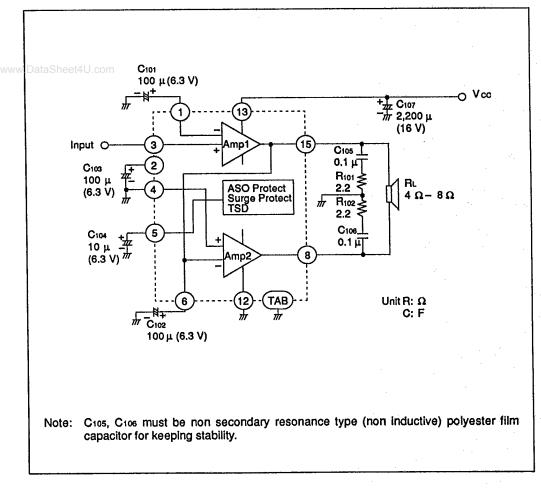
HA13117

T-74-05-01

14 W BTL Audio Power Amplifier

At 13.2 V to 4 Ω load, the HA13117 provides an output power of 14 W with 10 % distortion. It is easy to design as this IC employs internal each protection circuit and the new small package.


Ordering Information

Type No.	Package
HA13117	SP-15

Typical Application Circuit

Features

- · Low external components count
- · Small outline package, easy to mount
- Internal each protection circuits
- Surge protection circuit
 Thermal shut-down circuit
 - Ground fault protection circuit
 - Power supply fault protection circuit

Www.DataSheet4U.com Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 341

HA13117								
Table 1 Absolute Maximum Ratings (Ta = 25 °C)								
Item	Symbol	Rating	Unit	Notes				
Operating supply voltage	Vcc	18	v	· · · ·				
DC supply voltage	Vcc (DC)	26	V	1				
Peak supply voltage	Vcc (peak)	50	V	2				
Output current	lo (peak)	4	A	•• • • • • • • • • • • • • • • • • • •				
Power dissipation	Рт	15	w					
Thermal resistance	θj – c	3.5	°C/W					
Junction temperature	Tj	150	°C					
Operating temperature	Торг	-30 to +80	°C					
Storage temperature	Tstg	-55 to +125	°C					

Notes: 1. Value at t = 30 sec.

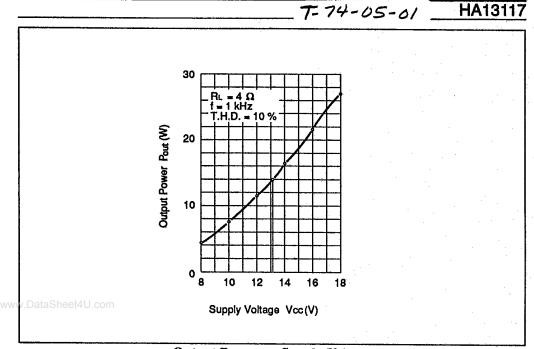
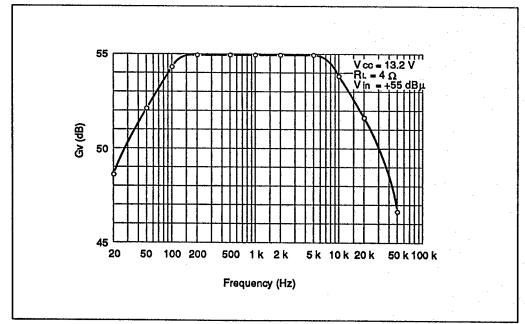
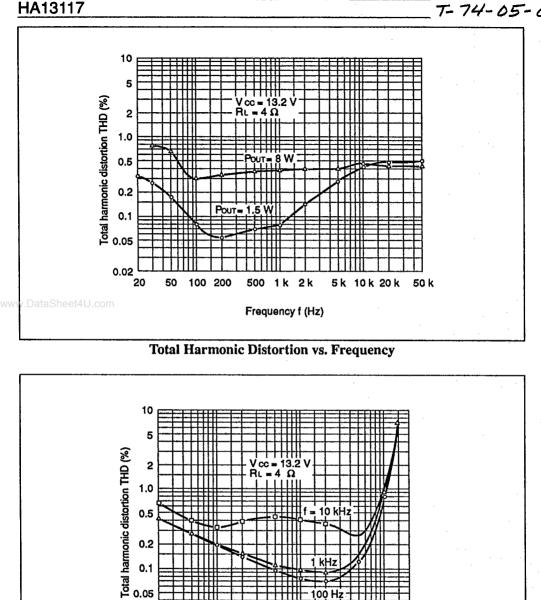

2. Value at width tw = 200 ms and rise time tr = 1 ms.

Table 2 Electrical Characteristics (Vcc = 13.2 V, f = 1 kHz, $R_L = 4 \Omega$, Ta = 25 °C)


			-	•		
Symbol	Min	Тур	Мах	Unit	Test conditions Vin = 0	
ka	40	80	160	mA		
VB	-	20	40	mV	Vin = 0	
ΔVa	_	·	330	mV	Vin = 0	
Gv	53	55	57	dB	Vin = -55 dBm	
Pout	10	14	<u> </u>	W	THD = 10 %	$R_L = 4 \Omega$
		7				RL = 8 Ω
THD		0.2	1,0	%	Pout = 1.5 W	
WBN		1.0	2.0	mV	Rg = 10 kΩ, BW = 20 Hz to 20 kHz	
SVR	33	44		dB	f = 500 Hz	
Rin	20	30	40	kΩ	······································	
fi.		20		Hz	∆Gv = -3 dB Low	Low
fH	10	20	40	kHz		High
	ka VB ΔVa Gv Pout THD WBN SVR Rin fL	ko 40 VB ΔVa Gv 53 Pout 10 THD THD SVR 33 Rin 20 ft	ko 40 80 VB 20 ΔVa Gv 53 55 Pout 10 14 7 THD 0.2 WBN 1.0 SVR 33 44 Rin 20 30 ft 20	ko 40 80 160 VB 20 40 Δ Va 330 Gv 53 55 57 Pout 10 14 7 THD 0.2 1.0 WBN 1.0 2.0 SVR 33 44 Rin 20 30 40 fL 20	ko 40 80 160 mA VB 20 40 mV $\Delta V \alpha$ 330 mV $G v$ 53 55 57 dB Pout 10 14 W 7 THD THD 0.2 1.0 % WBN 1.0 2.0 mV SVR 33 44 dB Rin 20 30 40 kΩ ft 20 Hz	Io 40 80 160 mA Vin = 0 VB 20 40 mV Vin = 0 ΔVo 330 mV Vin = 0 ΔVo 330 mV Vin = 0 ΔVo 330 mV Vin = 0 Gv 53 55 57 dB Vin = -55 dBn Pout 10 14 W THD = 10 % 7 7 THD 0.2 1.0 % Pout = 1.5 W WBN 1.0 2.0 mV Rg = 10 k\Omega, BW = 20 Hz to SVR 33 44 dB f = 500 Hz Rin 20 30 40 kΩ ft 20 Hz $\Delta Gv = -3 dB$

HITACHI

www.DataSheet4U.com



Voltage Gain vs. Frequency

WWW.DataSheet4U.com Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 343

HA13117

Total Harmonic Distortion vs. Output Power www.DataSheet4U.com

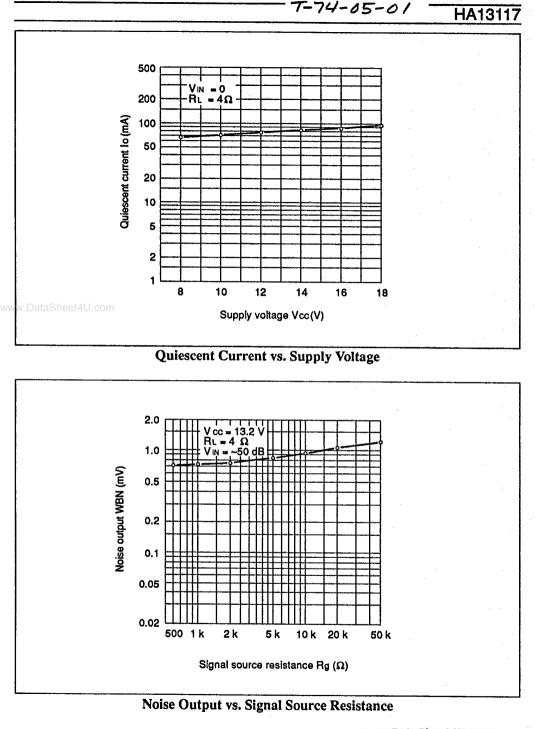
0.5 1.0

Output power Pour (W)

0.2

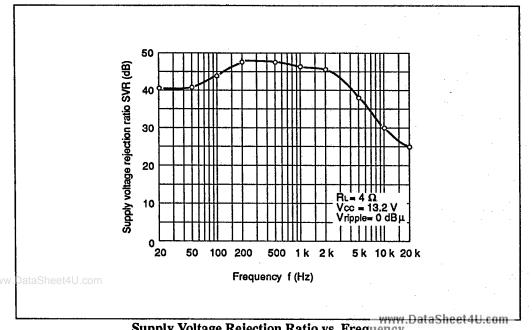
0.02 0.02

0.05 0.1 10 kH


kHz 1

00 Hz

2


5 10 20

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 344

WWW.DataSheet4U.com Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 345

HA13117

T-74-05-01

Supply Voltage Rejection Ratio vs. Frequency