

HA17558B Series

Dual Operational Amplifier

REA03D0003-0200 Rev.2.00 Dec 24, 2008

Description

HA17558B is dual bipolar op-amp with improved characteristics compared to HA17558A. It has wide bandwidth, low noise, high slew rate; wide operating voltage range and high gain characteristics.

This product has a wide range of applications that is appropriate for audio application, as well as AC/DC converter.

Features

Wide bandwidth: 7 MHzHigh speed: 3 V/µs

Low input noise voltage: 1 μVrms
 Large DC voltage gain: 110 dB
 Operating voltage: ±2 V to ±18 V

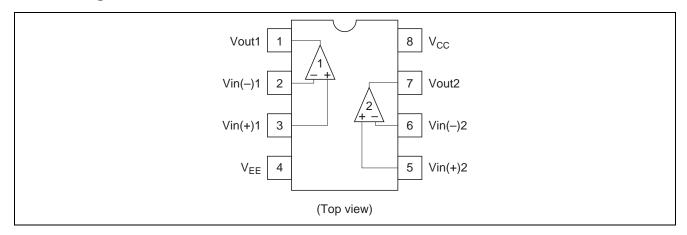
• Package outline available in Pb free lead frame:

DP-8 SOP-8 (JEITA)

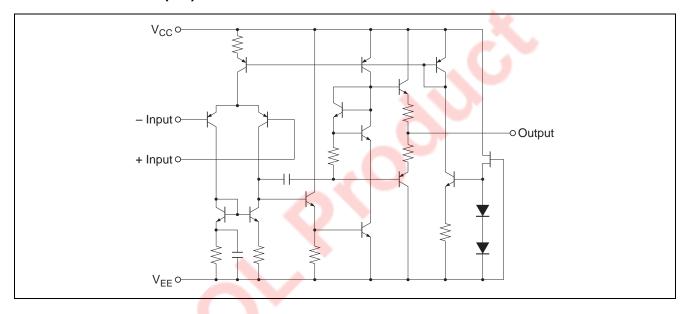
SOP-8 (JEDEC)

Applications

- Audio AC-3 decoder system
- · Audio amplifier
- AC/DC converter


Ordering Information

Part No.	Application	Package Code (Package Name)	Packing Abbreviation (Quantity)
HA17558B	Commercial use	PRDP0008AF-B (DP-8FV)	— (50 pcs/stick 1,000 pcs/box)
HA17558BF		PRSP0008DE-B (FP-8DGV)	EL (2,500 pcs/reel)
HA17558BRP		PRSP0008DD-C (FP-8DCV)	EL (2,500 pcs/reel)


Note: This product is designed for consumer use and not for automotive and industry.

Pin Arrangement

Circuit Schematic (1/2)

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

		Ratings			
Item	Symbol	HA17558B	HA17558BF	HA17558BRP	Unit
Supply Voltage	V _{CC}	18	18	18	V
	V _{EE}	-18	-18	-18	V
Differential input voltage	V _{IN} (diff)	±30	±30	±30	V
Common mode input voltage	V _{CM} * ³	±15	±15	±15	V
Power dissipation	P _T	670 * ¹	385 * ²	385 * ²	mW
Operating temperature	Topr	-40 to +85	-40 to +85	-40 to +85	°C
Storage temperature	Tstg	-55 to +125	-55 to +125	-55 to +125	°C

Notes: 1. This is the allowable value up to Ta = 45°C. Derate by 8.3 mW/°C above that temperature.

- 2. These are the allowable values up to Ta = 60° C mounting on $40 \text{mm} \times 40 \text{mm} \times 1.6 \text{mm}$ (t) 10% wiring density glass epoxy board. Derate by 5.9 mW/°C above that temperature.
- 3. If the supply voltage is less than ± 15 V, input voltage should be less than supply voltage.

Electrical Characteristics

 $(Ta = 25^{\circ}C, V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, \text{ unless otherwise specified})$

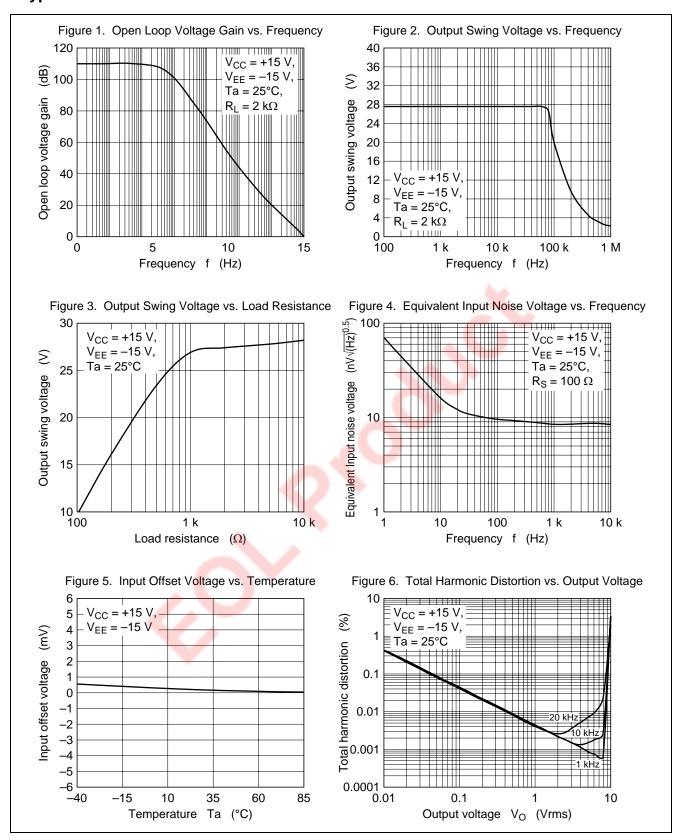
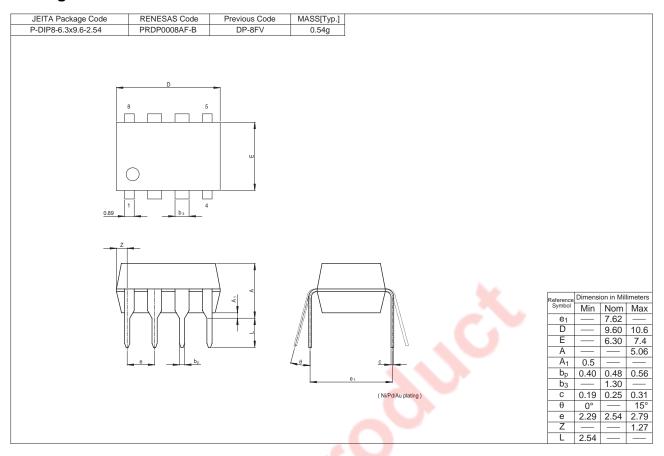
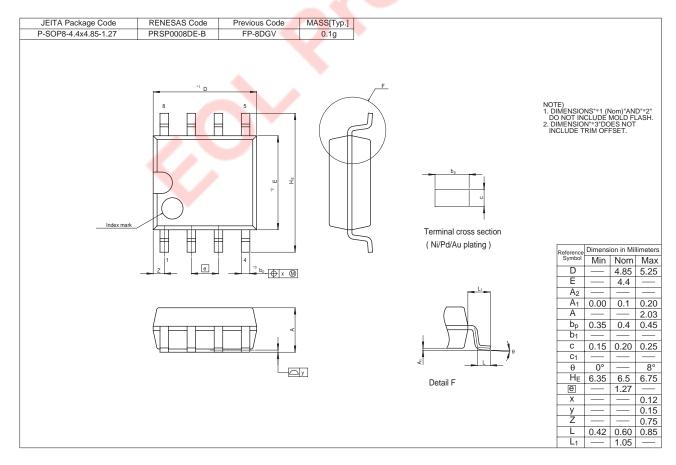
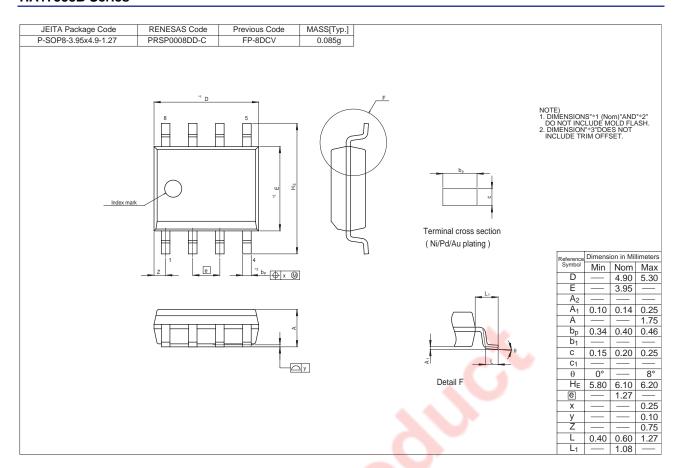

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Input offset voltage	V _{IO}	_	0.5	3	mV	$R_S \le 10 \text{ k}\Omega$
Input offset current	I _{IO}		5	50	nA	
Input bias current	I _{IB}		65	250	nA	
Supply current	I _{CC}		2.5	4	mA	
Power supply rejection ratio	PSRR	80	100		dB	$R_S \le 10 \text{ k}\Omega$
Voltage gain	A _V	85	110		dB	$R_L \ge 2 \text{ k}\Omega, V_O = \pm 10 \text{ V}$
Common mode rejection ratio	CMR	80	100		dB	$R_S \le 10 \text{ k}\Omega$
Output swing voltage	Vos	±10	±13		V	$R_L \ge 2 \ k\Omega$
		±12	±14		V	$R_L \ge 10 \ k\Omega$
Output sink current	I _{OSINK}	_	70		mA	$V_{IN(-)} = 1 \text{ V}, V_{IN(+)} = 0 \text{ V},$
						V _O = 2 V
Output source current	IOSOURCE	_	45	_	mA	$V_{IN(-)} = 0 \text{ V}, V_{IN(+)} = 1 \text{ V},$
						$V_O = 2 V$
Slew rate	SR	1	3		V/μs	
Equivalent input noise voltage	V_{NI}	_	1		μVrms	RIAA, $R_S = 1 \text{ k}\Omega$, 30 kHz LPF
Gain bandwidth product	fu		7		MHz	f = 10 kHz
Total harmonic distortion	THD	_	0.0045	_	%	$f = 1 \text{ kHz}, V_O = 1 \text{ Vrms}$

Table of Graphs


Electrica	Figure	
Open loop voltage gain	vs. Frequency f	1
Output swing voltage	vs. Frequency f	2
Output swing voltage	vs. Load resistance R _L	3
Equivalent input noise voltage	vs. Frequency f	4
Input offset voltage	vs. Temperature Ta	5
Total harmonic distortion	vs. Output Voltage Vo	6




Typical Characteristics Curves

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application critical expensions of the purpose of any other military use. When exporting the products or technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and recommendations and regulations and regulations, and recommendations and regulations and regulations, and recommendations and regulations and regulations, and recommendations and recommendations and recommendations and regulatio

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510