bit transfer

One clock pulse is generated for each data bit transmission. The data on SDA line must be stable during the HIGH clock period. The HIGH or LOW on the data line can only be changed when the clock signal on the SCK line is LOW.

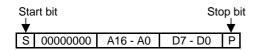
Within the procedure of the GENERALPLUS Serial Interface, unique situation arises for START (S) and STOP (P) conditions. A HIGH to LOW transition on SDA line while SCK is HIGH indicates a START condition. A LOW to HIGH transition on SDA line while SCK is HIGH means STOP condition.



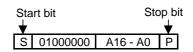
5.2.2. Instruction set


READ with random address access:

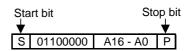
READ command is a start bit followed by an 8-bit opcode (A[24:17]=1000000) and a 17-bit address (A[16:0]). After receiving READ command, the SDA line should be set to the high-impedance state. GPR1024A will begin shifting out the data address (MSB first) at the falling edge of the SCK clock and the output data bit will be stable after certain time delay (t_{ACC}). After 8 data bits are shifted out, a stop bit is needed to terminate the command.


READ with auto-address-count:

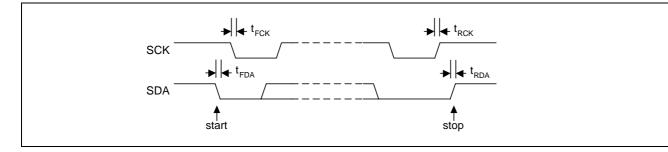
READ with auto-address-count command is the same as READ except that after first 8 data bits are shifted out, no stop bit is inserted before the next SCK falling edge. GPR1024A will automatically increase the address by 1 and its data content will be shifted out, preceded by the clock cycle. The procedure will continue until a stop bit is received.


Byte program:

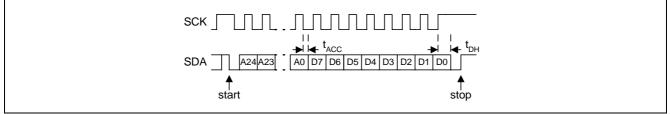
BYTE PROGRAM command is a start bit followed by an 8-bit opcode (A[24:17]=00000000), a 17-bit address (A[16:0]) and an 8-bit data (D[7:0]). After receiving BYTE PROGRAM command, a specified interval (t_{PGM}) is needed to program data into FLASH. After all, a stop bit terminates the command.

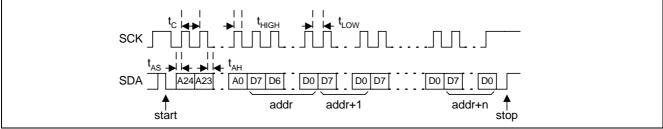

Sector erase:

SECTOR ERASE command is a start bit followed by an 8-bit opcode (A[24:17]=01000000) and a 17-bit address (A[16:0]). A16 to A10 are used to identify which sector to be erased. A9 to A0 are DON'T CARE. After receiving SECTOR ERASE command, a specified interval (t_{ERASE}) is needed to erase the selected sector in the FLASH. Finally, a stop bit terminates the command.

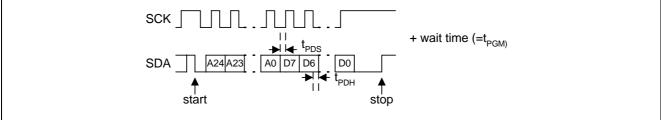

Mass erase:

MASS ERASE command is a start bit followed by an 8-bit opcode (A[24:17]=01100000) and a 17-bit address (A[16:0]). A16 to A0 are DON'T CARE. After receiving MASS ERASE command, a specified interval (t_{ERASE}) is needed to erase the main block in the FLASH. Then, a stop bit terminates the command.

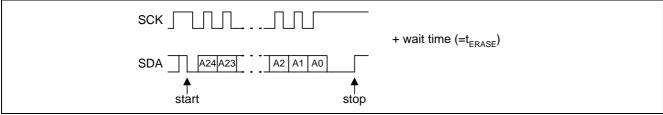



Characteristic	Symbol	Max.	Min.	Unit
Period of SCK	t _c	-	400	ns
Low Period of SCK Clock	t _{LOW}	-	170	ns
High Period of SCK Clock	t _{HIGH}	-	170	ns
Address Setup Time	t _{AS}	-	100	ns
Address Hold Time	t _{AH}	-	20	ns
READ Access Time	t _{ACC}	100	-	ns
READ Data Hold Time	t _{DH}	-	20	ns
PROGRAM Data Setup Time	t _{PDS}	-	100	ns
PROGRAM Data Hold Time	t _{PDH}	-	20	ns
PROGRAM Time	t _{PGM}	-	125	us
ERASE Time	t _{ERASE}	-	13.5	ms
Rise Time of SCK	t _{RCK}	15	-	ns
Fall Time of SCK	t _{FCK}	15	-	ns
Rise Time of SDA	t _{RDA}	15	-	ns
Fall Time of SDA	t _{FDA}	15	-	ns

Read command



Read command with auto-address-count



Program command

Sector erase and mass erase command

6. ELECTRICAL SPECIFICATIONS

6.1. Absolute Maximum Ratings*

Characteristics	Symbol	Ratings
Supply Voltage to Ground Potential	VDD	-0.5V ~ 4.5V
Ambient Operating Temperature	T _A	-10 ℃ ~ 80℃
Storage Temperature	T _{STG}	-65°C ~ 150°C
Output Voltage	V _{OUT}	-0.5V ~ VDD+0.5V
Input Voltage	V _{IN}	-0.5V ~ VDD+0.5V

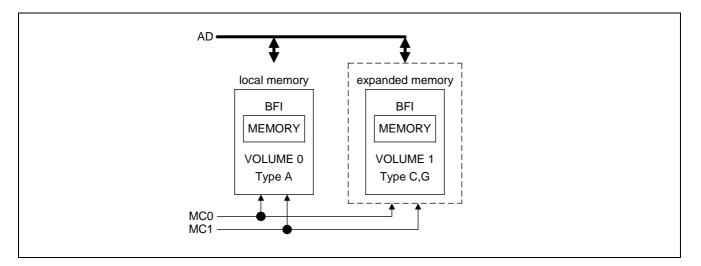
Note: Stresses beyond those given in the Absolute Maximum Rating table may cause operational errors or damage to the device. For normal operational conditions, see AC/DC Electrical Characteristics.

6.2. Recommended DC Operating Conditions (VDD =2.7V - 3.6V, $T_A = 0 - 70^{\circ}$ C)

Characteristics					
	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	VDD	2.7	3.0	3.6	V
Supply Voltage	VSS	-	0	-	V
Input High Voltage	V _{IH}	2.2	-	VDD+0.3	V
Input Low Voltage	VIL	-0.3	-	0.4	V

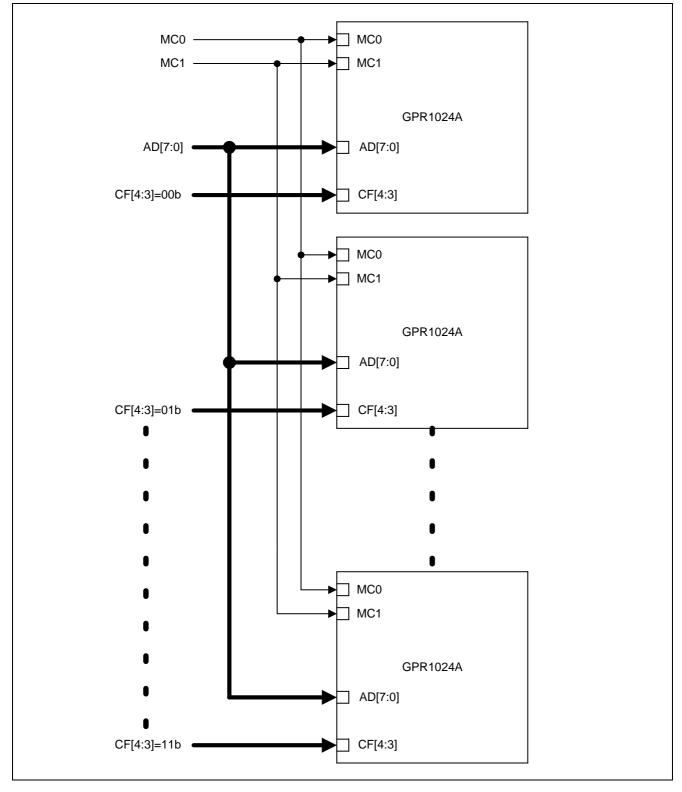
6.3. DC Characteristics (VDD = 2.7V - 3.6V, T_A = 0 - 70 $^\circ \! \mathbb{C}$)

Characteristic	0l		Limit			
	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Output High Voltage	V _{OH}	2.3	-	-	V	I _{OH} = -1.0mA
Output Low Voltage	V _{OL}	-	-	0.3	V	I _{OL} = 1.0mA
Input Leakage Current	I _{I(L)}	-	-	1.0	А	
Output Leakage Current	I _{O(L)}	-	-	1.0	А	
Operating Supply Current (f = 4.0MHz), $C_L = 80pF$	I _{cc}	-	-	4.0	mA	
Standby Current (CMOS)	I _{SB}	-	-	1.0	А	MC0 = MC1 = VDD
						AD[0:7] = VSS



7. APPLICATION CIRCUITS

7.1. BMI Cascade Access Mode


To expand memory in GPR1024A, a cascade access mode is designed to identify local memory and expanded memory. It is defined by the configuration control signal, mentioned in the

previous section. For old version of SPL series, it is recommended to expand only to volume 1 (The built-in volume ID is fixed to 1 for Type C and Type G).

7.2. Bus Interface

8. PACKAGE/PAD LOCATIONS

8.1. PAD Assignment and Locations

SEL RESET	MC1	MCO	CFO	SCK	VDD	CF4	CF3	CF2	CF1	NC
23 22		20	19	18	17	16	15	14	13	12
0 1	2	3	4	5	6	7	8	9	10	11
VDD	AD0	AD1	AD2	AD3	AD4	AD5	AD6	AD7	SDA	VSS

Note1: To ensure that the IC functions properly, please bond all of VDD and VSS pins. **Note2:** The 0.1μ F capacitor between VDD and VSS should be placed to IC as close as possible.

8.2. Ordering Information

Product Number	Package Type
GPR1024A-NnnV-C	Chip form

Note1: Code number is assigned for customer. Note2: Code number (N = A - Z or 0 - 9, nn = 00 - 99); version (V = A - Z).

9. DISCLAIMER

The information appearing in this publication is believed to be accurate.

Integrated circuits sold by Generalplus Technology are covered by the warranty and patent indemnification provisions stipulated in the terms of sale only. GENERALPLUS makes no warranty, express, statutory implied or by description regarding the information in this publication or regarding the freedom of the described chip(s) from patent infringement. FURTHERMORE, GENERALPLUS MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. GENERALPLUS reserves the right to halt production or alter the specifications and prices at any time without notice. Accordingly, the reader is cautioned to verify that the data sheets and other information in this publications involving unusual environmental or reliability requirements, e.g. military equipment or medical life support equipment, are specifically not recommended without additional processing by GENERALPLUS for such applications. Please note that application circuits illustrated in this document are for reference purposes only.

10. REVISION HISTORY

Date	Revision #	Description			
SEP. 11, 2006	1.0	Original	22		
		Note: The GPR1024A data sheet v1.0 is a continued version of SPR1024A data sheet v1.3.			