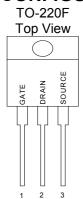
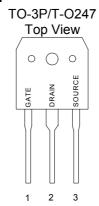
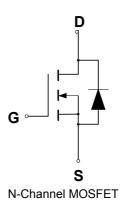


Power Field Effect Transistor


GENERAL DESCRIPTION


This high voltage MOSFET uses an advanced termination scheme to provide enhanced voltage-blocking capability without degrading performance over time. In addition, this advanced MOSFET is designed to withstand high energy in avalanche and commutation modes. The new energy efficient design also offers a drain-to-source diode with a fast recovery time. Designed for high voltage, high speed switching applications in power supplies, converters and PWM motor controls, these devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer additional and safety margin against unexpected voltage transients.

FEATURES


- ◆ Robust High Voltage Termination
- Avalanche Energy Specified
- Source-to-Drain Diode Recovery Time Comparable to a Discrete Fast Recovery Diode
- ◆ Diode is Characterized for Use in Bridge Circuits
- ♦ I_{DSS} and V_{DS}(on) Specified at Elevated Temperature
- ♦ Isolated Mounting Hole Reduces Mounting Hardware

PIN CONFIGURATION

SYMBOL

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain to Current — Continuous	I _D	20.5	Α
Pulsed	I _{DM}	61.5	
Gate-to-Source Voltage — Continue	V_{GS}	±30	V
Total Power Dissipation – TO220FP		54	W
- TO3P		245	W/°C
– TO247		210	
Derate above 25℃ – TO220FP		0.49	
– TO3P		2	
– TO247		1.8	
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to 150	°C
Single Pulse Drain-to-Source Avalanche Energy $-T_J = 25^{\circ}$ C		1805	
$(V_{DD} = 100V, V_{GS} = 10V, I_{L} = 19A, L = 10mH, R_{G} = 25\Omega)$			mJ
Thermal Resistance — Junction to Case -TO220FP		3.3	°C/W
 Junction to Case -TO3P 		0.5	
 Junction to Case -TO247 		0.66	
 Junction to Ambient -TO220FP 		62.5	
 Junction to Ambient -TO3P, TO247 		40	
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds		260	$^{\circ}\!\mathbb{C}$
ESD SENSITIVITY – HBM, C=100pF, R=1.5kΩ		2000	V

Power Field Effect Transistor

ORDERING INFORMATION

Part Number	Package
GPT21N50GN3P*	TO-3P
GPT21N50GN247*	TO-247
GPT21N50DGN220FP*	TO-220F

*Note: G: Suffix for PB Free Product

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_J = 25^{\circ}C$.

			GPT21N50			
Cha	Symbol	Min	Тур	Max	Units	
Drain-Source Breakdown Voltage	\/	500			V	
$(V_{GS} = 0 \text{ V}, I_D = 250 \ \mu \text{ A})$		V _{(BR)DSS}	300			V
Drain-Source Leakage Current		I _{DSS}			1	uA
$(V_{DS} = 500 \text{ V}, V_{GS} = 0 \text{ V})$	_				ļ.	uA
Gate-Source Leakage Current-Forwa	rd	IGSSE			100	nA
$(V_{gsf} = 30 \text{ V}, V_{DS} = 0 \text{ V})$		IGSSF			100	IIA
Gate-Source Leakage Current-Reverse		I _{GSSR}			100	nA
$(V_{gsr} = 30 \text{ V}, V_{DS} = 0 \text{ V})$		IGSSR			100	IIA
Gate Threshold Voltage		$V_{GS(th)}$	3		5	V
$(V_{DS} = V_{GS}, I_{D} = 250 \ \mu A)$	▼ GS(th)	3		3	V	
Static Drain-Source On-Resistance (\	R _{DS(on)}			0.24	Ω	
Forward Transconductance (V _{DS} = 50 V, I _D = 10.5A) *		g FS		22		S
Input Capacitance	$(V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$	C _{iss}		3300.9		pF
Output Capacitance	$(v_{DS} - 25 \text{ v}, v_{GS} - 0 \text{ v}, f = 1.0 \text{ MHz})$	C_{oss}		353.2		pF
Reverse Transfer Capacitance	1 – 1.0 Wil 12)	C_{rss}		19.27		pF
Turn-On Delay Time		$t_{d(on)}$		38		ns
Rise Time	$(V_{DD} = 250 \text{ V}, I_D = 21 \text{ A},$	t _r		80.8		ns
Turn-Off Delay Time	$R_G = 25\Omega)$ *	$t_{d(off)}$		123		ns
Fall Time		t _f		66.4		ns
Total Gate Charge	()/ - 400 \/ - 24 A	Qg		71.5		nC
Gate-Source Charge	$(V_{DS} = 400 \text{ V}, I_{D} = 21 \text{ A}, V_{GS} = 10 \text{ V})^*$	Q_gs		16.4		nC
Gate-Drain Charge	V _{GS} = 10 V)	Q_{gd}		29		nC
	SOURCE-DRAIN DIODE CHA	ARACTERISTICS				
Forward On-Voltage(1)	/I = 21 A	V_{SD}			1.5	V
Forward Turn-On Time	$(I_S = 21 \text{ A},$ $d_{IS}/d_t = 100\text{A/us})$	t _{on}		**		ns
Reverse Recovery Time	verse Recovery Time			496		ns

^{*} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%

^{**} Negligible, Dominated by circuit inductance

Power Field Effect Transistor

TYPICAL ELECTRICAL CHARACTERISTICS

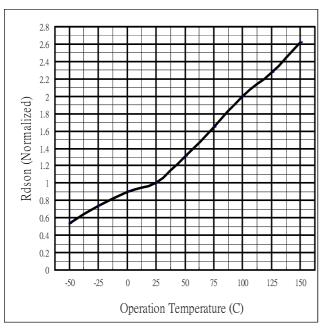


Fig 1. On-Resistance Variation with vs. Temperature

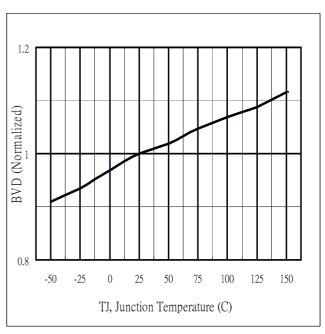


Fig.2 Breakdown Voltage Variation vs. Temperature

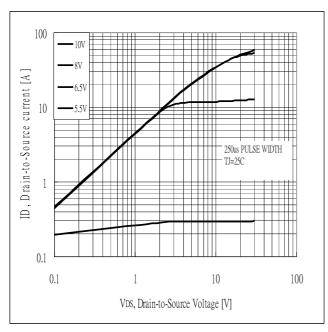


Fig 3. Typical Output Characteristics

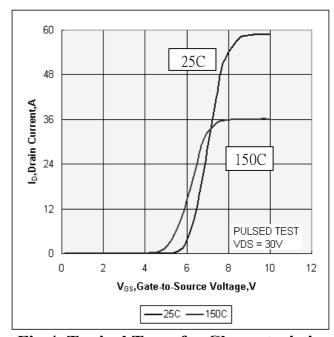


Fig 4. Typical Transfer Characteristics

POWER FIELD EFFECT TRANSISTOR

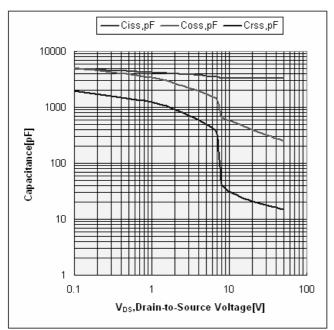
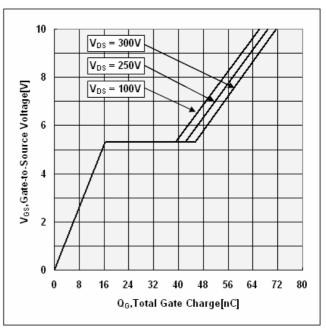
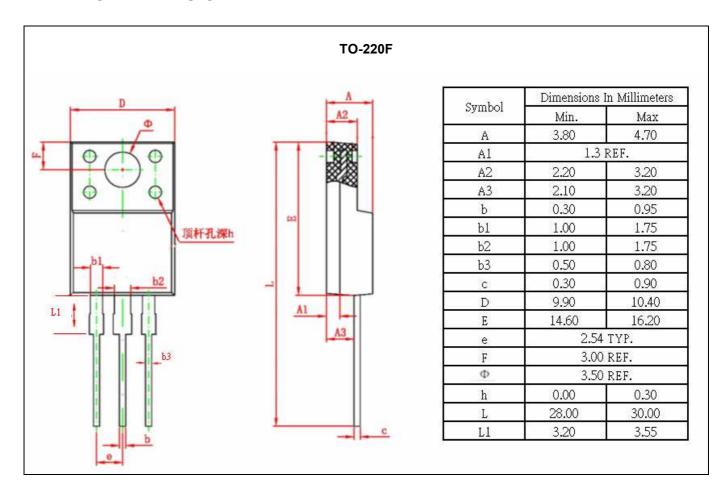
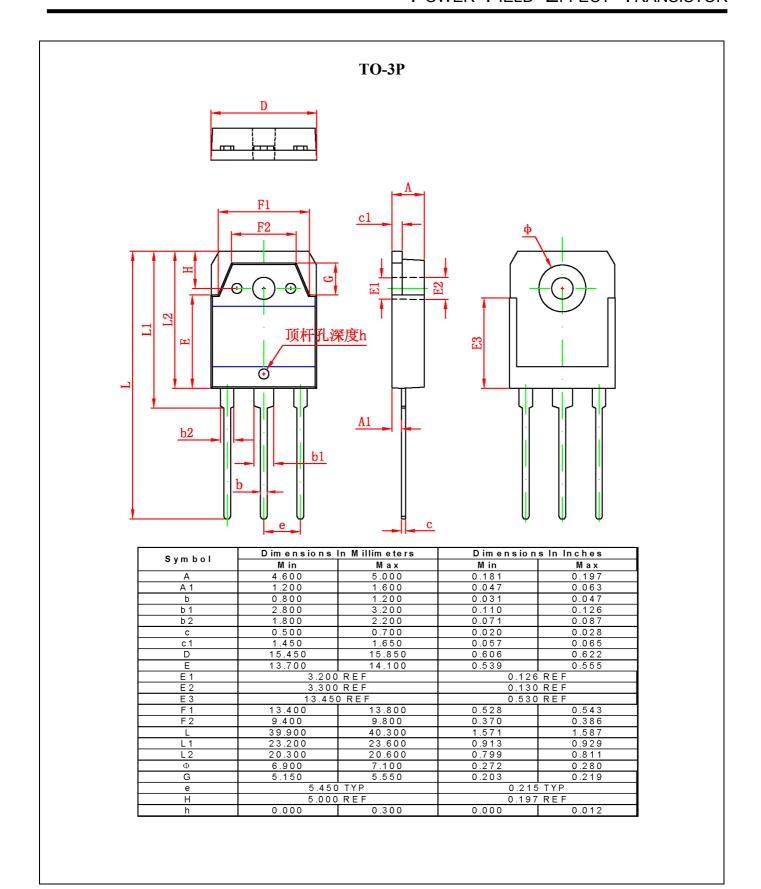


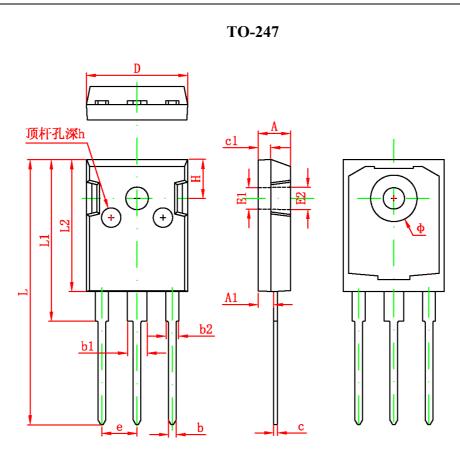
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage




Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Power Field Effect Transistor


PACKAGE DIMENSION


POWER FIELD EFFECT TRANSISTOR

Power Field Effect Transistor

Symbol	Dimensions In Millimeters		Dimension	s In Inches
Зупівої	Min	Max	Min	Max
Α	4.850	5.150	0.191	0.200
A1	2.200	2.600	0.087	0.102
b	1.000	1.400	0.039	0.055
b1	2.800	3.200	0.110	0.126
b2	1.800	2.200	0.071	0.087
С	0.500	0.700	0.020	0.028
c1	1.900	2.100	0.075	0.083
D	15.450	15.750	0.608	0.620
E1	3.500 REF 0.138 REF		3 REF	
E2	3.600 REF		0.142	2 REF
L	40.900	41.300	1.610	1.626
L1	24.800	25.100	0.976	0.988
L2	20.300	20.600	0.799	0.811
Ф	7.100	7.300	0.280	0.287
е	5.450 TYP		0.215	5 TYP
Н	5.980 REF		0.235 REF	
h	0.000	0.300	0.000	0.012

Power Field Effect Transistor

IMPORTANT NOTICE

Great Power Microelectronic Corporation (GP) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. GP integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of GP products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

虹冠電子工業股份有限公司 Champion Microelectronic Corporation Web:http://www.champion-micro.com/

深圳市冠顺微电子股份有限公司 Shenzhen Great Power Co., Ltd Web:http://www.grtpower.com

室/号	米 朔
新北市汐止區新台五路一段 96 號 21F	深圳市福田区深南大道 7002 号财富广场 A 座 4V,
21F., No. 96, Sec. 1, Sintai 5th Rd., Sijhih City, Taipei County 22102, Taiwan, R.O.C.	4V, Tower A, Fortune Plaza, No. 7002, Shennan Road, Futian District, Shenzhen City, China PC: 518040

涇 1111

TEL: +86-755-83709176

FAX: +86-755-83709276

2013/6/26 Rev1.5

TEL: +886-2-2696 3558

FAX: +886-2-2696 3559

喜繼