

HAT2085T

Silicon N Channel MOS FET High Speed Power Switching

REJ03G0163-0500 Rev.5.00 Nov 27, 2007

Features

- Low on-resistance
- Low drive current
- High density mounting

Outline

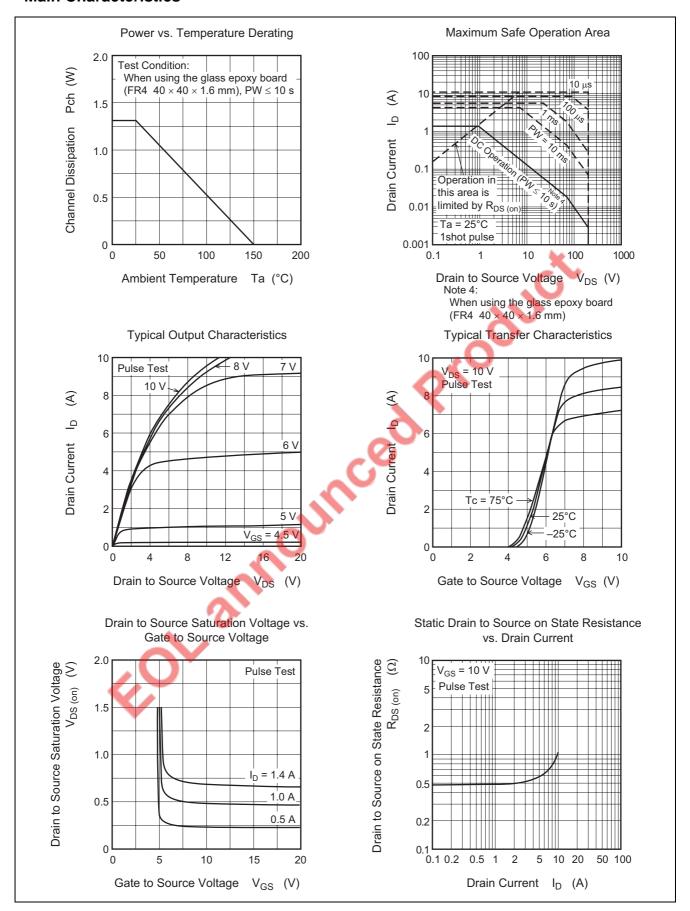
Absolute Maximum Ratings

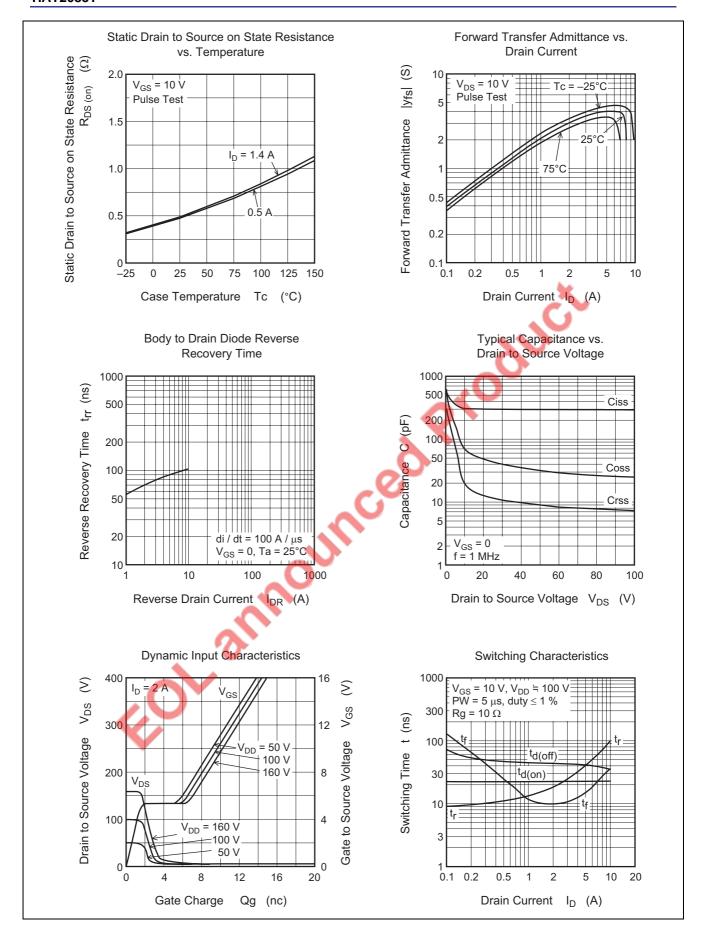
 $(Ta = 25^{\circ}C)$

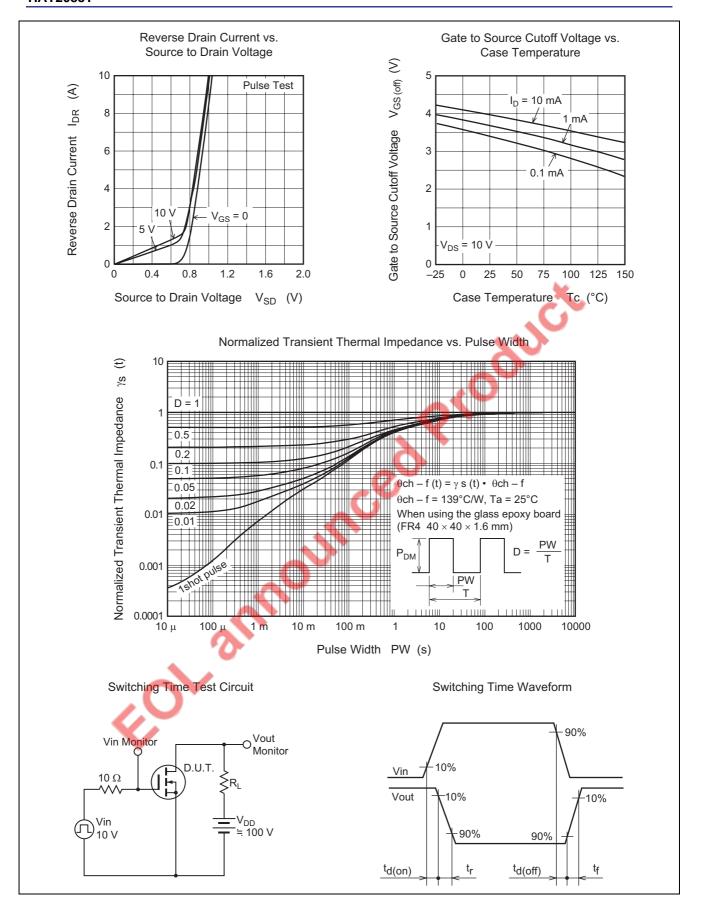
Item	Symbol	Value	Unit
Drain to source voltage	V_{DSS}	200	V
Gate to source voltage	V_{GSS}	±30	V
Drain current	I _D	1.4	Α
Drain peak current	I _{D (pulse)} Note 1	11.2	Α
Body to drain diode reverse drain current	I_{DR}	1.4	Α
Channel dissipation	Pch Note 2	1.3	W
Channel temperature	Tch	150	°C
Storage temperature	Tstg	-55 to +150	°C

Notes: 1. PW \leq 10 μ s, duty cycle \leq 1%

2. When using the glass epoxy board (FR4 $40 \times 40 \times 1.6$ mm), PW ≤ 10 s


Electrical Characteristics


 $(Ta = 25^{\circ}C)$


Item	Symbol	Min	Тур	Max	Unit	Test Conditions	
Drain to source breakdown voltage	V _{(BR) DSS}	200	_	_	V	$I_D = 10 \text{ mA}, V_{GS} = 0$	
Gate to source leak current	I _{GSS}		_	±0.1	μΑ	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0$	
Zero gate voltage drain current	I _{DSS}		_	1	μΑ	$V_{DS} = 200 \text{ V}, V_{GS} = 0$	
Gate to source cutoff voltage	V _{GS (off)}	3.0	_	4.5	V	I _D = 1 mA, V _{DS} = 10 V	
Static drain to source on state resistance	R _{DS (on)}		0.49	0.64	Ω	$I_D = 0.7 \text{ A}, V_{GS} = 10 \text{ V}^{\text{Note 3}}$	
Forward transfer admittance	y _{fs}	1.0	1.7	_	S	$I_D = 0.7 \text{ A}, V_{DS} = 10 \text{ V}^{\text{Note 3}}$	
Input capacitance	Ciss		300	_	pF	V _{DS} = 25 V	
Output capacitance	Coss		43	_	pF	$V_{GS} = 0$	
Reverse transfer capacitance	Crss		12		pF	f = 1 MHz	
Turn-on delay time	t _{d (on)}		21	_	ns	$V_{DD} \cong 100 \text{ V}, I_D = 0.7 \text{ A}$	
Rise time	t _r		11		ns	$V_{GS} = 10 \text{ V}$	
Turn-off delay time	t _{d (off)}		48		ns	$R_L = 143 \Omega$	
Fall time	t _f		18	_	ns	$Rg = 10 \Omega$	
Total gate charge	Qg	_	10	_	nC	$V_{DD} = 160 \text{ V}$	
Gate to source charge	Qgs	_	1.8	_	nC	$V_{GS} = 10 \text{ V}$	
Gate to drain charge	Qgd	_	4.8	_	nC	$I_D = 1.4 A$	
Body to drain diode forward voltage	V_{DF}		0.8	1.2	V	$I_F = 1.4 \text{ A}, V_{GS} = 0^{\text{Note 3}}$	
Body to drain diode reverse recovery time	t _{rr}		65	-	ns	I _F = 1.4 A, V _{GS} = 0	
						$di_F/dt = 100 A/\mu s$	
Note: 3. Pulse test							
201							

Note: 3. Pulse test

Main Characteristics

Package Dimensions

Ordering Information

Part No.	Quantity	Shipping Container
HAT2085T-EL-E	3000 pcs	Taping
	Or autur	

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information cinitarian in this document nor grants any license to any intellectual property girbs or any other rights of representations with respect to the information in this document in this document or the purpose of the respect to the information in this document in the property of the control in the property of the control in the document in the docum

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd.

10th Floor, No.99, Fushing North Road, Taipei, Taiwar Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510