

Hardware Documentation

Advance Information

HAC 371x, HAC 372x, HAC 373x

Robust Programmable 2D Position Sensor Family with Integrated Capacitors

Edition Feb. 20, 2017 AI000183_003EN

Copyright, Warranty, and Limitation of Liability

The information and data contained in this document are believed to be accurate and reliable. The software and proprietary information contained therein may be protected by copyright, patent, trademark and/or other intellectual property rights of TDK-Micronas. All rights not expressly granted remain reserved by TDK-Micronas.

TDK-Micronas assumes no liability for errors and gives no warranty representation or guarantee regarding the suitability of its products for any particular purpose due to these specifications.

By this publication, TDK-Micronas does not assume responsibility for patent infringements or other rights of third parties which may result from its use. Commercial conditions, product availability and delivery are exclusively subject to the respective order confirmation.

Any information and data which may be provided in the document can and do vary in different applications and actual performance may vary over time.

All operating parameters must be validated for each customer application by customers' technical experts. Any new issue of this document invalidates previous issues. TDK-Micronas reserves the right to review this document and to make changes to the document's content at any time without obligation to notify any person or entity of such revision or changes. For further advice please contact us directly.

Do not use our products in life-supporting systems, military, aviation and aerospace applications! Unless explicitly agreed to otherwise in writing between the parties, TDK-Micronas' products are not designed, intended or authorized for use as components in systems intended for surgical implants into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death could occur.

No part of this publication may be reproduced, photocopied, stored on a retrieval system or transmitted without the express written consent of TDK-Micronas.

TDK-Micronas Trademarks

– HAL

– 3D HAL

Third-Party Trademarks

All other brand and product names or company names may be trademarks of their respective companies.

Contents

Page	Section	Title
5	1.	Introduction
6	1.1.	Major Applications
7	1.2.	General Features
8	1.3.	Device-Specific Features of HAC 371x
8	1.4.	Device-Specific Features of HAC 3715 and HAC 372x
8	1.5.	Device-Specific Features of HAC 373x and HAC 3711
9	2.	Ordering Information
9	2.1.	Device-Specific Ordering Codes
11	3.	Functional Description
11	3.1.	General Function
12	3.2.	Signal Path
13	3.3.	Register Definition
13	3.3.1.	RAM Registers
16	3.3.2.	EEPROM Registers
26	3.4.	Output Linearization
28	3.5.	On-board Diagnostic Features
30	3.6.	SENT output protocol
30	3.6.1.	6 Data Nibble Frame with Two Fast Channels (H.1 Format SAEJ2716 rev. 4)
31	3.6.2.	3 Data Nibble Frame with One Fast Channel (H.2 Format SAEJ2716 rev. 4)
32	3.6.3.	6 Data Nibble Frame with Secure Information (H.4 Format SAEJ2716 rev. 4)
33	3.6.4.	Error Diagnostic Reporting on Fast Channel
33	3.6.4.1.	Impact of Diagnosis bit (CUST_SETUP1 - bit 1) on SENT Output
34	3.6.5.	Timing of error reporting on fast channel
34	3.6.6.	Pause Pulse
34	3.6.7.	CRC Implementation
35	3.6.8.	Slow Channel: Enhanced Serial Message
35	3.6.9.	Slow Channel: Serial Message Sequence
36	3.6.10.	Slow Channel: Serial Message Error Codes
37	3.6.11.	Slow Channel: Sensor Types
37	3.6.12.	Start-Up behavior
38	3.6.13.	Message Time for SENT Frames with Pause Pulse
40	4.	Specifications
40	4.1.	Outline Dimensions
43	4.2.	Soldering, Welding, Assembly
43	4.3.	Storage and Shelf Life package
43	4.4.	Size of Sensitive Area
43	4.5.	Definition of Magnetic Field Vectors
44	4.6.	Pin Connections and Short Description
45	4.7.	Absolute Maximum Ratings
46	4.8.	Recommended Operating Conditions
47	4.9.	Characteristics
52	4.10.	Magnetic Characteristics
54	5.	Application Notes
54	5.1.	Ambient Temperature

Contents, continued

Page	Section	Title
54	5.2.	EMC and ESD
55	5.3.	Application Circuit for HAC3715 and HAC372x
55	5.4.	Application Circuit for HAC3711 and HAC373x
56	5.5.	Measurement of a PWM Output Signal of HAC3711 and HAC373x
57	6.	Programming of the Sensor
57	6.1.	Programming Interface
58	6.2.	Programming Environment and Tools
58	6.3.	Programming Information
59	7.	Document History

Robust Programmable 2D Position Sensor Family with Integrated Capacitors

Release Note: Revision bars indicate significant changes to the previous edition.

1. Introduction

HAC 37xy is a new family of 2D position sensors offering optimal protection against electromagnetic interference. This EMC-optimized Hall sensor family comprises the second generation of 2D position sensors using Micronas' proprietary 3D HAL technology. Decoupling capacitors are already integrated into the three-lead TO package.

HAC 372x provides a linear, ratiometric analog output signal with integrated wire-break detection working with a pull-up or pull-down resistor. Compared to HAC 372x, the HAC 371x splits the 360° measurement range either into four repetitive 90° (MOD 90°) or three 120° (MOD 120°) segments.

HAC 373x and HAC 3711 feature digital output formats like PWM and SENT according SAEJ2716 standard. The digital output format is customer programmable. In SENT mode, the sensor transmits SENT messages with and without pause pulse according to SAEJ2716 rev. 4. The PWM output is configurable with frequencies between 0.2 kHz and 2 kHz with up to 12 bit resolution.

With its integrated capacitors, HAC 37xy meets the stringent ESD and EMC requirements and eliminates the need for a PCB, thus reducing the total system size and cost.

Conventional planar Hall technology is only sensitive to the magnetic field orthogonal to the chip surface. In addition to the orthogonal magnetic field, HAC 37xy is also sensitive to magnetic fields applied in parallel to the chip surface. This is possible by integrating vertical Hall plates into the standard CMOS process.

The sensor cell can measure three magnetic field components BX, BY, and BZ. This enables a new set of applications for position detection, like wide distance, angle or through-shaft angular measurements.

Туре	Output Format	Detectable Field Component
HAC 3711	PWM & SENT/Modulo	B_X and B_Y
HAC 3715	Analog/Modulo	B_X and B_Y
HAC 3725	Analog	B_X and B_Y
HAC 3726	Analog	B_{Y} and B_{Z}
HAC 3727	Analog	B_X and B_Z
HAC 3735	PWM & SAEJ2716 SENT	B_X and B_Y
HAC 3736	PWM & SAEJ2716 SENT	$B_{\rm Y}$ and $B_{\rm Z}$
HAC 3737	PWM & SAEJ2716 SENT	B_X and B_Z

On-chip signal processing calculates the angle out of two of the magnetic field components and converts this value to an output signal. Due to the measurement method, the sensor exhibits excellent drift performance over the specified temperature range resulting in a new class of accuracy for angular or linear measurements.

Additionally to the built-in signal processing, the sensor features an arbitrary programmable linear characteristic for linearization of the output signal (with up to 33 setpoints).

Major characteristics like gain and temperature dependent offset of X/Y- and Z-channel, reference position, phase shift between X/Y- and Z-signal, hysteresis, low-pass filter frequency, output slope, and offset and clamping levels can be adjusted to the magnetic circuitry by programming the non-volatile memory.

The sensor contains advanced on-board diagnostic features that enhance fail-safe detection. In addition to standard checks, such as overvoltage and undervoltage detection as well as wire breaks, internal blocks such as ROM and signal path are monitored during normal operation. For devices with a selected PWM output, the error modes are indicated by changing the PWM frequency and the duty-cycle. For SENT output a dedicated error code will be transmitted.

The devices are designed for automotive and industrial applications. They operate in the junction temperature range from -40 °C up to 170 °C.

The sensors are available in a small three-pin leaded transistor package TO92UF.

1.1. Major Applications

Due to the sensor's versatile programming characteristics and its high accuracy, the HAC 37xy is the optimal system solution for applications such as:

- Linear movement measurement,

- EGR valve position
- Transmission position
- Cylinder and valve position sensing
- Rotary position measurement, like
 - Gear selector
 - Turbo-charger
 - Throttle valve position, etc.
 - Chassis position sensors (ride-height control) with HAC 371x
- Non-contact potentiometer

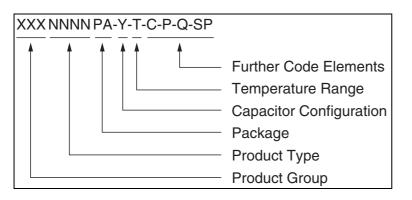
1.2. General Features

- Angular and position measurement extremely robust against temperature and stress influence
- Integrated capacitors for robust Electromagnetic Compatibility (EMC) and PCB-less applications
- Programmable arbitrary output characteristic with up to 33 setpoints
- 8 kHz sampling frequency
- Operates from 4.5 V up to 5.5 V supply voltage
- Operates from -40 °C up to 170 °C junction temperature
- Programming via the sensor's output pin
- Programmable characteristics in a non-volatile memory with redundancy and lock function
- Programmable first-order low-pass filter, as well as non-linear DNC filter
- Programmable output gain and offset
- X/Y- and Z-channel gain of signal path programmable
- Second-order temperature dependent offset of signal path programmable for X/Y- or Z-channel
- Phase shift between X/Y- and Z-channel programmable
- Programmable offset before angle calculation block
- Programmable output clamping for error band definition
- Programmable reference position
- Programmable magnetic detection range
- 32 bit identification number for customer
- 32-bit identification number with TDK-Micronas production information (like X,Y position on the wafer, etc.)
- On-board diagnostics of different functional blocks of the sensor
- Short-circuit protected push-pull output
- Over- and reverse-voltage protection at $V_{\mbox{\scriptsize SUP}}$
- Under- and overvoltage detection of $V_{\mbox{\scriptsize SUP}}$
- EMC and ESD robust package design

1.3. Device-Specific Features of HAC 371x

- Modulo 90°/120°

1.4. Device-Specific Features of HAC 3715 and HAC 372x


- 12 bit ratiometric linear analog output
- Wire-break detection with pull-up or pull-down resistor
- Interpolator for analog output D/A converter

1.5. Device-Specific Features of HAC 373x and HAC 3711

- Customer selectable PWM or SENT output
- 0.2 kHz to 2 kHz PWM (up to 12 bit)
- Push-pull or open-drain output
- SENT according to SAEJ2716 rev. 4
- Support of three different SENT frame formats:
 - Secure sensor information with 3 data nibbles 12-bit position information and 3 data nibbles 12-bit secure sensor information
 - 3 data nibbles with 12-bit position information and 3 data nibbles with 12-bit temperature information or 12-bit magnetic field amplitude
 - 3 data nibbles with 12-bit position information
 - Enhanced 8-bit ID serial message format including temperature information
 - Programmable tick time between 0.5 μs and 4.25 μs in 0.25 μs steps
 - Low time of 5 ticks

2. Ordering Information

A Micronas device is available in a variety of delivery forms. They are distinguished by a specific ordering code:

Fig. 2–1: Ordering Code Principle

For a detailed information, please refer to the brochure: "Hall Sensors: Ordering Codes, Packaging, Handling".

2.1. Device-Specific Ordering Codes

The HAC 37xy is available in the following package, capacitor, and temperature variants.

Package Code (PA)	Package Type
СХ	TO92UF-2
CY	TO92UF-3

 Table 2–1: Available packages

Values of the capacitors from VSUP to GND and OUT to GND are uniquely identified by a letter added within the Hall sensor package code, according to the description in Fig. 2–1.

Capacitance Code (Y)	Capacitor from VSUP to GND	Capacitor from OUT to GND
J	100 nF	100 nF
Н	100 nF	1 nF

Table 2–3: Available temperature ranges

Temperature Code (T)	Temperature Range
А	$T_J = -40 \ ^\circ C \ to +170 \ ^\circ C$

The relationship between ambient temperature (T_A) and junction temperature (T_J) is explained in Section 5.1. on page 54.

For available variants for Configuration (C), Packaging (P), Quantity (Q), and Special Procedure (SP) please contact TDK-Micronas.

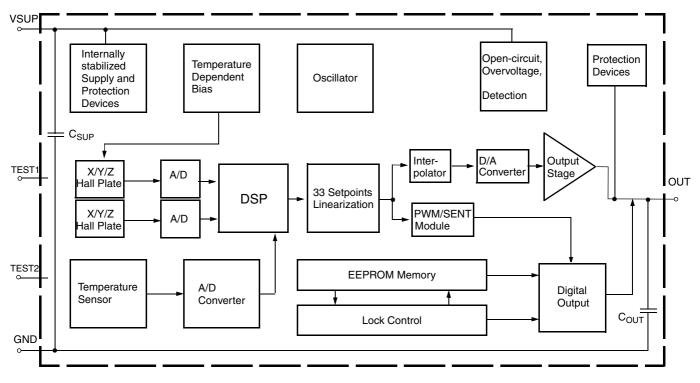
Table 2-4: Available ordering codes	and corresponding package marking
-------------------------------------	-----------------------------------

Available Ordering Codes	Package Marking	Pin Variant
HAC3711CXHA-[C-P-Q-SP]	3711HA	Inline
HAC3711CYHA-[C-P-Q-SP]	3711HA	Spread
HAC3715CXJA-[C-P-Q-SP]	3715JA	Inline
HAC3715CYJA-[C-P-Q-SP]	3715JA	Spread
HAC3725CXJA-[C-P-Q-SP]	3725JA	Inline
HAC3725CYJA-[C-P-Q-SP]	3725JA	Spread
HAC3726CXJA-[C-P-Q-SP]	3726JA	Inline
HAC3726CYJA-[C-P-Q-SP]	3726JA	Spread
HAC3727CXJA-[C-P-Q-SP]	3727JA	Inline
HAC3727CYJA-[C-P-Q-SP]	3727JA	Spread
HAC3735CXHA-[C-P-Q-SP]	3735HA	Inline
HAC3735CYHA-[C-P-Q-SP]	3735HA	Spread
HAC3736CXHA-[C-P-Q-SP]	3736HA	Inline
HAC3736CYHA-[C-P-Q-SP]	3736HA	Spread
HAC3737CXHA-[C-P-Q-SP]	3737HA	Inline
HAC3737CYHA-[C-P-Q-SP]	3737HA	Spread

3. Functional Description

3.1. General Function

HAC 371x, HAC 372x, and HAC 373x are 2D position sensors based on Micronas' 3D HAL technology. The sensors include two vertical and one horizontal Hall plate with spinning current offset compensation for the detection of X, Y or Z magnetic field components, a signal processor for calculation and signal conditioning of two magnetic field components, protection devices, and a ratiometric linear analog, PWM or SAEJ2716 SENT output.


The spinning-current offset compensation minimizes the errors due to supply voltage and temperature variations as well as external package stress.

The signal path of HAC 37xy consists of two channels (CH1 and CH2). Depending on the product variant two out of the three magnetic field components are assigned to Channel 1 and Channel 2.

The sensors can be used for angle measurements in a range between 0° and 360° (end-of-shaft and through-shaft setup) as well as for robust position detection (linear movement or position). The in-system calibration can be utilized by the system designer to optimize performance for a specific system. The calibration information is stored in an on-chip EEPROM.

The HAC 37xy is programmable by modulation of the output voltage. No additional programming pin is needed.

To improve EMC performance HAC 37xy integrates two capacitors within the package, between VSUP and GND respectively OUT and GND.

Fig. 3–1: HAC 37xy block diagram

3.2. Signal Path

The DSP part of this sensor performs the signal conditioning. The parameters for the DSP are stored in the memory registers. Details of the signal path are shown in Fig. 3.2.

Terminology:

GAIN: name of the register or register value

Gain: name of the parameter

Blue color: register names

The sensor signal path contains two kinds of registers. Registers that are readout only (RAM) and programmable registers EEPROM. The RAM registers contain measurement data at certain steps of the signal path and the EEPROM registers have influence on the sensors signal processing.

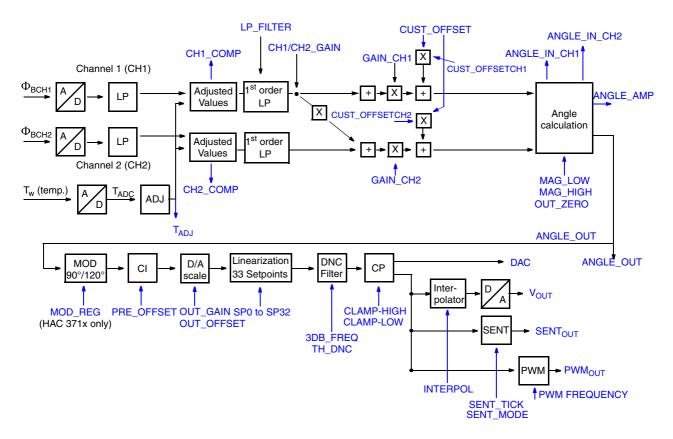


Fig. 3-2: Signal path of HAC 37xy

3.3. Register Definition

3.3.1. RAM Registers

TADJ

The TADJ register contains the digital value of the sensor junction temperature. It has a length of 16 bit and is binary coded. From the 16 bit only the range between 0 ... 32767 is used for the temperature information. Typically the temperature sensor is calibrated in the way that at -40° C the register value is 100 LSB and at 160°C it is 12000 LSB.

CH1_COMP and CH2_COMP

CH1_COMP and CH2_COMP register contain the temperature compensated magnetic field information of channel 1 and channel 2. Both registers have a length of 16 bit each and are two's-complement coded. Therefore, the register values can vary between -32768 ... 32767.

ANGLE_IN_CH1 and ANGLE_IN_CH2

ANGLE_IN_CH1 and ANGLE_IN_CH2 register contain the customer compensated magnetic field information of channel 1 and channel 2 used for the angle calculation. These registers include already customer phase-shift, gain and offset correction. Both registers have a length of 16 bit each and are two's-complement coded. Therefore, the register values can vary between -32768 ... 32767.

ANGLE_OUT

The ANGLE_OUT register contains the digital value of the position calculated by the angle calculation algorithm. It has a length of 16 bit and is binary. From the 16 bit only the range between 0 ... 32767 is used for the position information. Position can either be an angular position (angle) or a virtual angle calculated out of two magnetic field directions in case of linear position measurements.

DAC

The DAC register contains the digital equivalent of the output voltage, PWM output duty-cycle or the SENT data. It has a length of 16 bit and is binary. From the 16 bit only the range between 0 ... 32767 is used for the position information. Position can either be an angular position (angle) or a virtual angle calculated out of two magnetic field directions in case of linear position measurements.

ANGLE_AMP

The ANGLE_AMP register contains the digital value of the magnetic field amplitude calculated by the angle calculation algorithm. The device features two different algorithms for the amplitude calculation. The selection of the calculation depends on the content of the CUST_OFFSETCH1 and CUST_OFFSETCH2 registers. In case that both registers have the value zero (zero = customer offset switched off) the calculation is done by the following equation:

ANGLE_AMP
$$\cong$$
 1,6 × $\sqrt{\text{ANGLE_IN_CH1}^2 + \text{ANGLE_IN_CH2}^2}$

The amplitude is calculated from the signals in channel 1 and channel 2 (X-/Y-/Z-components). The angle calculation algorithm adds a factor of roughly 1.6 to the equation for the magnetic amplitude.

In case that the customer offset is activated (CUST_OFFSETCH1 or CUST_OFFSETCH2 equal to 32767) the amplitude is calculated by the following equation:

ANGLE_AMP = |ANGLE_IN_CH1| + |ANGLE_IN_CH2|

DIAGNOSIS

The DIAGNOSIS register identifies certain failures detected by the sensor. HAC 37xy performs self-tests during power-up as well as continues system integrity tests during normal operation. The result of those tests is reported via the DIAGNOSIS register. DIAGNOSIS register is a 16 bit register.

Table 3-1: DIAGNOSIS register

Bit No.	Function	Description	
15:13	None	Reserved	
12	Internal Supply Volt- age Monitor	This bit is set to 1 in case that the internal stabilized voltage is too low.	
11	ADC Stuck Error	This bit is set to 1 in case that one of the two A/D converters' signals is stuck at a fixed value.	
10	None	Reserved	
9	DAC Output High Clamping	This bit is set to 1 in case that the high clamping value of the DAC is reached.	
8	DAC Output Low Clamping	This bit is set to 1 in case that the low clamping value of the DAC is reached.	
7	Channel 1 Clipping	These bits are set to 1 in case that the A/D converter in channel 1 and/or 2 detects an under- or overflow	
6	Channel 2 Clipping		
5	DSP Self Test	The DSP is doing the internal signal processing like angle calculation, temperature compensation, etc.	
		This bit is set to 1 in case that the DSP self test fails. (Continuously running)	
4	EEPROM Self Test	This bit is set to 1 in case that the EEPROM self test fails. (Continuously running)	
3	ROM Check	This bit is set to 1 in case that ROM parity check fails. (Continuously running)	
2	Temperature Sen- sor Error	This bit is set to 1 in case that the temperature sensor does not deliver valid temperature information.	
1	MAGHI	This bit is set to 1 in case that the magnetic field is exceeding the MAG-HI register value (magnetic field too high)	
0	MAGLO	This bit is set to 1 in case that the magnetic field is below the MAG- LOW register value (magnetic field too low)	

Details on the sensor self tests can be found in Section 3.5. on page 28.

PROG_DIAGNOSIS

The PROG_DIAGNOSIS register allows the customer to identify errors occurring during programming and writing of the EEPROM. The customer must check the first and second acknowledge. To enable debugging of the production line it is recommended to read back the PROG_DIAGNOSIS register in case of a missing second acknowledge. Please check the Programming Guide for HAC 37xy for further details.

The PROG_DIAGNOSIS register is a 16 bit register. The following table shows the different bits indicating certain error possibilities.

Bit No.	Function	Description
15:11	None	Reserved
10	Charge Pump Error	This bit is set to 1 in case that the internal programming voltage was too low
9	Voltage Error during Program/Erase	This bit is set to 1 in case that the internal supply voltage was too low during program or erase
0	None	Reserved

Table 3-2: PROG_DIAGNOSIS register

3.3.2. EEPROM Registers

- **Note** For production and qualification tests it is mandatory to set the LOCK bit after final adjustment and programming of HAC 37xy. After locking the device it is still possible to read all memory content.
- **Note** Please refer to the "HAC 37xy User Manual" for further details on register settings/calculation and programming of the device.

Micronas IDs

The MIC_ID1 and MIC_ID2 registers are both 16 bit organized. They are read only and contain TDK-Micronas production information, like X,Y position on the wafer, wafer number, etc.

Customer IDs

The CUST_ID1 and CUST_ID2 registers are both 16 bit organized. These two registers can be used to store customer production information, like serial number, project information, etc.

Low-Pass Filter

With the LP_FILTER register it is possible to select different –3dB frequencies for HAC 37xy. The Low-Pass Filter is a 1st-order digital filter and the register is 16 bit organized. Various typical filter frequencies between 4 kHz (no filter) and 10 Hz are available.

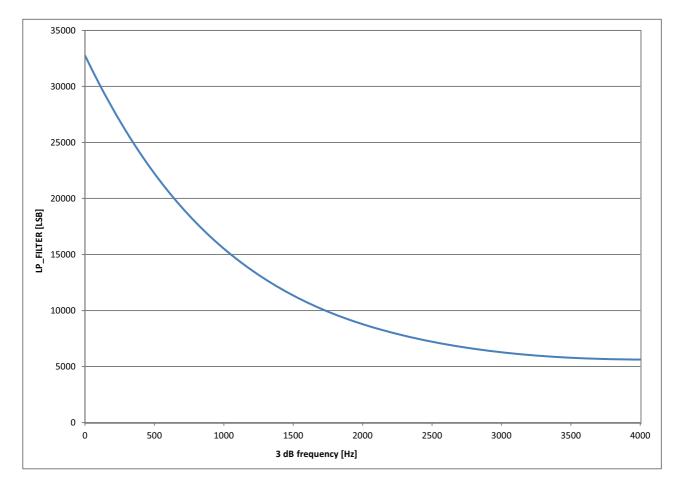


Fig. 3-3: 3dB filter frequency vs. LP_FILTER codes

CH1/CH2_GAIN

CH1/CH2_GAIN can be used to compensate a phase-shift between channel 1 and channel 2. The register has a length of 16 bit. It is possible to make a phase shift correction of $\pm 75^{\circ}$. The step size and therefore the smallest possible correction is 0.002°. The register is two's-complement coded and ranges from -32768 to 32767. The register value is sin function based.

Neutral value for this register is zero (no Phase-shift correction).

Note In case the phase-shift correction is used, then it is necessary to adapt the settings of GAIN_CH2 too. For details see definition of GAIN_CH2.

Gain for Channel 1 and 2

GAIN_CH1 and GAIN_CH2 can be used to compensate amplitude mismatches between channel 1 and channel 2. TDK-Micronas delivers pre calibrated sensors with compensated gain mismatch between channel 1 and channel 2. Nevertheless it is possible that due to the magnetic circuit a mismatch between channel 1 and channel 2 gain occurs. This can be compensated with GAIN_CH1 and GAIN_CH2.

Both registers have a length of 16 bit and are two's-complement coded. Therefore, they can have values between -32768 and 32767 ($-2 \dots 2$). For neutral settings both register values have to be set to 1 (register value 16384).

In case that the phase-shift correction is used it is necessary to change also the gain of channel 2 (see also CH1/CH2_GAIN). If phase-shift correction is used the corresponding register has to be set to

 $GAIN_CH2 = \frac{16384}{\cos(Phase-shift)}$

Note In case GAIN_CH1 or GAIN_CH2 exceed the range of -2 ... 2 (-32768 ... 32767), then it is possible to reduce the gain of the opposite channel for compensation.

Customer Offset

CUST_OFFSET can be used to compensate an offset in channel 1 and channel 2. TDK-Micronas delivers pre calibrated sensors. Nevertheless it is possible that due to the magnetic circuit an offset in channel 1 and channel 2 occurs. This can be compensated with CUST_OFFSET.

The customer offset can also have a temperature coefficient to follow the temperature coefficient of a magnet. The customer offset consists of a polynomial of second-order represented by the three registers CUST_OFFSET1...3.

The customer offset can be added to channel 1 and/or channel 2 by the selection coefficients CUST_OFFSETCH1 and CUST_OFFSETCH2. Additionally these two registers can be used to scale the temperature dependent offset between 0% and 100%

All five registers have a length of 16 bit and are two's-complement coded. Therefore, they can have values between –32768 and 32767.

Output Signal Zero Position

OUT_Zero defines the reference position for the angle output. It can be set to any value of the output range. It is the starting point/reference for the 33 setpoints. OUT_ZERO has a register length of 16 bit and it is two's-complement coded.

Note Before reading ANGLE_OUT it is necessary to set OUT_ZERO to 0.

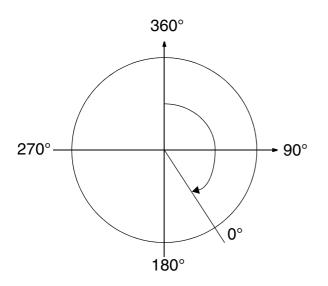


Fig. 3-4: Example definition of zero degree point

Secondly this angle can be used to shift the PI discontinuity point of the angle calculation to the maximum distance from the required angular range in order to avoid the 360°-wrapping of the output due to noise.

Magnetic Range Check

The magnetic range check uses the magnitude output and compares it with an upper and lower limit threshold defined by the registers MAG-LOW and MAG-HIGH. If either low or high limit is exceeded then the sensor will indicate it with an overflow on the sensors output (output high clamping).

Mag-Low Limit

MAG-LOW defines the low level for the magnetic field range check function. This register has a length of 16 bit and is two's complement number.

Mag-High Limit

MAG-HIGH defines the high level for the magnetic field range check function. This register has a length of 16 bit and is two's complement number.

Modulo Select

The MOD_REG register is only available in HAC 371x. With this register, the customer can switch between Modulo 90° and 120° output.

HAC 371x is splitting the 360° measurement range either into four repetitive 90° (MOD 90°) or three 120° (MOD120°) segments.

Pre Offset

The PRE_OFFSET register allows to shift the angular range/the calculated angles into a new angle region to avoid an overflow of the D/A converter output signal.

The PRE_OFFSET register has a length of 16 bit and is two's-complement coded.

Output Gain

OUT_GAIN defines the gain of the output signal. The register has a length of 16 bit and is two's-complement coded. OUT_GAIN = 1 is neutral setting and leads to a change of the output signal from 0% to 100% for an angle change from 0° to 360° (if OUT_OFFSET is set to 0).

OUT_GAIN can be changed between -64 and 64.

Output Offset

OUT_OFFSET defines the offset of the output signal. The register has a length of 16 bit and is two's complement coded. OUT_OFFSET = 0 is neutral setting and leads to a change of the output signal from 0% to 200% of V_{SUP} for an angle change from 0° to 360° (If OUT_GAIN is set to 1).

OUT_Offset can be changed between –200% and 200% of V_{SUP}. OUT_OFFSET = 0 leads to a voltage offset of 0% of V_{SUP} and OUT_OFFSET = 32768 leads to a offset of –200% of V_{SUP}.

Clamping Levels (CLAMP-LOW & CLAMP-HIGH)

The clamping levels CLAMP_LOW and CLAMP_HIGH define the maximum and minimum output voltage of the output signal. The clamping levels can be used to define the diagnosis band for the sensor output. Both registers have a bit length of 16 bit and are two's-complemented coded. Both clamping levels can have values between 0% and 100% of V_{SUP}.

Interpolator

HAC 3715 and HAC 372x feature a programmable interpolator before the D/A converter. The interpolator provides a linear interpolation between two successive 8 kHz samples, resulting in an increased sample rate ($32 \times 8 \text{ kHz}$) at the DAC.

The benefit of this block are reduced amplitude steps by a factor of 32, resulting in a reduced out-of-band noise (> 8 kHz).

Please note, that the interpolator does not change the overall bandwidth. The overall bandwidth is defined by the 8 kHz sampling rate of the A/D converter.

The interpolator can be switched on and off with bit 15 in the Customer Setup register 1 (CUST_SETUP 1).

Fig. 3–5 on page 21 shows the Interpolation of a linear output signal.

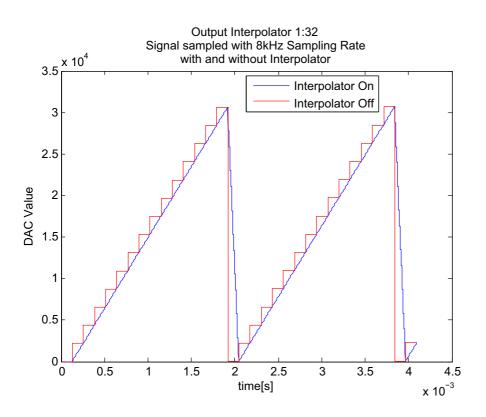
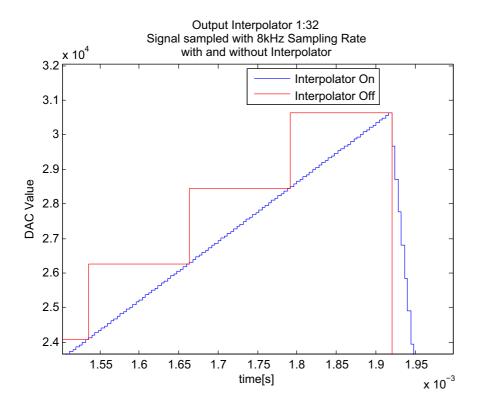
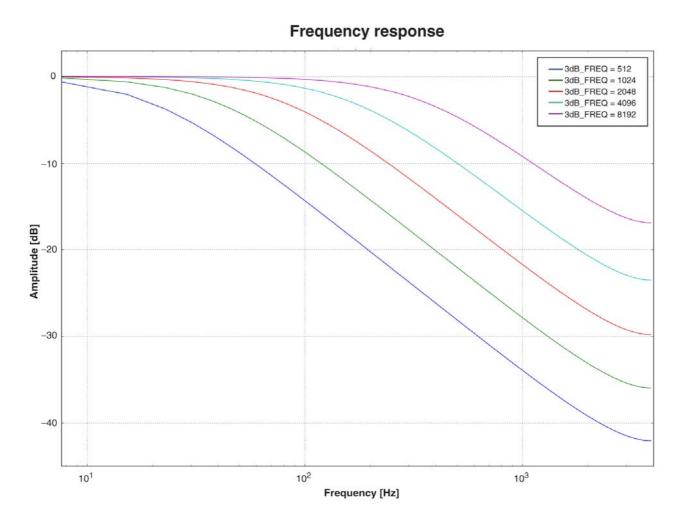


Fig. 3–5: Interpolation of output signal




Fig. 3-6: Interpolation of output signal (Zoom view)

DNC filter registers (3dB_FREQ & TH_DNC)

The DNC (Dynamic Noise Cancellation) filter is a non-linear filter and can be used for further noise reduction in addition to the first order low-pass filter after the A/D converter. It decreases the output noise significantly by adding a low pass filter with a very low cut-off frequency for signals below a certain signal change threshold (TH_DNC).

The amplification factor of this IIR filter can be selected by the register 3dB_FREQ. The threshold can be selected by the register TH_DNC. Both registers have a length of 16 bit and are two's complement coded. For TH_DNC only values between -1 and -32768 are allowed. To disable the DNC filter TH_DNC must be set to 0. For 3dB_FREQ only positive values between 1 and 32767 are allowed. Recommended is a value of 2048.

Fig. 3–7 is showing the frequency response of the filter (as long as the signal change does not cross the selected TH_DNC value) at some recommended filter settings.

Fig. 3-7: DNC filter low-pass characteristic

Customer Setup Registers (CUST_SETUP1 & 2)

CUST_SETUP1 and CUST_SETUP2 registers are 16 bit registers that enables the customer to activate various functions of the sensor. CUST_SETUP1 is used to select functions like diagnosis modes, functionality mode, customer lock, etc. CUST_SETUP2 can be used to configure the PWM or SENT output.

Bit No.	Function	Description	
15	INTERPOL	Analog output interpolator (HAC 3715 and HAC 372x only) 0: Switched off 1: On, interpolation in 32 steps	
14	Reserved	Must be set to zero	
13	SENT Channel 2	Defines if the device transmits temperature or magnetic field strength information in fast channel 2 in case of H.1 format 0: Transmission of temperature information	
		1: Transmission of magnetic field amplitude	
12	Digital mode	Output format for HAC 373x and HAC 3711 devices 0: PWM output 1: SENT output	
11:10	Reserved	Must be set to zero	
9:8	Over current Detection	0: Over current detection OUT = tristate	
		If Customer Lock = 1 1: Over current detection OUT = VSUP (in case of analog output) 2: Over current detection OUT = GND (in case of analog output) else OUT = tristate	
		3: Over current detection OUT = tristate	
7	Error Band	Error band selection HAC 3715 and HAC 372x: 0: High error band (VSUP) 1: Low error band (GND) Error band selection HAC 3711 and HAC 373x: 0: OUT = SENT (error code 4091) / PWM (freq. = 50% and DC = 75%) in case of over voltage 1: OUT = GND in case of over voltage	
6	Burn-In Mode	0: Disabled 1: Enabled	
5	Functionality Mode	0: Extended 1: Normal (see Section 4.9. on page 47)	
4	SENT Start-Up	Defines if the device transmits during start-up in SENT mode zero samples or until first valid sample available 0: Transmission of 4094. Always no transmission of error bits in status nibble 1: Transmission of zero samples	
3	Overvoltage Detection	0: Overvoltage detection active 1: Overvoltage detection disabled	
2	Diagnosis Latch	Latching of diagnosis bits 0: No latching 1: Latched till next POR (power-on reset)	
1	Diagnosis	0: Show diagnostic errors on the output 1: Don't show diagnostic errors on the output	
0	Customer Lock	Bit must be set to 1 to lock the sensor memory	

The Over Current Detection feature is implemented to detect a short circuit between two sensor outputs. The customer can define how the sensor should flag a detected short circuit (see table above). The time interval in which the sensor is checking for an output short and the detectable short circuit current are defined in Section 4.9. on page 47.

This feature should only be used in case that two sensors are used in one module to detect a short between their outputs. In case that the Over Current Detection is not active both sensors will try to drive their output voltage and the resulting voltage will be within the valid signal band.

Note The Output Short Detection feature is only active after setting the Customer Lock bit and a power-on reset.

 Table 3–4: Customer Setup Register 2

	Bit No.	Function	Description
	15	None	Reserved
	14:13	SENT sensor type	Defines the sensor type transmitted via slow channel. 00: Not specified 01: Linear position sensor 10: Angle position sensor 11: Relative position sensor
1	12	SENT data frame format	This bit together with bit 3 defines the different selectable data frame formats. 0: H4 format - Secure single sensors (3 data nibble position information and 3 data nibble secure information) 1: H1 format - 6 nibble. 12-bit position information and 12 bit temperature informa- tion/Magnetic Amplitude
11:8 SENT tick time Can be set between 0.5 μs and 4.25 μs in 0.25 μ 0000: 0.5 μs 1111: 4.25 μs		SENT tick time	
0: Push-Pull output 1: Open-Drain output (Wire break detecti		Output stage	Selection only available for HAC 3711 and HAC 373x 0: Push-Pull output 1: Open-Drain output (Wire break detection circuit is still active)
	6:4	SENT Mode selection	000: Pause Pulse active 101: No Pause Pulse
Frame content SENT ou New PWI 0: Falling 1: Rising Number 0: 3 data			This bit defines in case of PWM output mode the polarity of the PWM signal or in SENT output mode number of data nibbles (6 or 3 nibbles). New PWM Period starts with 0: Falling edge 1: Rising edge Number of SENT data nibbles 0: 3 data nibble 12-bit position information 1: 6 data nibble (see bit 12)
	2:0	PWM or SENT frequency	These three bits are used to configure the PWM frequency or SENT message frequency in case of operation with pause pulse. PWM SENT (SENTF) 000: 2.0 kHz (11 bit) 8 kHz 001: 1.6 kHz (11 bit) 4 kHz 010: 1.0 kHz 2.66 kHz 011: 800 Hz 2 kHz 100: 500 Hz 1.6 kHz 101: 400 Hz 1 kHz 111: 200 Hz 0.5 kHz

3.4. Output Linearization

In certain applications (e.g. through shaft applications or position measurements) it is required to linearize the output characteristic. The resulting output characteristic "value vs. angle/position" is not a linear curve as in the ideal case. But it can be linearized by applying an inverse nonlinear compensation curve.

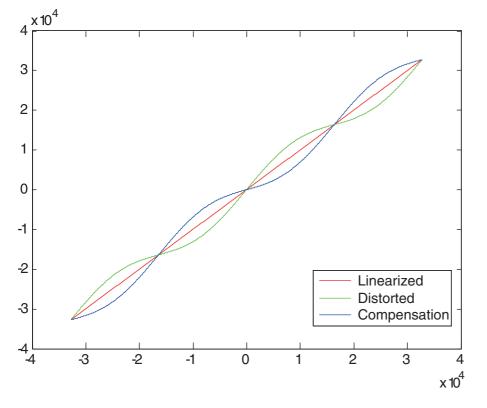
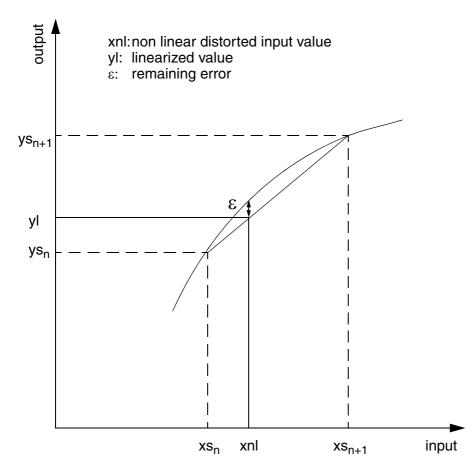



Fig. 3–8: Example for output linearization

For this purpose the compensation curve will be divided into 33 segments with equal distance. Each segment is defined by two setpoints, which are stored in EEPROM. Within the interval, the output is calculated by linear interpolation according to the position within the interval.

The constraint of the linearization is that the input characteristic has to be a monotonic function. In addition, it is recommended that the input does not have a saddle point or inflection point, i.e. regions where the input is nearly constant. This would require a high density of set points.

To do a linearization the following steps are necessary:

- Measure output characteristics over full range
- Find the inverse (Point-wise mirroring the graph on the bisectrix)
- Do a spline fit on the inverse
- Insert digital value of set point position into spline fit function for each set point (0, 1024, 2048, ..., 32768)
- Resulting values can be directly entered into the EEPROM

3.5. On-board Diagnostic Features

The HAC 37xy features two groups of diagnostic functions. The first group contains basic functions that are always active. The second group can be activated by the customer and contains supervision and self-tests related to the signal path and sensor memory.

Diagnostic features that are always active:

- Wire break detection for supply and ground line
- Undervoltage detection
- Thermal supervision of output stage (overcurrent, short circuit, etc.)

Diagnostic features that can be activated by customer:

- Continuous internal supply voltage monitoring
- A/D converter stuck error
- Output signal clamping
- A/D converter clipping
- Continuous state machine self-test
- Continuous EEPROM self-test
- Continuous ROM parity check
- Temperature sensor error
- Magnetic range detection
- Overvoltage detection

In case of HAC 3715 and HAC 372x, the sensor indicates a fault immediately by switching the output signal to the selected error band in case that the diagnostic mode is activated by the customer (CUST_SETUP1, bit 1). The customer can select if the output goes to the upper or lower error band by setting bit number 7 in the CUST_SETUP1 register (Table 3– 3 on page 24). An output short drives the output to VSUP, GND or tristate depending of the customer settings. Further details can be found in Section 4.9. on page 47.

The sensors switch the output to tristate if an over temperature condition is detected by the thermal supervision. The sensors switch the output to ground in case of a V_{SUP} wire-break and to V_{SUP} in case of a GND wire-break.

HAC 373x and HAC 3711 indicate a failure by changing the PWM frequency. The different errors are then coded in different duty-cycles.

Table 3–5: Failure indication for HAC 3711 and HAC 373x in PWM mode

Failure Mode	Frequency	Duty-Cycle
EEPROM, ROM, A/D converter stuck error, state machine self-test and the internal supply voltage monitor	50%	95%
Magnetic field too low	50%	62.5%
Magnetic field too high	50%	55%
V _{SUP} Overvoltage (CUST_SETUP1, bit 7 = 0)	50%	75%
V _{SUP} Overvoltage (CUST_SETUP1, bit 7 = 1)	Output driven to	low output state
Temperature error	50%	85%
Undervoltage	No PWM	n.a.
A/D converter clipping	50%	70%

In case of undervoltage, the sensors will go into reset and the output will be actively driven to low output state.

Note In case of an error the sensors change the selected PWM frequency. Example: During normal operation the PWM frequency is 1 kHz, in case of an error 500 Hz.

HAC 373x and HAC 3711 are transmitting detailed error codes in case of selected SENT output. Further details can be found in Section 3.6. on page 30.

3.6. SENT output protocol

HAC 373x and HAC 3711 comply with the SAEJ2716 standard rev. 4 and support the following three frame formats:

- Two 12-bit Fast Channels (3 nibble position information and 3 nibble temperature information or magnetic field amplitude)
- One 12-bit Fast Channel (3 nibble position information)
- Secure Single Sensors with 12-bit Fast Channel (3 nibble position information) and 12-bit Secure Sensor Information

All different modes are customer selectable via EEPROM bits (see Table 3–4 on page 25).

In SENT output mode the unidirectional communication from the sensor to a receiver module (e.g. an Electronic Control Unit) occurs independently of any action of the receiver module. It does not require any synchronization signal from the receiver module and does not include a coordination signal from the controller/receiving devices.

3.6.1. 6 Data Nibble Frame with Two Fast Channels (H.1 Format SAEJ2716 rev. 4)

In this SENT mode the sensor transmits SENT frames with 6 data nibbles. 3 data nibbles with 12-bit position information and 3 data nibbles with 12-bit temperature information or 12-bit magnetic field amplitude information (customer configurable). They are formatted according to Table 3–6.

Pulse		Remarks
#	Description	
1	Synchronization/Cali- bration	It is mandatory to measure the synchronization / calibration period for calibration of the clock tick time ${\rm t}_{\rm tick}$ at the ECU
2	4-bit Status & Communi- cation Nibble	Status [0]: 1, if CUST_SETUP1-bit 4 = 1 & error; otherwise 0 Status [1]: 1, if CUST_SETUP1-bit 4 = 1 & temp. error; otherwise 0 Status [23]: Enhanced Serial Message (see Section 3.6.8. on page 35)
3	4-bit Data Nibble MSN 1	Position Value [11:8]
4	4-bit Data Nibble MidN 1	Position Value [7:4]
5	4-bit Data Nibble LSN 1	Position Value [3:0]
6	4-bit Data Nibble LSN 2	Chip Temperature Value [3:0] or Magnetic Amplitude Value [3:0]
7	4-bit Data Nibble MidN 2	Chip Temperature Value [7:4] or Magnetic Amplitude Value [7:4]
8	4-bit Data Nibble MSN 2	Chip Temperature Value [11:8] or Magnetic Amplitude Value [11:8]
9	4-bit CRC Nibble	Enhanced CRC see SAEJ2716
10	Pause Pulse	Optional. Customer configurable.

3.6.2. 3 Data Nibble Frame with One Fast Channel (H.2 Format SAEJ2716 rev. 4)

In this SENT mode the sensor transmits SENT frames with 3 data nibbles containing 12-bit position information. They are formatted according to Table 3–7.

Table 3-7: Nibble description for 3 data nibble frame format with one fast channel

	Pulse # Description		Remarks	
	1	Synchronization/Calibra- tion	It is mandatory to measure the synchronization / calibration period for calibration of the clock tick time $t_{tick}\ at$ the ECU	
	2	4-bit Status & Communi- cation Nibble	Status [0]: 1, if CUST_SETUP1-bit 4 = 1 & error; otherwise 0 Status [1]: 0 Status [23]: Enhanced Serial Message (see Section 3.6.8. on page 35)	
	3	4-bit Data Nibble MSN 1	Position Value [11:8]	
	4	4-bit Data Nibble MidN 1	Position Value [7:4]	
	5	4-bit Data Nibble LSN 1	Position Value [3:0]	
	6	4-bit CRC Nibble	Enhanced CRC see SAEJ2716	
	7	Pause Pulse	Optional. Customer configurable.	

I

3.6.3. 6 Data Nibble Frame with Secure Information (H.4 Format SAEJ2716 rev. 4)

In this SENT mode the sensor transmits SENT frames with 3 data nibbles containing 12-bit position information as well as 3 data nibbles containing 12-bit secure sensor information. The secure sensor information consists of an 8 bit rolling counter and the inverted copy of the MSN of the transmitted position information. They are formatted according to Table 3–8.

Pulse		Remarks	
#	Description		
1	Synchronization/Calibra- tion	It is mandatory to measure the synchronization / calibration period for calibration of the clock tick time t_{tick} at the ECU	
2	4-bit Status & Communi- cation Nibble	Status [0]: 1, if CUST_SETUP1-bit 4 = 1 & error; otherwise 0 Status [1]: 0 Status [23]: Enhanced Serial Message (see Section 3.6.8. on page 35)	
3	4-bit Data Nibble MSN 1	Position Value [11:8]	
4	4-bit Data Nibble MidN 1	Position Value [7:4]	
5	4-bit Data Nibble LSN 1	Position Value [3:0]	
6	4-bit Data Nibble MSN 2	Rolling Counter MSN	
7	4-bit Data Nibble MidN 2	Rolling Counter LSN	
8	4-bit Data Nibble LSN 2	Inverted Copy of Data Nibble MSN 1	
9	4-bit CRC Nibble	Enhanced CRC see SAEJ2716	
10	Pause Pulse	Optional. Customer configurable.	

 Table 3–8: Nibble description for 6 data nibble frame format with secure information

3.6.4. Error Diagnostic Reporting on Fast Channel

The Status bits are set to one in case of "sensor error indication" or "sensor functionality and processing error indication" as long as bit 4 in CUST_SETUP1 is set to one.

If bit 4 is set to zero Status bits are always zero.

In addition the diagnostic can be reported through the 12 bit payload of channel 1 and/ or channel 2. Below table shows the values that will be send in case of an internal error.

Table 3–9: Error codes transmitted on fast channel 1 and/or 2

Error	Code	
	CH 1	CH 2
Sensor error indication	4091	N/A
Sensor functionality and processing error indica- tion	4090	4090
Data Clamping: High	4088	4088
Data Clamping: Low	1	1

Note CH 2 is only showing error code 4090 in case of a temperature error. All other errors will be indicated on CH 1 only.

The transmission of error codes on fast channel 1 and/or 2 can be deactivated by a customer EEPROM bit (bit 1 of Customer Setup Register 1, Table 3–3 on page 24). The sensor will then continue to transmit measurement data, but Status Error will be still set to 1.

3.6.4.1. Impact of Diagnosis bit (CUST_SETUP1 - bit 1) on SENT Output

The following table describes the impact of the Diagnosis bit on the error indication in SENT mode depending on the Pause Pulse configuration. Table 3–10 shows the behavior for the H.2 and H.4 format. Table 3–11 describes the behavior in case of the H.1 format.

DIAGNOSIS bit	Effect on	Pause Pulse active	No Pause Pulse
0: Enabled	Status [0]	Shows diagnosis error	Shows diagnosis error and double data transmission
	Fast Channel 1	Shows diagnosis error code	Shows diagnosis error code
1: Disabled	Status [0]	Shows diagnosis error	Shows no diagnosis error but double data transmission information
	Fast Channel 1	Shows no diagnosis error code	Shows no diagnosis error code

Table 3–10: Error indication in H.2 and H.4 format

DIAGNOSIS bit	Effect on	Pause Pulse active	No Pause Pulse
0: Enabled	Status [0]	Shows diagnosis error	Shows diagnosis error and double data transmission
	Fast Channel 1 Shows diagnosis en		Shows diagnosis error code
Status [1] S		Shows diagnosis error	Shows diagnosis error
	Fast Channel 2	Shows diagnosis error code	Shows diagnosis error code
1: Disabled	Status [0]	Shows diagnosis error	Shows no diagnosis error but double data transmission information
	Fast Channel 1	Shows no diagnosis error code	Shows no diagnosis error code
	Status [1]	Shows diagnosis error	Shows diagnosis error
	Fast Channel 2	Shows no diagnosis error code	Shows no diagnosis error code

 Table 3–11: Error indication in H.1 format

Note

Table 3–10 and Table 3–11 are only valid if bit 4 of CUST_SETUP1 register is set to one.

3.6.5. Timing of error reporting on fast channel

In worst case it will take two SENT frames to indicate an error on the output. The overall time depends on the selected frame format and tick time.

3.6.6. Pause Pulse

The pause pulse is present at the end of every frame as defined by the SAEJ2716 standard. Alternatively the pause pulse can be deactivated for HAC 373x and HAC 3711 by a bit combination in the configuration memory (see Table 3–4 on page 25). The length of the pause pulse is automatically adjusted by the chip internal SENT block in order to achieve a constant frame period independent from the message content. The length depends on the frame content and the selected SENT message frequency, as well as on the selected tick time (see Table 3–15 on page 38).

It is possible that in case of deactivated pause pulse some samples may be transmitted twice in series due to the fact that the message time can be shorter than the sample time. Status[0] bit will be set to one in case that a sample is transmitted twice. Please refer to Table 3–17 and Table 3–18 on page 39 showing tick times allowing a sample synchronous transmission.

3.6.7. CRC Implementation

HAC 373x and HAC 3711 support the new recommended CRC implementation defined in SAEJ2716 rev. 4. The old legacy CRC is not supported.

3.6.8. Slow Channel: Enhanced Serial Message

HAC 373x and HAC 3711 transmit the slow message according to the Enhanced Serial Message Format as specified in the SENT standard SAEJ2716 with the following setup:

The configuration bit is always 0, representing 12-bit data and 8-bit message ID.

3.6.9. Slow Channel: Serial Message Sequence

The device is always transmitting the serial message sequence shown in Table 3–12.

#	8-bit ID	Item	12-bit Data	Comment
1	0x03	Sensor type	(see Table 3–14 on page 37)	Customer programmable
2	0x29	Micronas SN	8-bit MSB MIC_ID1	MSB Micronas Serial Number register 1. Right aligned
3	0x2A	Micronas SN	8-bit LSB MIC_ID1	LSB Micronas Serial Number register 1. Right aligned
4	0x01	Error Codes	(see Table 3–13 on page 36)	
5	0x2B	Micronas SN	8-bit MSB MIC_ID2	MSB Micronas Serial Number register 2. Right aligned
6	0x2C	Micronas SN	8-bit LSB MIC_ID2	LSB Micronas Serial Number register 2. Right aligned
7	0x05	Manufacturer Code	0x007	Micronas Manufacturer Code
8	0x01	Error Codes	(see Table 3–13 on page 36)	
9	0x06	Protocol revi- sion	0x004	SAEJ2716 rev. 4
10	0x23	Temperature	1 4088: Temperature Data 4090: Temperature Error	12-bit internal reference temper- ature. Transfer function Micronas specific.
11	0x1C	Field strength	1 4088: Calculated mag- netic field amplitude	Transfer characteristic is not transmitted
12	0x01	Error Codes	(see Table 3–13 on page 36)	

Table 3–12: Serial Message Sequence

3.6.10. Slow Channel: Serial Message Error Codes

Diagnostic status codes are transmitted via the serial message. The 8-bit message ID for the diagnostic status code is 01h. The 12-bit code within the 12-bit message can be defined by the device manufacturer in the range between 800h to FFFh. HAC 373x and HAC 3711 feature the error codes described in Table 3–13.

Bit Position	Error Type
0	Memory error
1	Signal path error
2	Voltage regulator error
3	Magnetic field amplitude out of range error
4	Temperature sensor value not valid
5	Signal path over/underflow error
6	Over voltage error
7:10	Always 0
11	Always 1

 Table 3–13:
 Serial Message Error Codes

NoteDiagnostic latch bit (bit[2]) in Customer Setup Register 1 (see Table 3–3 on
page 24) must be set to one to ensure stable transmission of error codes.
Especially for momentary errors.

3.6.11. Slow Channel: Sensor Types

HAC 373x and HAC 3711 can transmit the sensor type information via the slow channel. The sensor type depends on the final customer application and is therefore customer programmable (Customer Setup Register 2, bit 14 and 13). Table 3–14 shows the transmitted 12-bit value depending on the selected frame format and sensor function.

Bit combination	12-bit Value	Description			
00	0x050	Not specified			
Format: 6 data nibble	nels				
01	0x056	Linear position			
10	0x065	Angle position			
11	0x075	Relative position			
Format: 3 data nibble	with one fast chan	nel			
01	0x051	Linear position			
10	0x060	Angle position			
11	0x070	Relative position			
Format: 6 data nibble	with secure inform	ation			
01	0x055	Linear position			
10	0x064	Angle position			
11	0x074	Relative position			

Table 3–14: Selectable Sensor Types	Table 3–1	4: Selectab	le Sensor	Types
-------------------------------------	-----------	-------------	-----------	-------

3.6.12. Start-Up behavior

The start-up behavior is customer configurable. The device can either transmit zero messages until a valid information is available (SAEJ2716 conform). Alternatively the device transmits 4094 until a valid information is available. The start-up behavior is customer configurable by bit 4 in the CUST_SETUP1 register.

3.6.13. Message Time for SENT Frames with Pause Pulse

The SENT frame repetition frequency (SENTF) is defined by the position sampling frequency. The selectable SENT frame repetition frequency is limited by the configured tick time, the transmitted data value and the minimum and maximum pause pulse duration.

The tick time is customer programmable and can be selected between $0.5 \,\mu s$ and $4.25 \,\mu s$ in steps of $0.25 \,\mu s$. The tick time is defined by bits 11 to 8 in the Customer Setup Register 2 (see Table 3–4 on page 25).

The pulse low time is fixed to 5 ticks. The minimum pause pulse duration is 12 ticks.

The delivery of new position values is synchronous with the SENT messages, i.e. one SENT message is transmitted per position sample. Thus, the propagation delay is very low and the message time is nearly constant.

Table 3–15 and Table 3–16 show the recommended sample frequencies for certain tick times to ensure samples synchronous transmission.

t _{tick} ¹⁾ [μs]	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25
TICK [LSB]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SENTF [Hz]																
4000	NC	NC	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2660	NC	NC	NC	NC	-	_	-	-	-	-	-	_	_	_	-	-
2000	NC	NC	NC	NC	NC	NC	-	-	-	-	-	_	-	_	-	-
1600	NC	NC	NC	NC	NC	NC	NC	NC	-	-	-	-	-	-	-	-
1000	NC	NC	NC	NC	NC	NC	NC	NC	NC	SC	SC	SC	SC	-	-	-
800	NC	NC	NC	NC	NC	NC	NC	NC	NC	SC						
500	NC	NC	NC	NC	NC	NC	NC	NC	NC	SC						
NC: None SAE	¹⁾ Clock tolerance of +/- 10% is not included NC: None SAEJ2716 conform settings SC: SAEJ2716 specification conform settings															

 Table 3–15:
 Recommended tick time settings for 6 data nibble transmission

t _{tick} ¹⁾ [µs]	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25
TICK [LSB]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SENTF [Hz]																
8000	NC	-	_	_	-	_	-	_	-	-	-	_	_	_	_	-
4000	NC	NC	NC	NC	_	_	_	_	_	_	_	_	_	_	_	-
2660	NC	NC	NC	NC	NC	NC	-	_	_	_	_	_	_	_	_	-
2000	NC	NC	NC	NC	NC	NC	NC	NC	NC	_	_	-	-	-	_	-
1600	NC	NC	NC	NC	NC	NC	NC	NC	NC	SC	SC	-	-	-	_	-
1000	NC	NC	NC	NC	NC	NC	NC	NC	NC	SC						
800	NC	NC	NC	NC	NC	NC	NC	NC	NC	SC						
500	NC	NC	NC	NC	NC	NC	NC	NC	NC	SC						
NC: None SAE	 ¹⁾ Clock tolerance of +/- 10% is not included NC: None SAEJ2716 conform settings SC: SAEJ2716 specification conform settings 															

Table 3–16: Recommended tick time settings for 3 data nibble transmission

Table 3–17 and Table 3–18 show allowed settings leading to sample synchronous transmission in case of deactivated pause pulse.

t _{tick} ¹⁾ [µs]	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25
TICK [LSB]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	DT	DT	ST													
1) Clock telerance of 1/ 10% is not included																

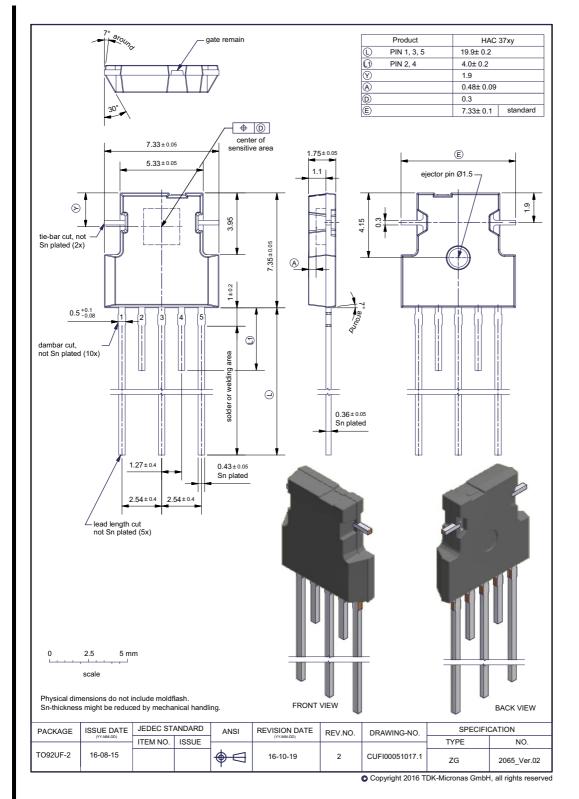
¹⁾ Clock tolerance of +/- 10% is not included

DT: Double transmission of measurement values possible and indicated in Status[0]

ST: Sample synchronous transmission of measurement values

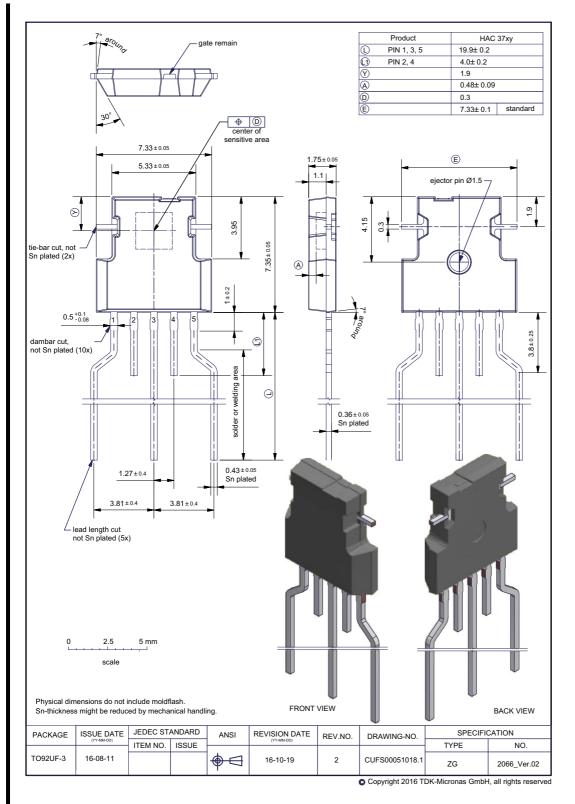
Table 3–18: Recommended tick time settings for 3 data nibble transmission for sample accurate transmission

	DT	DT	DT	ST												
TICK [LSB]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
t _{tick} ¹⁾ [μs]	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25


¹⁾ Clock tolerance of +/- 10% is not included

DT: Double transmission of measurement values possible and indicated in Status[0]

ST: Sample synchronous transmission of measurement values


4. Specifications

4.1. Outline Dimensions

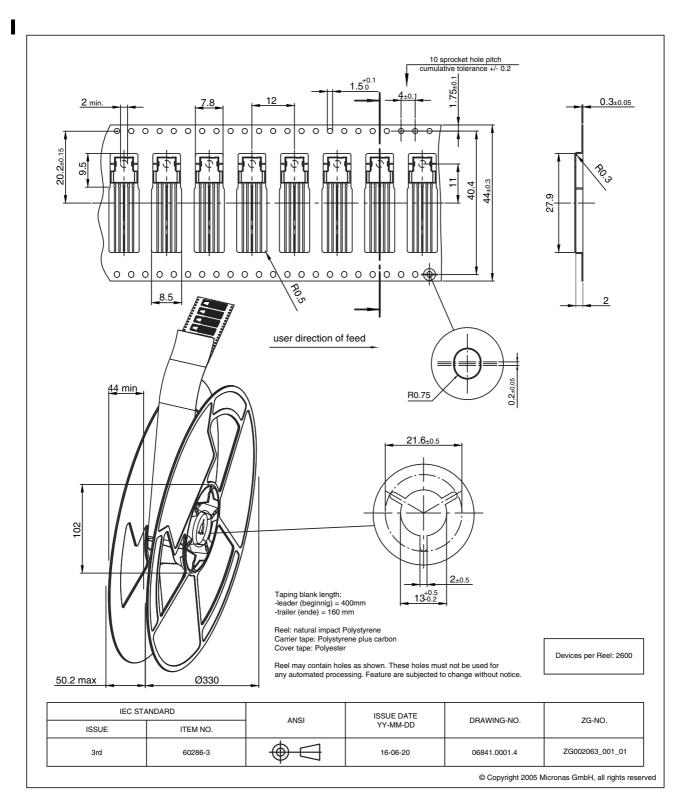


Fig. 4–1:

TO92UF-2: Plastic Transistor Standard UA package, 3 leads, non-spread Weight approximately 0.3 g

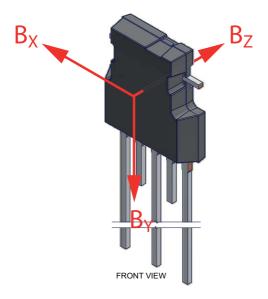
Fig. 4–2: TO92UF-3: Plastic Transistor Standard UA package, 3 leads, spread Weight approximately 0.3 g

Fig. 4–3: TO92UF: Tape and Reel Finishing

4.2. Soldering, Welding, Assembly

Information related to solderability, welding, assembly, and second-level packaging is included in the document "Guidelines for the Assembly of Micronas Packages". It is available on the TDK-Micronas website (<u>http://www.micronas.com/en/service-center/downloads</u>) or on the service portal (<u>http://service.micronas.com</u>).

4.3. Storage and Shelf Life package


Information related to storage conditions of Micronas sensors is included in the document "Guidelines for the Assembly of Micronas Packages". It gives recommendations linked to moisture sensitivity level and long-term storage.

It is available on the TDK-Micronas website (<u>http://www.micronas.com/en/service-cen-ter/downloads</u>) or on the service portal (<u>http://service.micronas.com</u>).

4.4. Size of Sensitive Area

 $275\ \mu\text{m}\ x\ 275\ \mu\text{m}$

4.5. Definition of Magnetic Field Vectors

4.6. Pin Connections and Short Description

Pin No.	Pin Name	Туре	Short Description
1	VSUP	SUPPLY	Supply Voltage Pin
2	TEST1	IN	Test
3	GND	GND	Ground Pin
4	TEST2	I/O	Test
5	OUT	I/O	Output and Program- ming Pin

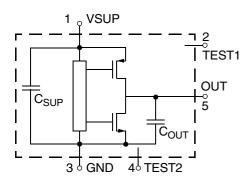


Fig. 4–4: Pin configuration

4.7. Absolute Maximum Ratings

Stresses beyond those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these conditions is not implied. Exposure to absolute maximum rating conditions for extended periods will affect device reliability.

This device contains circuitry to protect the inputs and outputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than absolute maximum-rated voltages to this high-impedance circuit.

Symbol	Parameter	Pin Name	Min.	Max.	Unit	Condition			
V _{SUP}	Supply Voltage	VSUP	-18	18	V	t < 1 hr			
V _{OUT}	Output Voltage	OUT	-6	18	V	t < 1 hr			
V _{OUT} – V _{SUP}	Excess of Output Voltage over Supply Voltage	OUT, VSUP	_	2	V				
I _{OUT}	Continuous Output Current	OUT	-10	10	mA				
B _{max}	Magnetic Field	_	_	unlimited	Т				
V _{ESD}	ESD Protection	VSUP, GND, OUT	-8	8	kV	1)			
		VSUP, GND, OUT	-8	8	kV	HAC3715 and HAC372x ²⁾			
		VSUP, GND, OUT	-6	6	kV	HAC3711 and HAC373x ²⁾			
		TEST1, TEST2	-2	2	kV	1)			
¹⁾ AEC-Q100-002 (100 pF and 1.5 kΩ) ²⁾ Unpowered Gun test (150 pF/330 Ω or 330 pF/2 kΩ) according to ISO 10605-2008									

All voltages listed are referenced to ground (GND).

4.8. Recommended Operating Conditions

Functional operation of the device beyond those indicated in the "Recommended Operating Conditions/Characteristics" is not implied and may result in unpredictable behavior, reduced reliability and lifetime of the device.

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Condition			
V _{SUP}	Supply Voltage	VSUP	4.5 5.7	5 6.0	5.5 6.5	V	Normal Operation During Programming			
I _{OUT}	Continuous Output Current	OUT	-1.2 -		1.2 5.5	mA mA	HAC3715 and HAC372x HAC3711 and HAC373x			
RL	Load Resistor	OUT	5	10		kΩ	HAC3715 and HAC372x pull-up & pull-down resistor			
			1	-	Ι	kΩ	HAC3711 and HAC373x pull-up resistor			
N _{PRG}	Number of Memory Programming Cycles	-	_	_	100	cycles	0 °C < T _{amb} < 55 °C			
B _{AMP}	Recommended Magnetic Field Amplitude	_	±20	_	±100	mT				
TJ	Junction Temperature ¹⁾		-40 -40 -40	-	125 150 170	°C ℃ ℃	for 8000 hrs for 2000 hrs for 1000 hrs Time values are not additive.			
¹⁾ Depends on the temperature profile of the application. Please contact TDK-Micronas for life time calculations.										

All voltages listed are referenced to ground (GND).

Note It is possible to operate the sensor with magnetic fields down to ±5 mT. For magnetic fields below ±20 mT the sensor performance will be reduced.

4.9. Characteristics

at $T_J = -40$ °C to +170 °C, $V_{SUP} = 4.5$ V to 5.5 V, GND = 0 V, after programming and locking of the sensor, at Recommended Operation Conditions if not otherwise specified in the column "Conditions".

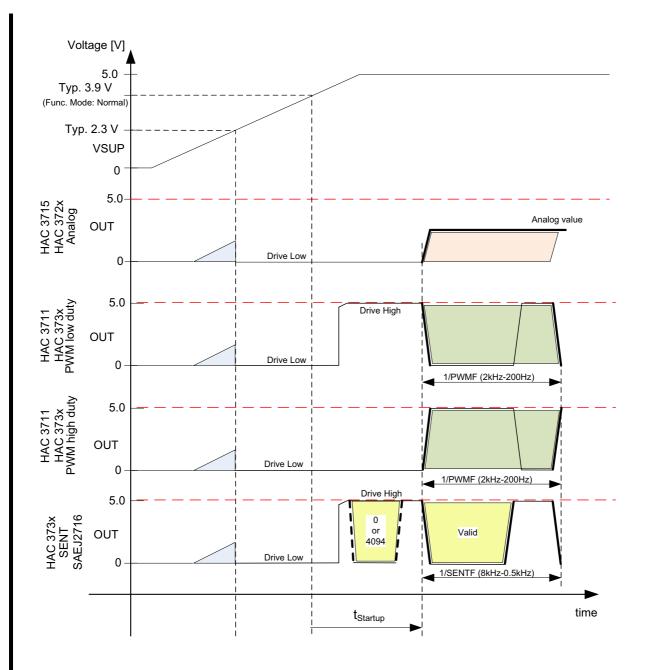
Typical Characteristics for $T_J = 25$ °C and $V_{SUP} = 5$ V.

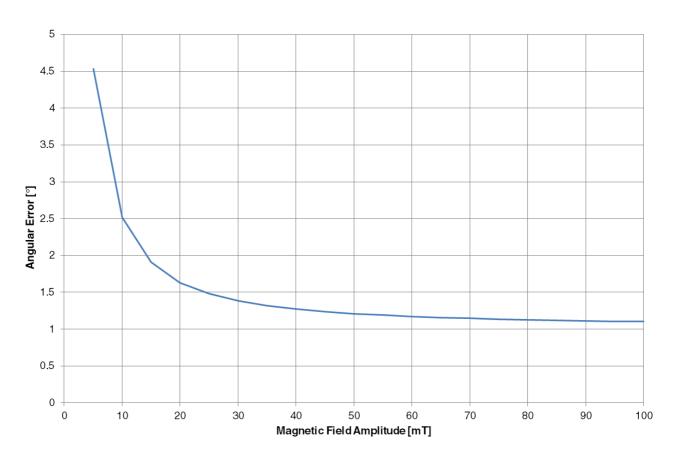
Symbol	Parameter	Pin	Li	mit Val	ues	Unit	Test Conditions	
		Name	Min.	Тур.	Max.			
I _{SUP}	Supply Current over Temperature Range	VSUP	-	8	tbd.	mA		
	Resolution ¹⁾	OUT	-	12	-	bit	for HAC3715/HAC372x ratio metric to V _{SUP}	
			-	12	-	bit	for HAC3711/HAC373x (depends on PWM Period)	
t _{startup}	Start-up Time ²⁾	OUT	_	1.4	1.8	ms	(see Fig. 4–5 on page 51) LP_FILTER = OFF	
Overvoltage	e and Undervoltage Detec	tion						
V _{SUP,UV}	Undervoltage Detection Level	VSUP	3.3 3.1	3.9 3.7	4.3 4.1	V V	Functionality Mode: Normal Functionality Mode: Extended CUST_SETUP1 register bit 5	
V _{SUP,UVhyst}	Undervoltage Detection Level Hysteresis ²⁾	VSUP	_	200	-	mV		
V _{SUP,OV}	Overvoltage Detection Level	VSUP	5.6 8.5	6.2 9.5	6.9 10.4	V V	Functionality Mode: Normal Functionality Mode: Extended CUST_SETUP1 register bit 5	
V _{SUP,OVhyst}	Overvoltage Detection Level Hysteresis ²⁾	VSUP	_	225	-	mV		
Output Volt	age in Case of Error Dete	ction						
V _{SUP,DIAG}	Supply Voltage required to get defined Output Voltage Level ²⁾	VSUP	_	2.3	-	V	The output will be 'low' for $V_{SUP,DIAG} < V_{SUP} < V_{SUP,UV}$	
V _{Error,Low}	Output Voltage Range of Lower Error Band ²⁾	OUT	0	-	4	%V _{SUP}	$\label{eq:V_SUP} \begin{split} V_{SUP} &> V_{SUP,UV} \\ ERROR BAND bit 7=1 \ in \\ CUST_SETUP1 \\ Analog Output \\ 5 \ k\Omega \leq R_L \leq 200 \ k\Omega \end{split}$	
V _{Error,High}	Output Voltage Range of Upper Error Band ²⁾	OUT	96	_	100	%V _{SUP}	$V_{SUP} > V_{SUP,UV}$ ERROR BAND bit 7=0 in CUST_SETUP1 Analog Output 5 k $\Omega \le R_I \le 200 \text{ k}\Omega$	

Symbol	Parameter	Pin	Li	imit Valu	ies	Unit	Test Conditions
		Name	Min.	Тур.	Max.		
Output Sh	ort Detection Parameter						
t _{OCD}	Over Current Detection Time ²⁾	OUT	_	96	_	μs	
t _{Timeout}	Time Period without Over Current Detection ²⁾	OUT	_	32	_	ms	
I _{OVC}	Detectable Output Short Current ²⁾	OUT	_	10		mA	
HAC3715	and HAC372x (Analog Out	tput)					
t _{OSD}	Overall Signal Delay ¹⁾	OUT	_	0.312	0.343	ms	Overall signal delay between sensor front-end and output For 8 kHz sample frequency
DNL	Differential Non-Linearity of D/A converter	OUT	-3	0	3	LSB	
E _R	Ratiometric Error of Out- put over temperature (Error in V _{OUT} /V _{SUP})	OUT	tbd.	0	tbd.	%	Max of $[V_{OUT5} - V_{OUT4.5} and V_{OUT5.5} - V_{OUT5}]$ at $V_{OUT} = 10\%$ and 90% V_{SUP}
INL	Non-Linearity of D/A converter	OUT	-0.1	0	0.1	%	% of supply voltage
ΔV_{OFFSET}	D/A converter offset drift over temperature range related to 25 °C ²⁾	OUT	-0.2	0	0.2	%V _{SUP}	
V _{OUTH}	Output High Voltage 3)	OUT	93	_	-	%V _{SUP}	R_L Pull-up/-down = 5 k Ω
V _{OUTL}	Output Low Voltage 3)	OUT	-	_	7	%V _{SUP}	R_L Pull-up/-down = 5 k Ω
ΔV _{OUTCL}	Accuracy of Output Volt- age at Clamping Low Voltage over Tempera- ture Range ²⁾	OUT	-30	0	30	mV	$V_{SUP} = 5 V$ R _L Pull-up/-down = 5 k Ω
ΔV _{OUTCH}	Accuracy of Output Volt- age at Clamping High Voltage over Tempera- ture Range ²⁾	OUT	-30	0	30	mV	
OUT _{Noise}	Output Noise RMS ²⁾	OUT	_	1.0	_	mV	Min. magnetic ampl. = $\pm 20 \text{ mT}$ f _C = 22 kHz No DNC or low-pass filter active
R _{OUT}	Output Resistance	OUT	-	1	10	Ω	$V_{OUTLmax} \le V_{OUT} \le V_{OUTHmin}$
C _{OUT}	Capacitance between OUT and GND ²⁾	OUT, GND	tbd.	120	tbd.	nF	V _{SUP} = 50 mV sampling at 1 kHz
C _{SUP}	Capacitance between VSUP and GND ²⁾	VSUP , GND	tbd.	120	tbd.	nF	V _{SUP} = 50 mV sampling at 1 kHz

Symbol	Parameter	Pin Name	Limit Values			Unit	Test Conditions	
			Min.	Тур.	Max.			
²⁾ Character	ed by Design ized on small sample size, i nd area with full accuracy is e V _{OUTH} .	not tester located	d. betweei	n V _{OUTL}	and V _{OI}	_{JTH} . Red	uced accuracy below V _{OU} -	
Open-Circu	uit Detection							
V _{OUT}	Output voltage at open V _{SUP} line	OUT	0	0.1	0.15	V	$V_{SUP} = 5 V$ R _L ⁴⁾ = 10 kΩ to 200 kΩ	
			0	0.1	0.2	V	V _{SUP} = 5 V 5 kΩ <= R _L ⁴⁾ < 10 kΩ	
V _{OUT}	Output voltage at open GND line	OUT	4.85	4.9	5.0	V	$V_{SUP} = 5 V$ R _L ⁴⁾ = 10 kΩ to 200 kΩ	
			4.8	4.9	5.0	V	V _{SUP} = 5 V 5 kΩ <= R _L ⁴⁾ < 10 kΩ	
HAC3711 a	nd HAC373x (Digital Out	put: Pus	sh-Pull	Configu	iration)			
V _{OUTH}	Output High Voltage	OUT	4.8	4.9	_	V	$V_{SUP} = 5 V,$ $R_{LPull-up/-down} = 5 k\Omega$	
V _{OUTL}	Output Low Voltage	OUT	_	0.1	0.2	V	$V_{SUP} = 5 V,$ $R_{LPull-up/-down} = 5 k\Omega$	
V _{OUTL}	Output Low Voltage ²⁾	OUT	-	0.4	0.65	V	V _{SUP} = 5 V, R _{LPull-up} = 1 k	
t _{rise}	Rise Time of Digital Output ²⁾	OUT	_	0.2	0.4	μs	$V_{SUP} = 5 V, R_{LPull-up} = 1$ $C_L = 1 nF$	
t _{fall}	Fall Time of Digital Output ²⁾	OUT	_	0.25	0.4	μs	$V_{SUP} = 5 V, R_{LPull-up} = 1$ $C_L = 1 nF$	
ROUT_DIG	On Resistance of Digital Push-Pull Driver	OUT	_	100	200	Ω		
C _{OUT}	Capacitance between OUT and GND ²⁾	OUT, GND	tbd.	21	tbd.	pF	V _{SUP} = 50 mV sampling a 1 kHz	
C _{SUP}	Capacitance between VSUP and GND ²⁾	VSUP ,GND	tbd.	120	tbd.	nF	V _{SUP} = 50 mV sampling at 1 kHz	
HAC3711 a	nd HAC373x (Digital Out	put: Ope	en-Drai	n Confi	guratio	n)		
I _{ОН}	Output Leakage Current	OUT	tbd.	10	500	μA		
V _{OL}	Output Low Voltage	OUT	tbd.	0.1	0.2	V	$V_{SUP} = 5 V,$ $R_{LPull-up} = 5 k\Omega$	
			tbd.	0.4	0.65	V	$V_{SUP} = 5 V,$ $R_{LPull-up} = 1 k\Omega$	
t _{rise}	Rise Time of Digital Output ²⁾	OUT	tbd.	2.2	tbd.	μs	$V_{SUP} = 5 V$ $R_{LPull-up} = 1 k\Omega$ $C_L = 1 nF$	
t _{fall}	Fall Time of Digital Output ²⁾	OUT	tbd.	0.25	0.4	μs	$V_{SUP} = 5 V,$ $R_{LPull-up} = 1 k\Omega$ $C_L = 1 nF$	

ĺ	Symbol	Parameter	Pin Name	Limit Values			Unit	Test Conditions			
				Min.	Тур.	Max.					
	C _{OUT}	Capacitance between OUT and GND ²⁾	OUT, GND	tbd.	tbd.	tbd.	pF	V _{SUP} = 50 mV sampling at 1 kHz			
	C _{SUP}	Capacitance between VSUP and GND ²⁾	VSUP ,GND	tbd.	120	tbd.	nF	V _{SUP} = 50 mV sampling at 1 kHz			
	 ²⁾Characterized on small sample size, not tested. ⁴⁾RL can be pull-up or pull-down resistor PWM Output 										
	t _{OSD}	Overall Signal Delay ²⁾	OUT	_	0.312	0.343	ms	Overall signal delay between sensor front-end and output. Transmission time of selected PWM frequency to be added. For 8 kHz sample frequency			
	OUT _{Noise}	Output Noise RMS ²⁾	OUT	-	0.03	-	%	Min. magnetic ampl. = $\pm 20 \text{ mT}$ Related to 100% DC			
-	f _{PWM}	PWM Frequency	OUT	1800 1440 900 720 450 360 225 180	2000 1600 1000 800 500 400 250 200	2200 1760 1000 880 550 440 275 220	Hz	Customer programmable			
	J _{PWM}	RMS PWM Jitter ²⁾	OUT	-	1	2	LSB ₁₂	f _{PWM} = 1 kHz			
²⁾ Characterized on small sample size, not tested.											
	SENT Output										
	$\Delta T_{osc}/T_{osc}$	Clock Accuracy	OUT	-10	0	10	%	On clock tick time without pause pulse			
	t _{nlow}	Sensor pulse low time	OUT	-	5	_	t _{tick}				
	TO92UF Package										
								(Self-heating calculation see Section 5.1. on page 54)			
	R _{thja}	Thermal Resistance Junction to Air	_	_	_	181 122	K/W K/W	Determined with a 1s0p board Determined with a 2s2p board			
	R _{thjc}	Junction to Case		-	-	30 29	K/W K/W	Determined with a 1s0p board Determined with a 2s2p board			




Fig. 4-5: Startup behavior of HAC37xy in different output modes

4.10. Magnetic Characteristics

at $T_J = -40$ °C to +170 °C, $V_{SUP} = 4.5$ V to 5.5 V, GND = 0 V, after programming and locking of the sensor, at Recommended Operation Conditions if not otherwise specified in the column "Conditions". Typical Characteristics for $T_J = 25$ °C and $V_{SUP} = 5$ V.

Symbol	Parameter	Pin No.	Min.	Тур.	Max.	Unit	Test Conditions
Θ _{RANGE}	Detectable angle range	OUT	0	-	360	0	
Θ _{res}	Angle resolution	OUT	_	-	0.09	0	(360°/4096)
$E_{\Theta linxy}$	XY angle linearity error (on output of CORDIC filter)	OUT	-0.5	-	0.5	o	Min. $B_{AMP} = \pm 30$ mT, T _J =25 °C ^{1) 2)}
$E_{\Theta linxy}$	X/Y angle linearity error over tem- perature (on output of CORDIC fil- ter)	OUT	-1.2	I	1.2	0	Min. $B_{AMP} = \pm 30 \text{ mT}^{1) 2}$
			-1.7	_	1.7		Min. $B_{AMP} = \pm 20 \text{ mT}^{(1) (2)}$
ASMm _{X/Y_Z}	Absolute sensitivity mismatch on raw signals between X/Y and Z channel	OUT	tbd.	_	tbd.	%	T _J =25 °C ¹⁾
Sense _{XYZ}	Sensitivity of X/Y and Z Hall Plate	OUT	118	128	138	LSB/ mT	T _J =25 °C ¹⁾
$\Delta Sense_{XY}$	Sensitivity Drift of Vertical Hall Plates over temperature	OUT	-1.5	-	1.5	%	over full temperature rang related to 25 °C ¹⁾
∆Sense _Z	Sensitivity Drift of Horizontal Hall Plates over temperature	OUT	-1.5	-	1.5	%	over full temperature rang related to 25 °C ¹⁾
SMm _{X/Y_Z}	Thermal sensitivity mismatch drift of calibrated signals between X/Y and Z channel	OUT	-2.5	-	2.5	%	over full temperature rang related to 25 °C ¹⁾
SMm _{XY}	Thermal sensitivity mismatch drift of calibrated signals between X and Y channel	OUT	-2	_	2	%	over full temperature rang related to 25 °C ¹⁾
Offset _{XY}	Offset of calibrated signals of X or	OUT	-20	-	20	LSB ₁₅	T _J =25 °C ¹⁾
	Y channel						Can be compensated in customer application
Offset _Z	Offset of calibrated signal of Z channel	OUT	-20	-	20	LSB ₁₅	T _J =25 °C ¹⁾
							Can be compensated in customer application
$\Delta Offset_{XY}$	Offset drift of calibrated signals of X or Y channel	OUT	-70	_	70	LSB ₁₅	over full temperature range related to 25 $^\circ C^{1)}$
$\Delta Offset_Z$	Offset drift of calibrated signals of Z channel	OUT	-20	-	20	LSB ₁₅	over full temperature range related to 25 °C ¹⁾
∆SMm _{XYZlife}	Relative sensitivity mismatch drift of calibrated signals between X or Y channel and Z channel over life time	OUT	-	1.0	_	%	after 1000h HTOL ¹⁾
$\Delta Offset_{XYlife}$	Offset drift of calibrated signals of X or Y channel	OUT	-	30	-	LSB ₁₅	after 1000h HTOL ¹⁾
∆Offset _{Zlife}	Offset drift of calibrated signal of Z channel	OUT	-	±15	-	LSB ₁₅	after 1000h HTOL ¹⁾

²⁾ Calculated angular error based on characterization and not on single error summation

Fig. 4–6: Angular error versus magnetic field amplitude over full temperature range for devices using X and Y magnetic field component (for digital output)

5. Application Notes

5.1. Ambient Temperature

Due to the internal power dissipation, the temperature on the silicon chip (junction temperature T_J) is higher than the temperature outside the package (ambient temperature T_A).

 $\mathsf{T}_\mathsf{J}=\mathsf{T}_\mathsf{A}+\Delta\mathsf{T}$

At static conditions and continuous operation, the following equation applies:

 $\Delta T = I_{SUP} * V_{SUP} * R_{thjX}$

The X represents junction to air, case or solder point.

For worst case calculation, use the max. parameters for I_{SUP} and R_{thjX} , and the max. value for V_{SUP} from the application.

Example for calculation of self-heating ΔT

The following example shows the result for junction to air conditions for TO92UF package:

 V_{SUP} = 5.5 V, R_{thja} = tbd. K/W and I_{SUP} = tbd. mA the temperature difference ΔT = tbd. K.

The junction temperature T_J is specified. The maximum ambient temperature T_{Amax} can be calculated as:

 $T_{Amax} = T_{Jmax} - \Delta T$

Note The calculated self-heating of the device is only valid for the Rth test boards. Depending on the application setup the final results in an application environment might deviate from these values.

5.2. EMC and ESD

Please contact TDK-Micronas for detailed information on EMC and ESD performance.

5.3. Application Circuit for HAC3715 and HAC372x

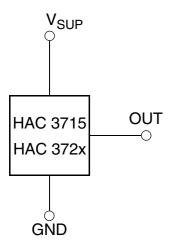
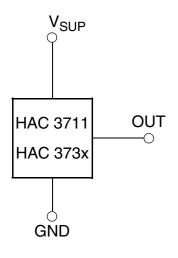



Fig. 5–1: Recommended application circuit for HAC3715 and HAC372x

5.4. Application Circuit for HAC3711 and HAC373x

Fig. 5-2: Recommended application circuit for HAC3711 and HAC373x in PWM mode

SAEJ2716 SENT Output

In case of SAEJ2716 SENT output mode, it is recommended to add a filter structure at the output pin for having a SENT standard compliant output slew rate.

The following two setups have been tested (with Push-Pull output configuration):

- C01 = 2.2 nF, R01 = 120 Ω

- C01 = 3.3 nF, R01 = 180 Ω

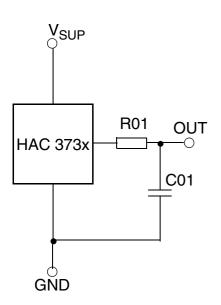


Fig. 5-3: Recommended application circuit for HAC373x in SENT output mode

5.5. Measurement of a PWM Output Signal of HAC3711 and HAC373x

In case of PWM output, the magnetic field information is coded in the duty cycle of the PWM signal. The duty cycle is defined as the ratio between the high time "s" and the period "d" of the PWM signal (see Fig. 5–4).

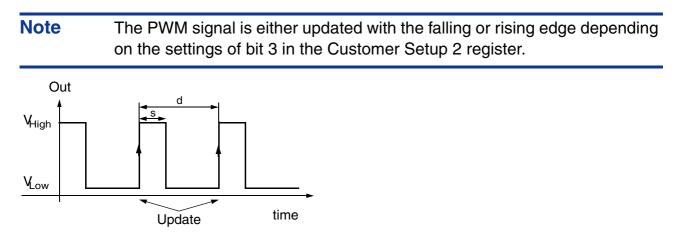


Fig. 5-4: Definition of PWM signal (Bit 3 in customer setup register 2 is set to update with rising edge.)

6. Programming of the Sensor

HAC 37xy features two different customer modes. In **Application Mode** the sensors provide a ratiometric analog output voltage or a digital output signal (PWM or SENT). In **Programming Mode** it is possible to change the register settings of the sensor.

After power-up the sensor is always operating in the **Application Mode.** It is switched to the **Programming Mode** by a pulse at the sensor output pin.

6.1. Programming Interface

In Programming Mode HAC 37xy is addressed by modulating a serial telegram on the sensors output pin. The sensor answers with a modulation of the output voltage.

A logical "0" is coded as no level change within the bit time. A logical "1" is coded as a level change of typically 50% of the bit time. After each bit, a level change occurs (see Fig. 6–1).

The serial telegram is used to transmit the EEPROM content, error codes and digital values of the angle information from and to the sensor.

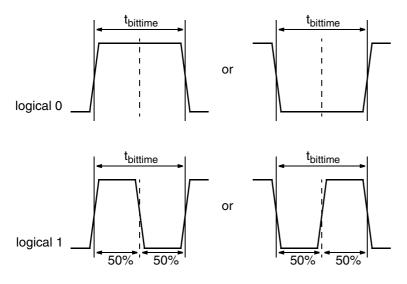


Fig. 6–1: Definition of logical 0 and 1 bit

A description of the communication protocol and the programming of the sensor is available in a separate document (Application Note: HAC 37xy User Manual).

Symbol	Parameter	Pin No.	Limit Valu	les	Unit	Test Conditions	
			Min.	Тур.	Max.		
V _{OUTL}	Voltage for Output Low Level during Pro- gramming through Sensor Output Pin	OUT	0 0	_	0.2*V _{SUP} 1	V V	for V _{SUP} = 5 V
V _{OUTH}	Voltage for Output High Level during Programming through Sensor Output Pin	OUT	0.8*V _{SUP} 4	_	V _{SUP} 5.0	V V	for $V_{SUP} = 5 V$
V _{SUPProgram}	V _{SUP} Voltage for EEPROM & NVRAM programming (during Programming)	OUT	5.7	6.0	6.5	V	Supply voltage for bidirectional com- munication via out- put pin as well as for 3-wire commu- nication via supply voltage modulation
	Slew rate	OUT	_	2	_	V/µs	

6.2. Programming Environment and Tools

For the programming of HAC 37xy during product development a programming tool including hardware and software is available on request. It is recommended to use the Micronas tool kit (HAL-APB V1.x or USB kit and Lab View Programming Environment) in order to facilitate the product development. The details of programming sequences are also available on request.

6.3. Programming Information

For production and qualification tests, it is mandatory to set the LOCK bit to one after final adjustment and programming of HAC 37xy.

Before locking the device, it is recommended to read back all register values to ensure that the intended data is correctly stored in the sensor's memory. Alternatively, it is also possible to cross-check the sensor output signal with the intended output behavior.

The success of the LOCK process shall be checked by reading the status of the LOCK bit after locking.

Even after locking the device it is still possible to read the memory content.

It is also mandatory to check the acknowledge (first and second) of the sensor after each write and store sequence to verify if the programming of the sensor was successful. To enable debugging of the production line, it is recommended to read back the PROG_DIAGNOSIS register in case of a missing second acknowledge.

Electrostatic Discharges (ESD) may disturb the programming pulses. Please take precautions against ESD.

7. Document History

- 1. Advance Information: "HAC 371x, HAC 372x, HAC 373x Robust Programmable 2D Position Sensor Family with Integrated Capacitors", Oct. 13, 2015, AI000183_001EN. First release of the advance information.
- Advance Information: "HAC 371x, HAC 372x, HAC 373x Robust Programmable 2D Position Sensor Family with Integrated Capacitors", Sept. 16, 2016, AI000183_002EN. Second release of the advance information.
- 3. Advance Information: "HAC 371x, HAC 372x, HAC 373x Robust Programmable 2D Position Sensor Family with Integrated Capacitors", Feb. 20, 2017, AI000183_003EN. Third release of the advance information.

Major Changes:

- Update of start-up behavior
- Update of error handling
- Update of SENT features
- Characteristics for open-drain output added
- Package drawings updated