- **GSM10N10DF**

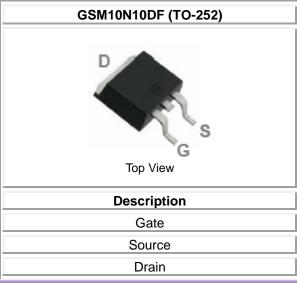
GSM10N10DF

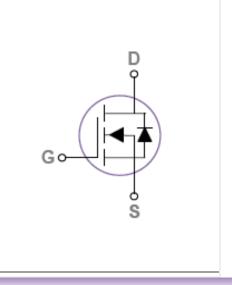
100V N-Channel MOSFETs

Product Description

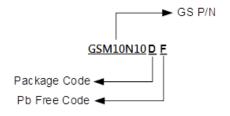
The GSM10N10DF is the high cell density trenched N-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The GSM10N10DF meet the RoHS and Green Product requirement with full function reliability approved.

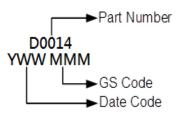

Features


- 100V, 9A, RDS(ON)=152mΩ@V_{GS}=20V
- Improved dv/dt capability
- Fast switching
- 100% EAS Guaranteed
- Green Device Available
- To-252 package design

Applications


- Notebook
- Load Switch
- LED applications

Packages & Pin Assignments


Ordering Information

Part Number	Package	Quantity Reel
GSM10N10DF	TO-252	2500 PCS

Marking Information

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
VDS	Drain-Source Voltage 100		V
Vgs	Gate-Source Voltage	±20	V
In@Tc=25°C	Continuous Drain Current, Vos @ 10V1	9	Α
Ib@Tc=100°C	Continuous Drain Current, V _{GS} @ 10V ¹	5.7	А
Id@Ta=25°C	Continuous Drain Current, V _{GS} @ 10V ¹ 2.3		А
Id@Ta=70°C	Continuous Drain Current, Vos @ 10V ¹ 1.8		Α
Ірм	Pulsed Drain Current ² 18		Α
Pd@Ta=25°C	Total Power Dissipation ³	31	W
Pp@Tc=25°C	Total Power Dissipation ³ 2		W
Тѕтс	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{θJA}	Thermal Resistance Junction-ambient ¹		62	°C/W
Rejc	Thermal Resistance Junction-Case ¹		4	°C/W

Electrical Characteristics (TJ=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVpss	Drain-Source Breakdown Voltage	Vgs=0V , Ib=250uA	100			V
ΔBVbss/ΔTJ	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.122		V/°C
Rds(on)	Static Drain-Source On-Resistance2	V _{GS} =10V , I _D =8A			152	mΩ

$V_{GS(th)}$	Gate Threshold Voltage	Vgs=4.5V , ID=6A			158	mΩ
	V _{GS(th)} Temperature Coefficient		1.0		2.5	V
ΔV GS(th)		Vgs=Vps, Ip=250uA		-4.84		mV°C
Ibss	Drain-Source Leakage Current	V _{DS} =80V , V _{GS} =0V ,			10	
		V _{DS} =80V , V _{GS} =0V , T _J =55°C			100	uA
Igss	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V_{DS} =5 V , I_{D} =8 A		10.2		S
Rg	Gate Resistance	VDS=0V , VGS=0V , f=1MHz		2.3-		Ω
Qg	Total Gate Charge (10V)			25.5		
Qgs	Gate-Source Charge	V _{DS} =60V , V _{GS} =10V ,		4.2		nC
Qgd	Gate-Drain Charge	ID=6A		4.3		
Td(on)	Turn-On Delay Time			17.3		
Tr	Rise Time	V _{DD} =50V , V _{GS} =10V ,		2.8		22
Td(off)	Turn-Off Delay Time	R _G =3.3Ω I _D =1A		50		ns
Tf	Fall Time			2.8		
Ciss	Input Capacitance			1077		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		46		pF
Crss	Reverse Transfer Capacitance	I= I IVI□Z		32		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,4}	$V_G=V_D=0V$,			9	Α
I _{SM}	Pulsed Source Current ^{2,4}	Force Current			18	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V
t _{rr}	Reverse Recovery Time	IF=8A , dI/dt=100A/μs ,		30		nS
Qrr	Reverse Recovery Charge	T _J =25°C		16		nC

Note:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\,\leq\,300\text{us}$, duty cycle $\,\leq\,2\%$
- 3.The power dissipation is limited by 150 $^{\circ}\text{C}~$ junction temperature
- $4. The \ data \ is \ theoretically \ the \ same \ as \ ID \ and \ IDM \ , in \ real \ applications \ , should \ be \ limited \ by \ total \ power \ dissipation.$

Typical Characteristics

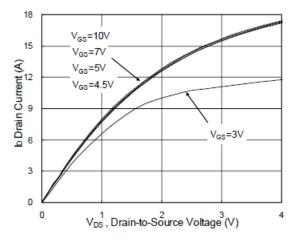


Fig.1 Typical Output Characteristics

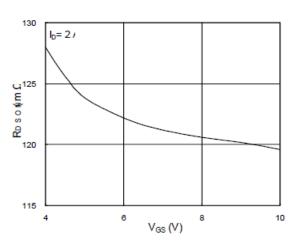


Fig.2 On-Resistance vs. Gate-Source

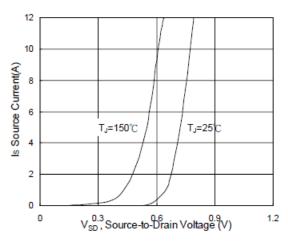


Fig.3 Forward Characteristics Of Reverse diode

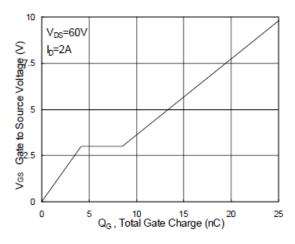


Fig.4 Gate-Charge Characteristics

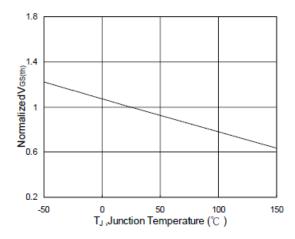


Fig.5 Normalized VGS(th) vs. TJ

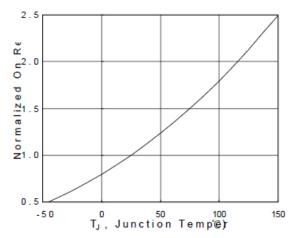
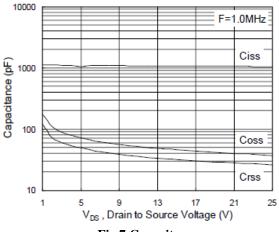
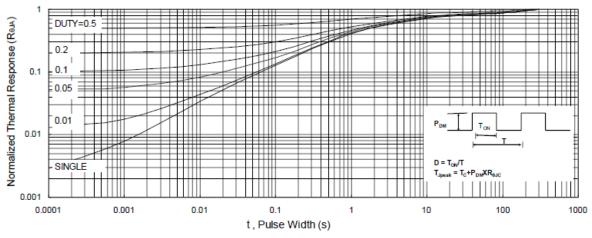



Fig.6 Normalized RDSON vs. TJ

Typical Performance Characteristics (Continue)

0.10


T_c=29c
Single Pul

0.01

10us
10us
10ms
100ms

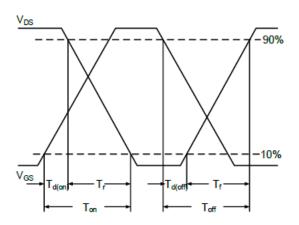
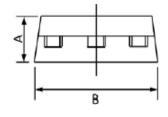

Fig.7 Capacitance

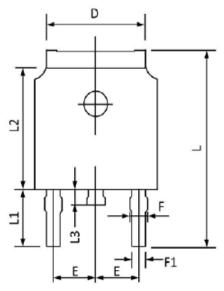
Fig.8 Safe Operating Area

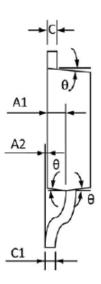
100.00

Fig.9 Normalized Maximum Transient Thermal Impedance

4.5V Qgs Qgd Charge


Fig.10 Switching Time Waveform


Fig.11 Gate Charge Wavefor



Package Dimension

TO-252-2L

Crumbal	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	MAX	MIN	MAX	MIN
A	2.400	2.200	0.094	0.087
A1	1.110	0.910	0.044	0.036
A2	0.150	0.000	0.006	0.000
В	6.800	6.400	0.268	0.252
C	0.580	0.450	0.023	0.018
C1	0.580	0.460	0.023	0.018
D	5.500	5.100	0.217	0.201
E	2.386	2.186	0.094	0.086
F	0.940	0.600	0.037	0.024
F1	0.860	0.500	0.034	0.020
L	10.400	9.400	0.409	0.370
L1	3.000	2.400	0.118	0.094
L2	6.200	5.400	0.244	0.213
L3	1.200	0.600	0.047	0.024
θ	9°	3°	9 °	3°

NOTICE

Information furnished is believed to be accurate and reliable. However Globaltech Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Globaltech Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of Globaltech Semiconductor.

CONTACT US

	GS Headquarter			
	4F.,No.43-1,Lane11,Sec.6,Minquan E.Rd Neihu District Taipei City 114, Taiwan (R.O.C)			
<u>Co</u>	886-2-2657-9980			
Q•\	886-2-2657-3630			
@	sales_twn@gs-power.com			

RD Divisio	on .
\(\frac{1}{2}\)	824 Bolton Drive Milpitas. CA. 95035
E	1-408-457-0587

