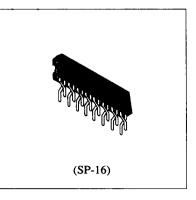
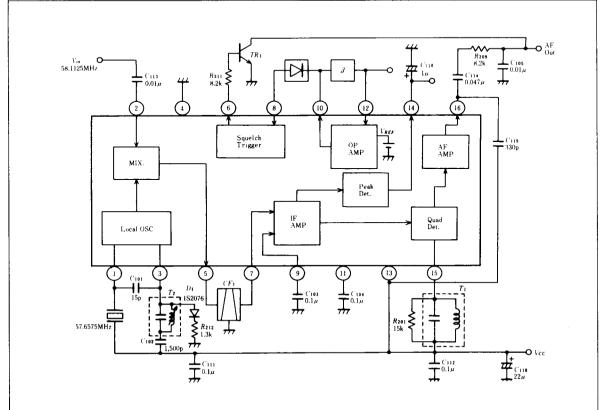
Narrow Band Width FM-IF


The HA12442V is an IC designed for narrow band width FM-IF and is available for 58 MHz. It provides the following functions and features.

Functions


- Local Oscillator
- Mixer
- IF Amplifier
- FM Detector
- Electric Field-strength Detector
- Operational Amp (Filter Amplifier)
- Squelch Trigger

Features

- The smaller sized P.C.B. by applying vertical type package
- Small quiescent current
- Small external parts count
- Possible to use both the noise squelch by the operational amplifier and electric field-strength squelch
- Small electrical characteristics change to supply voltage change

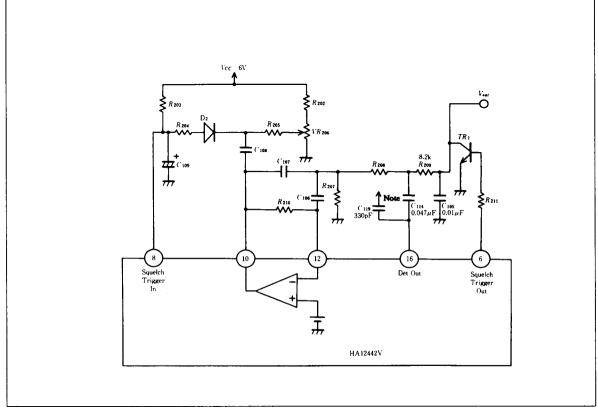
Block Diagram

Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Supply Voltage	Vcc	8	v
Power Dissipation*	Рг	100	mW
Operating Temperature Range	Topr	-30 to +75	°C
Storage Temperature Range	Tstg	-55 to +125	°C

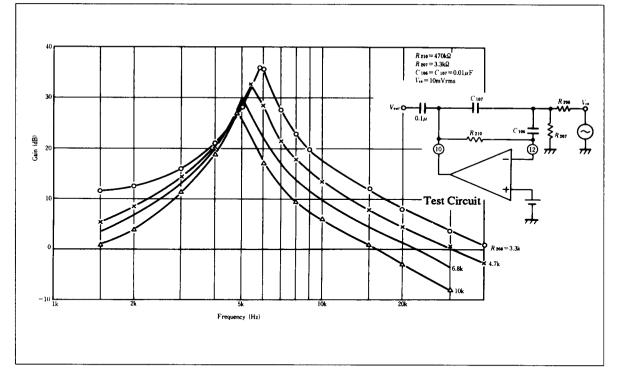
* Ta = 75°C

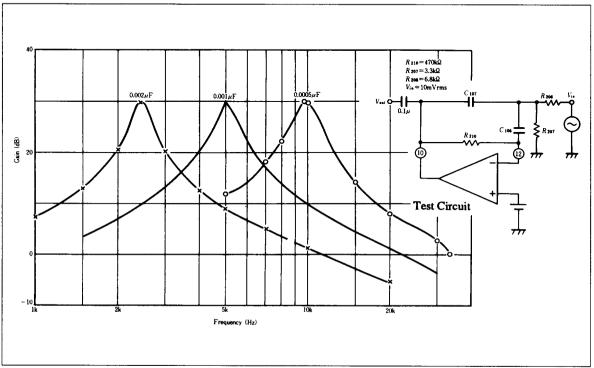
Electrical Characteristics (Ta = 25°C, Vcc = 6 V, fc = 58.1125 MHz, fm = 1 kHz, $\Delta f = \pm 3$ kHz and Vin = 100 dBu unless otherwise specified.)


		ss outer wise specified.)				
Item		Test Condition	Min	Тур	Max	Unit
Squelch OFF	Icc (1)	no input		4.5	5.9	mA
Squeich ON	Icc (2)	no input	_	5.4	6.9	mA
Limiting Sensitivity		at the point of $-3 \text{ dB Vo}(\text{AF})$		6.0	12.0	dBµ
Recovered AF Voltage		$Vin = 100 dB\mu$	110	160	210	mV
	Gv (MIX)	$Vin = 60 dB\mu$	17	21	25	dB
Mixer Input Impedance		DC Test		3	_	kΩ
Mixer Output Impedance		DC Test	_	2.2	<u></u>	kΩ
IF Input Impedance		DC Test	_	2.2	_	kΩ
Squelch High Level Input Voltage				5.9		V
Squelch Low Level Output Voltage				0	0.2	V
Signal to Noise Ratio		$Vin = 100 dB\mu H.P. Filter$	58	65		dB
		(400 Hz at –3 dB)				
Squelch Hysteresis			100	150	190	mV
Lower Limit Operating Voltage		Detector output at $V_{CC} = 6 V$		<u> </u>	4.0	V
		is the reference level. Vcc				
		is lower limit operating				
		voltage when detector output				
		drops by -3 dB.				
Signal Meter Voltage		$Vin = 100 dB\mu$	1.9	2.4	3.0	V
Filter Amp Gain		Vin 12 = 0.15 mVrms,	45	48		dB
	Squelch OFF Squelch ON ge nce ance Input Voltage Output Voltage o ng Voltage	SymbolSquelch OFFIcc (1)Squelch ONIcc (2)Vin (lim)geVo (AF)Gv (MIX)nceZin (MIX)anceZout (MIX)Zin (IF)Input VoltageV6 (Hi)Output VoltageV6 (Lo)oS/NHYSTng VoltageVcc (-3 dB)	SymbolTest ConditionSquelch OFFIcc (1)no inputSquelch ONIcc (2)no inputVin (lim)at the point of -3 dB Vo (AF)geVo (AF)Vin = 100 dB μ Gv (MIX)Vin = 60 dB μ nceZin (MIX)DC TestanceZout (MIX)DC TestInput VoltageV6 (Hi)Output VoltageV6 (Lo)oS/NVin = 100 dB μ H.P. Filter (400 Hz at -3 dB)HYSTng VoltageVcc (-3 dB)Detector output at Vcc = 6 V is the reference level. Vcc is lower limit operating voltage when detector output drops by -3 dB.eVsm (100)Vin = 100 dB μ	SymbolTest ConditionMinSquelch OFFIcc (1)no inputSquelch ONIcc (2)no inputVin (lim)at the point of -3 dB Vo (AF)geVo (AF)Vin = 100 dB μ 110Gv (MIX)Vin = 60 dB μ 17nceZin (MIX)DC TestanceZout (MIX)DC TestInput VoltageV6 (Hi)Output VoltageV6 (Lo)58MYST100 dB μ H.P. Filter is the reference level. Vcc is lower limit operating voltage when detector output drops by -3 dB.1.9	SymbolTest ConditionMinTypSquelch OFFIcc (1)no input4.5Squelch ONIcc (2)no input5.4Vin (lim)at the point of -3 dB Vo (AF)6.0geVo (AF)Vin = 100 dBµ110160Gv (MIX)Vin = 60 dBµ1721nceZin (MIX)DC Test3.2anceZout (MIX)DC Test2.2Input VoltageV6 (Hi)5.9Output VoltageV6 (Lo)0poS/NVin = 100 dBµ H.P. Filter (400 Hz at -3 dB)5865HYST100150150ng VoltageVcc (-3 dB)Detector output at Vcc = 6 V is lower limit operating voltage when detector output drops by -3 dB.1.92.4	Symbol Test Condition Min Typ Max Squelch OFF Icc (1) no input 4.5 5.9 Squelch ON Icc (2) no input 5.4 6.9 Vin (lim) at the point of -3 dB Vo (AF) 6.0 12.0 ge Vo (AF) Vin = 100 dBµ 110 160 210 Gv (MIX) Vin = 60 dBµ 17 21 25 nce Zin (MIX) DC Test 3 ance Zout (MIX) DC Test 2.2 Input Voltage V6 (Hi) 5.9 Output Voltage V6 (Lo) 0 0.2 D S/N Vin = 100 dBµ H.P. Filter 58 65 (400 Hz at -3 dB) Detector output at Vcc = 6 V - 4.0 is the reference level. Vcc is lower limit operating voltage when detector output drops by -3 dB. 3.0 e Vsm (1

Squeich Application Circuit

The internal Op amp and squelch trigger circuit can be used to construct a noise squelch circuit. An example of the application circuit usage is shown in the following figure. The center frequency for the band


pass filter amp is chiefly determined by C106 and C107, while the gain for that amp by R208 and R210.



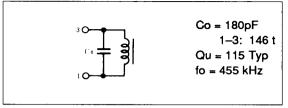
Note: Connect C119 to Vcc line as near to pin 13 as possible.

Filter Amplifier Frequency Characteristics

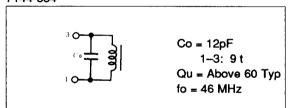
Filter Amplifier Frequency Characteristics

External Parts

X-tal Oscillator --- NIHON DANPA TYPE NO. NC18C



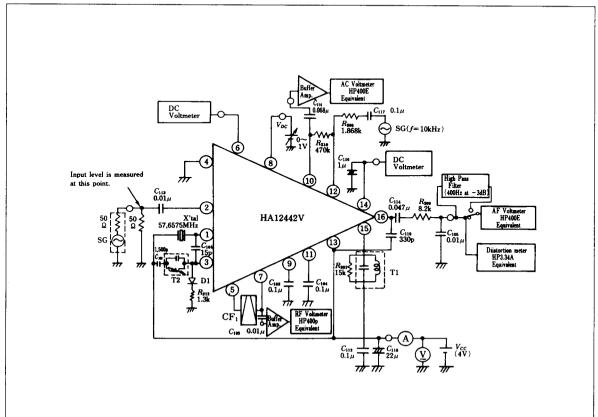
Ceramic Filter - MURATA TYPE NO. CFW-455E


fo = 455 kHz

Detector Coil — TOKO (TRIAL PRODUCT) NO. 7MC-101000Z0

Parts for resisters and capacitors are as follows.

OSC Coil SUMIDA (TRIAL PRODUCT) NO. 0210-	
7144-354	


			Influence		
Part No.	Recommended	Function	Greater than	Smaller than	
	Value		Recommended Value	Recommended Value	
C101	15 pF	Local Feedback Circuit	High Level Oscillation	Low Level Oscillation	
C102	1500 pF	Local DC Cut			
C103	0.1 µF	IF Amp DC Feedback Decoupling		Decrease in IF Gain	
C104	0.1 µF				
C105	0.01 μF	Recovered AF Carrier Attenuation	Load characteristics are influenced.	Load characteristics are influenced.	
C106	0.001 μF	ß Circuit for Op Amp	Decrease in Center	Increase in Center	
			Frequency for Band Pass	Frequency for Band Pas	
			Filter	Filter	
C107	0.001 µF				
C108	0.1 μF	Detector for Noise Squelch Circuit			
C109	4.7 μF		Poor Squeich Response		
C110	1 μF	Meter Output De-coupling	Poor Meter Response		
C111	0.1 μF	Power Supply Bypass Capacitor	Increase in Detector Output	Decrease in Detector Output	
C112	0.1 µF		-	•	
C118	22 µF				
C113	0.01 µF	Input DC Cut			
C114	0.047 μF	Recovered AF Voltage DC Cut		Low level frequency response is influenced	
C119	330 pF	High Harmonic Wave Rejection	Poor stability	Poor S/N	

		Function	Influence		
Part No.	Recommended		Greater than Recommended Value	Smaller than Recommended Value	
R201	15 kΩ	Damping of Detector Coil	Increase in Detector Output	Decrease in Detector Output	
R202	33 kΩ	Detector for Noise Squelch Circuit	Decrease in Vth Setting	Increase in Vth Setting	
R203	150 kΩ		-	Ū	
R204	1 kΩ	Setting of Squelch Vth	Poor Squelch Response	Poor Squelch Stability	
R205	4.7 kΩ				
VR206	22 kΩ				
R207	3.3 kΩ	β Circuit for Op Amp			
R208	6.8 kΩ		Decrease in Amp Gain	Increase in Amp Gain	
R209	8.2 kΩ	Recovered AF Voltage Carrier Attenuation	Frequency response is influenced.	Frequency response is influenced.	
R210	470 kΩ	ß Circuit for Op Amp	Increase in Amp Gain	Decrease in Amp Gain	
R211	8.2 kΩ	Current Limitation of Squelch Transistor	Saturation of TR1 is stopped.	Poor Circuit Limiter effect	

TRS, DIODE

Tr1: 2SC 458, D1: 1S2076, D2: 1S2076

Test Circuit

Function Description

Comparator (Local Oscillator & Mixer)

The local oscillator and mixer are separated in this device. The former performs local oscillation by positively feeding the output on pin 3 back to pin 1 through C101. A double balance mixer is employed for the latter. The mixer yields a gain of 21 dB (typ) (measured after the output on pin 5 passed the ceramic filter 1 (CF1)).

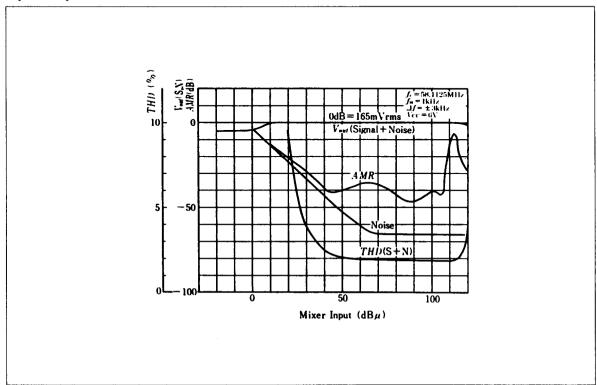
IF Amplifier

The IF amplifier is made up of five differential amplifiers.

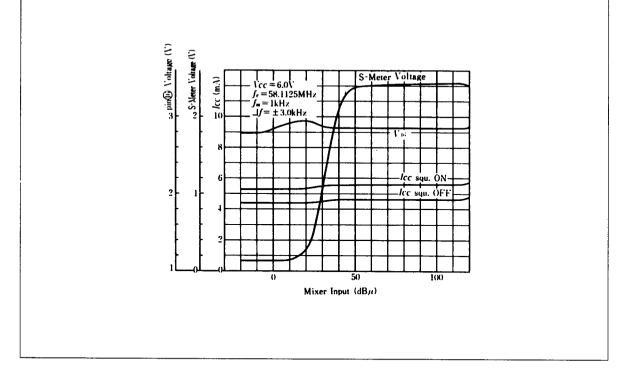
The output on pin 5 from the mixer is applied to IF input pin (pin 7) through CF1. The input impedance on pin 7 is $2.2k\Omega$ (typ)

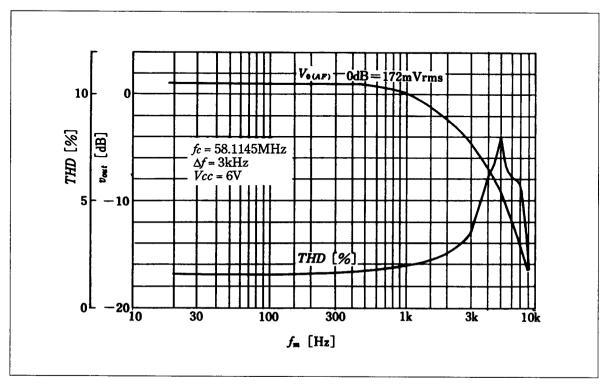
Detector

Quadrature detection method is employed for the detector. This detector performs FM detection by the multiplification of the signal amplified by the IF amplifier and the signal 90° phase shifted by the internal capacitor.

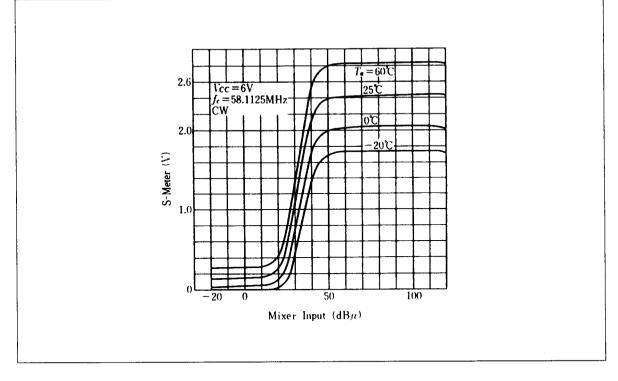

Signal Meter Driving Circuit

This device provides a method of detecting voltage peak of the signal from the IF amplifier for signal meter driving. C110 connected to pin 14 (output pin) is utilized for output voltage smoothing.

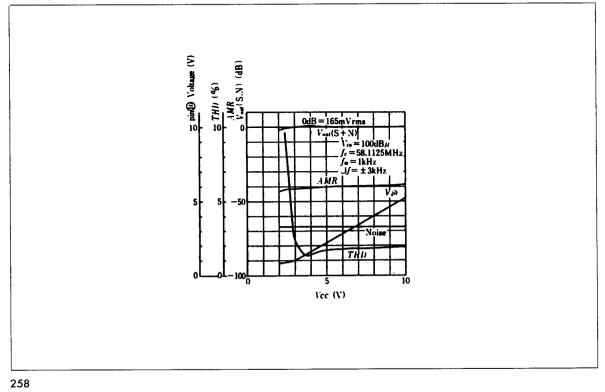

Squelch Circuit (Operational Amplifier & Squelch Trigger)

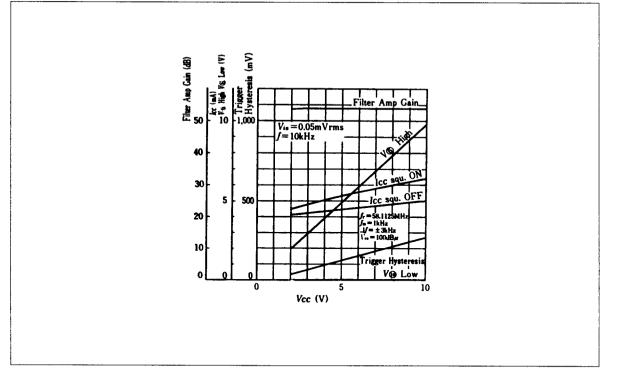

The noise squelch circuit is comprised of the internal operational amplifier and squelch trigger. The operational amplifier uses pins 12 and 10 for input and output, respectively. The filter amplifier has an input pin (pin 8) and output pin (pin 6) and causes a hysteresis of 150 mV (typ) at Vcc = 6 V.

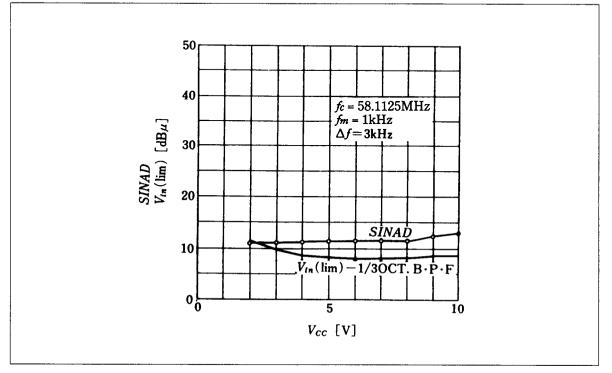
Input/Output Characteristics

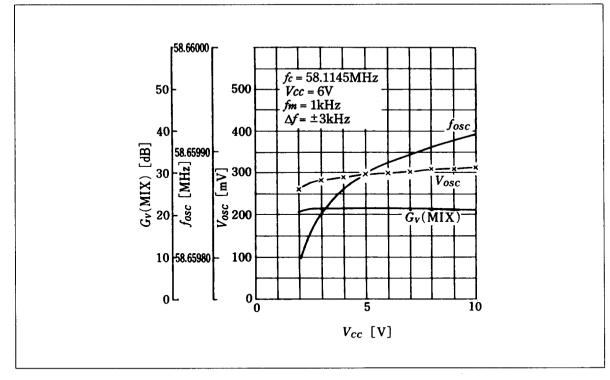


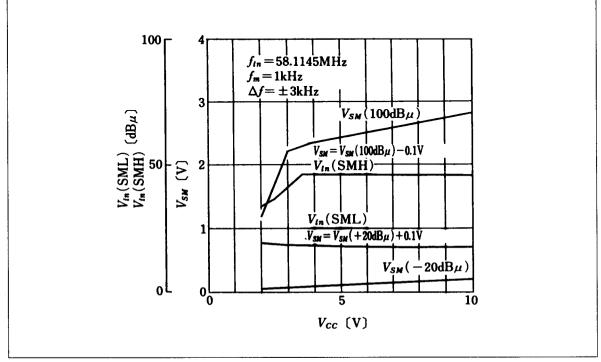
Input/Output Characteristics



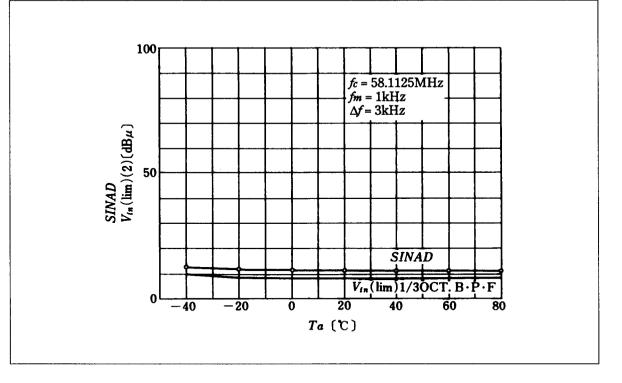

Temperature Characteristics


Supply Voltage Characteristics

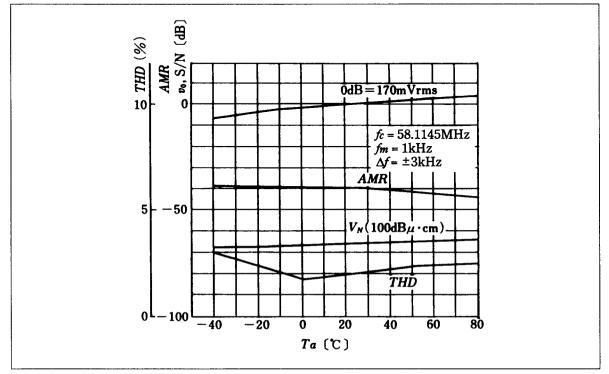

Supply Voltage Characteristics


Input Sensitivity-Supply Voltage Characteristics

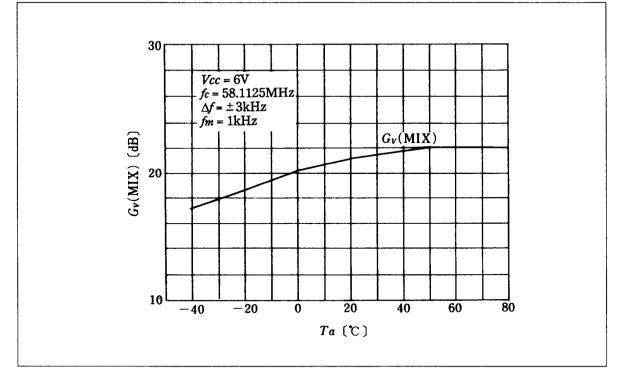
Converter Gain-Supply Voltage Characteristics

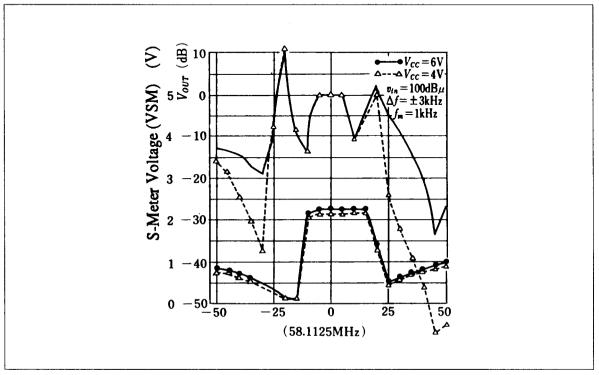


Signal Meter-Supply Voltage Characteristics

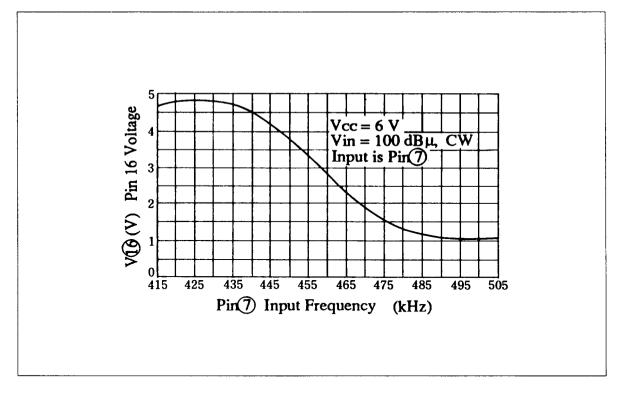


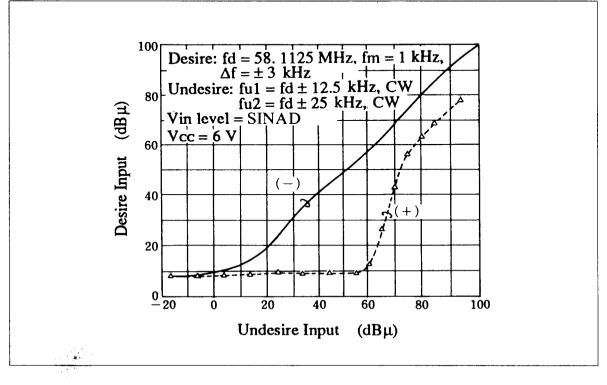
260


Input Sensitivity-Temperature Characteristics



Output-Temperature Characteristics




Converter Gain-Temperature Characteristics

262

