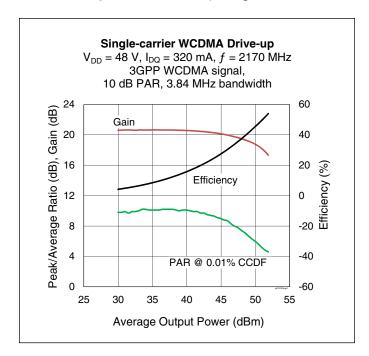


GTVA212701FA


Thermally-Enhanced High Power RF GaN on SiC HEMT 270 W, 48 V, 2110 - 2200 MHz

Description

The GTVA212701FA is a 270-watt GaN on SiC high electron mobility transistor (HEMT) for use in the 2110 to 2200 MHz frequecy band. It features input matching, high efficiency, and a thermally-enhanced earless package.

Package Types: H-87265J-2

Features

- GaN on SiC HEMT technology
- Input matched
- Typical pulsed CW performance (class AB), 2180 MHz, 48 V, 10 μs pulse width, 10% duty cycle
 - Output power $P_{3dB} = 300 W$
 - Drain efficiency = 68.5%
 - Gain = 17.5 dB
- Human Body Model Class 1B (per ANSI/ESDA/ JEDEC JS-001)
- Capable of handling 10:1 VSWR @ 48 V, 56.2 W (WCDMA) output power
- Low thermal resistance
- Pb-free and RoHS-compliant

RF Characteristics

Single-carrier WCDMA Specifications (tested in the test fixture)

 $V_{DD} = 48 \text{ V}, I_{DQ} = 320 \text{ mA}, 56.2 \text{ W}$ average output power, f = 2180 MHz. 3GPP WCDMA signal: 3.84 MHz channel bandwidth, 10 dB PAR at 0.01% CCDF.

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Gain	G _{ps}	18	19	_	dB
Drain Efficiency	η_{D}	35	38	_	%
Adjacent Channel Power Ratio	ACPR	_	-29	-26	dBc
Output PAR @ 0.01% CCDF	OPAR	6.4	7.0	_	dB

All published data at $T_{CASE} = 25$ °C unless otherwise indicated ESD: Electrostatic discharge sensitive device—observe handling precautions!

DC Characteristics

Characteristic	Symbol	Min.	Тур.	Max.	Unit	Conditions
Drain-source Breakdown Voltage	V _{BR(DSS)}	150	_	_	V	$V_{GS} = -8 \text{ V}, I_{D} = 10 \text{ mA}$
Drain-source Leakage Current	I _{DSS}	_	_	4.5	mA	$V_{GS} = -8 \text{ V}, V_{DS} = 10 \text{ V}$
Gate Threshold Voltage	V _{DSX(th)}	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V}, I_{D} = 32 \text{ mA}$

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Drain Operating Voltage	V _{DD}	0	_	50	W	
Gate Quiescent Voltage	$V_{GS(Q)}$	-3.4	-3.0	-2.5	V	V _{DS} = 48 V, I _D = 320 mA

Maximum Ratings

Parameter	Symbol	Value	Unit		
Drain-source Voltage	V _{DSS}	125			
Operating Voltage	V _{DD}	55	V		
Gate-Source Voltage	V _{GS}	-10 to +2			
Gate Current	I _G	32	mA		
Drain Current	I _D	12	А		
Junction Temperature	T_{J}	225	°C		
Storage Temperature Range	T _{STG}	T _{STG} -65 to +150			

Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range (V_{DD}) specified above.

Thermal Characteristics ($T_{CASE} = 70^{\circ}c$, 56.2 W (CW), 48 V, $I_{DQ} = 320$ mA, 2170 MHz)

Characteristic	Symbol	Value	Unit
Thermal Resistance	$R_{\theta JC}$	1.1	°C/W

Ordering Information

Type and Version	Order Code	Package	Shipping
GTVA212701FA V2 R0	GTVA212701FA-V2-R0	H-87265J-2, single-ended, earless flange	Tape & Reel, 50 pcs
GTVA212701FA V2 R2	GTVA212701FA-V2-R2	H-87265J-2, single-ended, earless flange	Tape & Reel, 250 pcs

Typical Performance (data taken in the production test fixture)

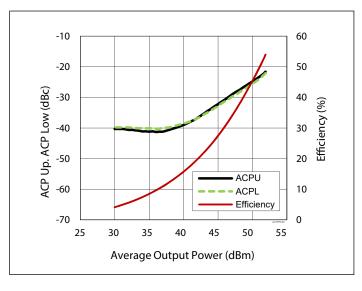


Figure 1. Single-carrier WCDMA Drive-up

 $V_{DD} = 48 \text{ V, I}$ $_{DQ} = 320 \text{ mA}, f = 2170 \text{ MHz}$ $_{3}\text{GPP WCDMA signal, } 10 \text{ dB PAR,}$ $_{3.84} \text{ MHz bandwidth}$

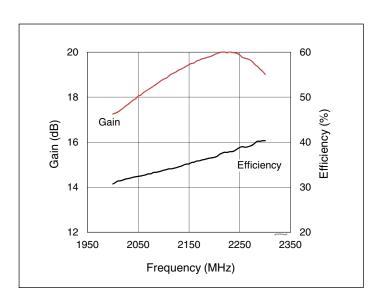


Figure 2. Single-carrier WCDMA Broadband

 $\begin{aligned} \text{V}_{\text{DD}} = 48 \text{ V, I}_{\text{DO}} = 320 \text{ mA,} \\ \text{P}_{\text{OUT}} = 47.5 \text{ dBm} \\ \text{3GPP WCDMA signal, 10 dB PAR} \end{aligned}$

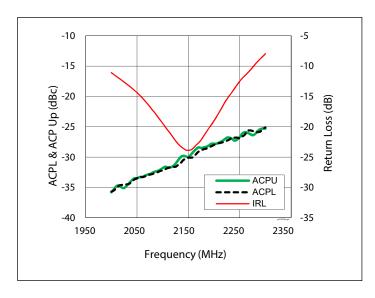
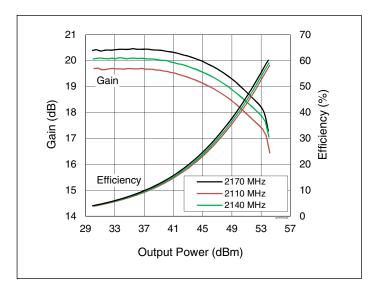
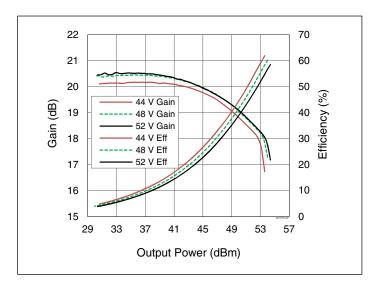
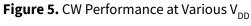
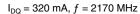


Figure 3. Single-carrier WCDMA Broadband

 $V_{DD} = 48 \text{ V, I}_{DQ} = 320 \text{ mA}, \\ P_{OUT} = 47.5 \text{ dBm} \\ 3\text{GPP WCDMA signal, } 10 \text{ dB PAR}$


Figure 4. CW Performance Across Frequency


 $V_{DD} = 48 \text{ V}, I_{DQ} = 320 \text{ mA}$

Typical Performance (cont.)

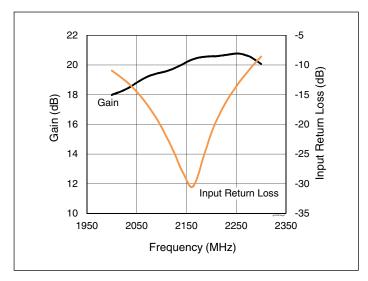
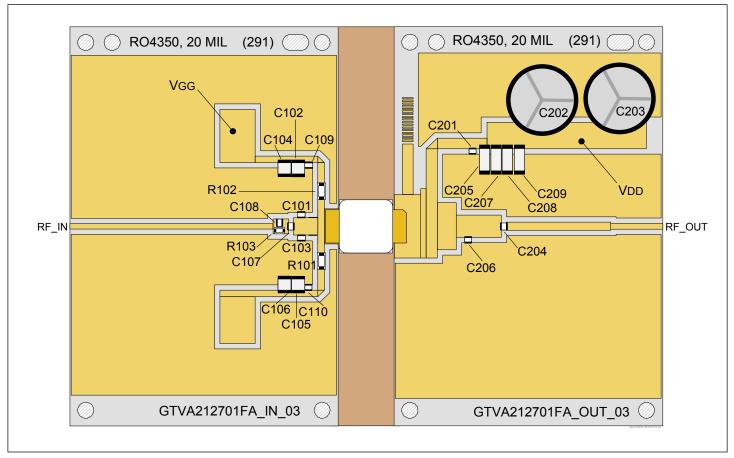


Figure 6. CW Small Signal Performance

$$V_{DD} = 48 \text{ V}, I_{DQ} = 320 \text{ mA}$$

Load Pull


Pulsed CW signal: – 10 μ sec, 10% duty cycle; V_{DD} = 48 V, I_{DQ} = 300 mA

		P _{3dB}									
С	lass AB	Max Output Power Max Drain Efficiency									
Freq [MHz]	Zs [Ω]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η _D [%]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η _D [%]
2110	6.38 – j6.61	3.01 – j3.1	17.28	55.72	373.2	67.5	3.01 – j1.41	18.57	54.74	297.6	73.9
2170	4.78 – j4.24	3.01 – j3.1	17.37	55.71	372.3	68.8	3.13 – j1.84	18.55	54.78	300.7	73.2
2200	4.09 – j4.3	3.01 - j3.1	16.97	55.80	380.2	65.6	3.08 – j1.97	18.6	54.88	307.6	74.7

Evaluation Board, 2110 to 2200 MHz

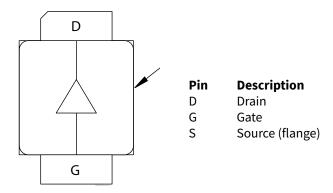
Evaluation Board Part Number	LTN/GTVA212701FA-V2
PCB Information	Rogers 4350, 0.508 mm [.020"] thick, 2 oz. copper, $\varepsilon_r = 3.66$

Reference circuit assembly diagram (not to scale)

Components Information

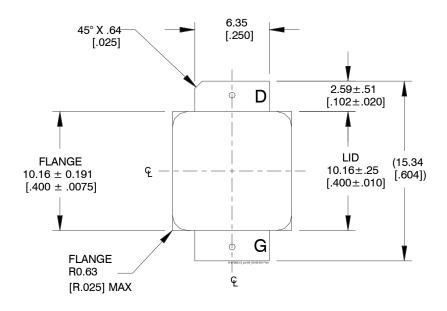
Component	nent Description Manufacturer		P/N
In			
C101	Capacitor, 2 pF	ATC	ATC800A2R0BT250XT
C102, C104, C105, C106	Capacitor, 10 μF	Taiyo Yuden	UMK325C7106MM-T
C103	Capacitor, 0.2 pF	ATC	ATC800A0R2BT250XT
C107	Capacitor, 15 pF	ATC	ATC800A150GT250XT
C108	Capacitor, 12 pF	ATC	ATC800A120JT250XT
C109, C110	Capacitor, 24 pF	ATC	ATC800A240JT250XT
R101, R102	Resistor, 10 ohms	Panasonic Electronic Components	ERJ-8GEYJ100V
R103	Resistor, 10 ohms	Yageo	RC0805JR-0710RL
Out			
C201	Capacitor, 1.5 pF	ATC	ATC600S1R5CT250XT
C202, C210	Capacitor, 0.5 pF	ATC	ATC600S0R5CT250XT
C203	Capacitor, 1.0 pF	ATC	ATC600S1R0CT250XT
C204	Capacitor, 6.8 pF	ATC	ATC800A6R8CT250XT

Bias Sequencing


Bias On

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

Bias Off


- 1. Turn RF off
- 2. Apply pinch-off voltage to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

Pinout Diagram (top view)

Package Outline Specifications - Package H-87265J-2

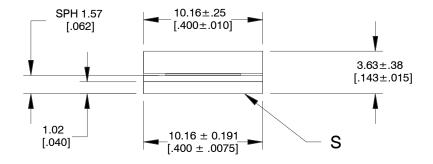


Diagram Notes—unless otherwise specified:

- 1. Interpret dimensions and tolerances per ASME Y14.5M-1994
- 2. Primary dimensions are mm; alternate dimensions are inches
- 3. All tolerances ± 0.127 [.005]
- 4. Pins: D drain; G gate; S source
- 5. Lead thickness: $0.13 \pm 0.05 \text{ mm} [.005 \pm .002 \text{ inch}]$
- 6. Gold plating thickness: 1.14 ± 0.38 micron [45 ± 15 microinch]

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.