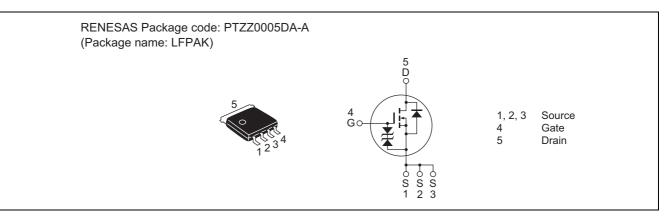


HAT2142H

Silicon N Channel Power MOS FET Power Switching


REJ03G1194-0800 Rev.8.00 Jul 29, 2009

Features

- Capable of 7 V gate drive
- Low drive current
- High density mounting
- Low on-resistance

 $R_{DS (on)} = 35 \text{ m}\Omega \text{ typ.}$ (at $V_{GS} = 10 \text{ V}$)

Outline

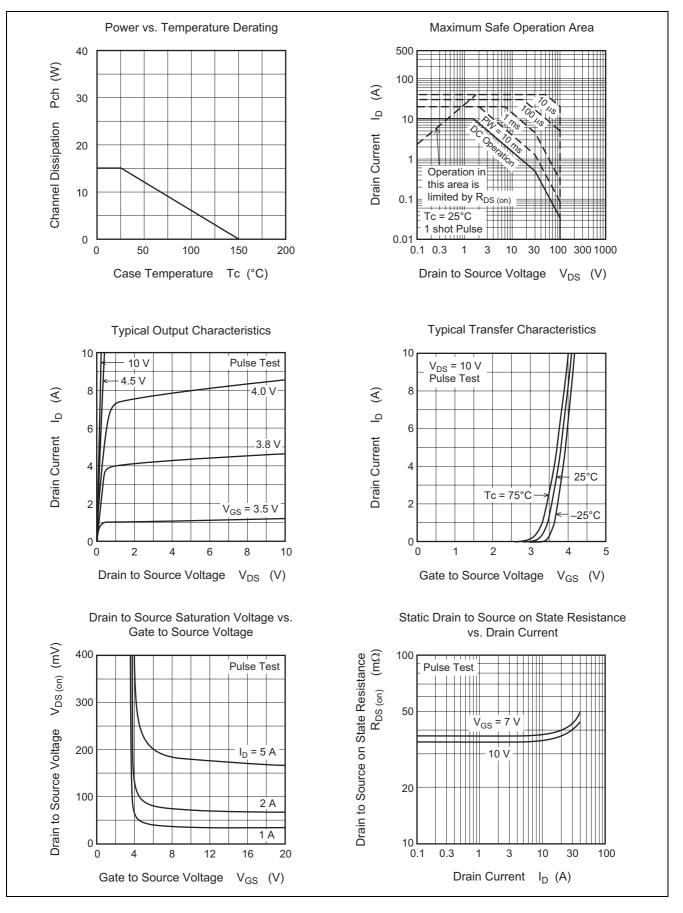
Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

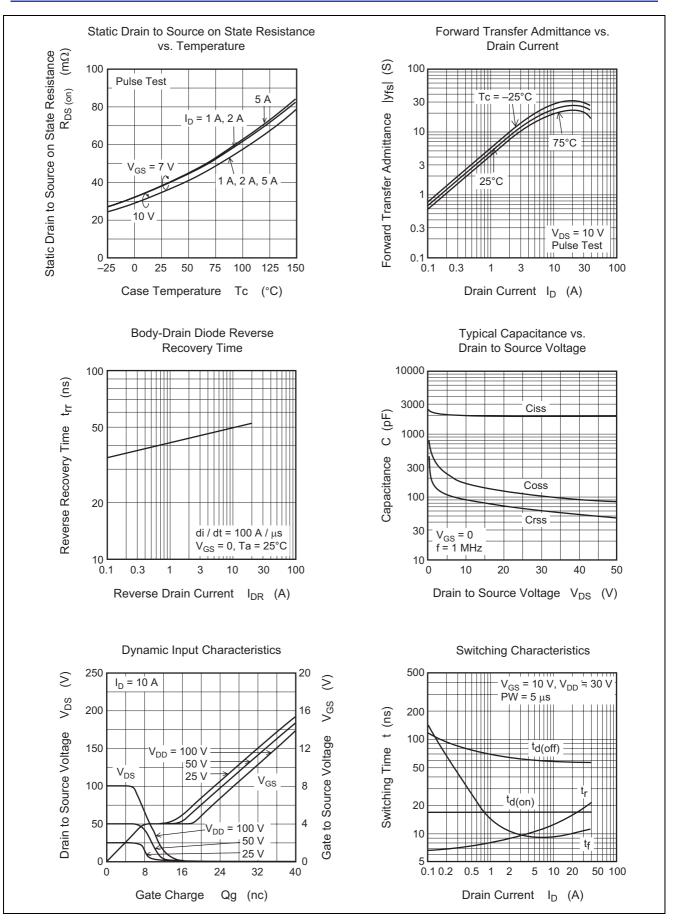
Item	Symbol	Value	Unit
Drain to source voltage	V _{DSS}	100	V
Gate to source voltage	V _{GSS}	±20	V
Drain current	ID	10	А
Drain peak current	I _{D (pulse)} Note 1	40	А
Body-drain diode reverse drain current	I _{DR}	10	А
Avalanche current	I _{AP} Note 3	10	А
Avalanche energy	E _{AR} Note 3	10	mJ
Channel dissipation	Pch Note 2	15	W
Channel temperature	Tch	150	°C
Storage temperature	Tstg	-55 to +150	°C

Notes: 1. $PW \leq 10 \ \mu s, \ duty \ cycle \leq 1\%$

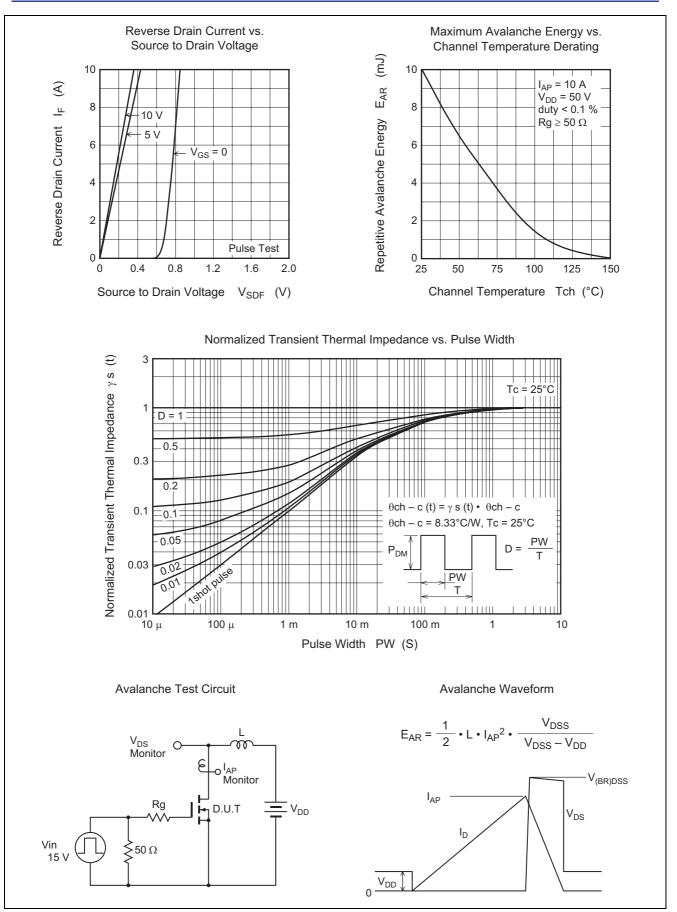
2. Tc = 25 °C

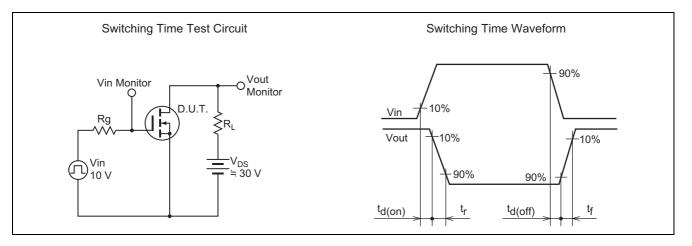

3. Value at Tch = 25°C, Rg \geq 50 Ω

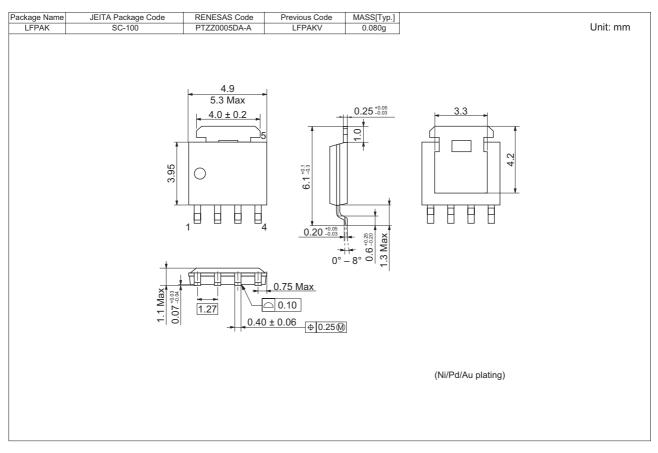
Electrical Characteristics


						$(Ta = 25^{\circ}C)$
ltem	Symbol	Min	Тур	Max	Unit	Test Conditions
Drain to source breakdown voltage	V (BR) DSS	100	—	_	V	$I_D = 10 \text{ mA}, V_{GS} = 0$
Gate to source breakdown voltage	V (BR) GSS	±20	—	_	V	$I_{G} = \pm 100 \ \mu A, \ V_{DS} = 0$
Gate to source leak current	I _{GSS}	_	_	±10	μA	$V_{GS}=\pm 16~V,~V_{DS}=0$
Zero gate voltage drain current	I _{DSS}	—		1	μA	$V_{DS} = 100 V, V_{GS} = 0$
Gate to source cutoff voltage	V _{GS (off)}	2.0		3.5	V	$V_{DS} = 10 \text{ V}, I_D = 1 \text{ mA}$
Static drain to source on state	R _{DS (on)}	—	35	44	mΩ	$I_D = 5 \text{ A}, V_{GS} = 10 \text{ V}^{Note 4}$
resistance	R _{DS (on)}	—	38	51	mΩ	$I_D = 5 \text{ A}, V_{GS} = 7 \text{ V}^{Note 4}$
Forward transfer admittance	y _{fs}	9	15		S	$I_D = 5 \text{ A}, V_{DS} = 10 \text{ V}^{Note 4}$
Input capacitance	Ciss	—	2000		pF	V _{DS} = 10 V
Output capacitance	Coss	—	175	_	pF	$V_{GS} = 0$
Reverse transfer capacitance	Crss	—	90	-	pF	f = 1 MHz
Total gate charge	Qg	—	32	-	nC	V _{DD} = 50 V
Gate to source charge	Qgs	—	8.0	_	nC	V _{GS} = 10 V
Gate to drain charge	Qgd	—	7.5	-	nC	I _D = 10 A
Turn-on delay time	t _{d (on)}	—	18	_	ns	$V_{GS} = 10 \text{ V}, I_D = 5 \text{ A}$
Rise time	tr	—	11	_	ns	$V_{DD}\cong 30~V$
Turn-off delay time	t _{d (off)}	—	60	_	ns	$R_L = 6 \Omega$
Fall time	t _f	—	9		ns	Rg = 4.7 Ω
Body-drain diode forward voltage	V _{DF}	—	0.82	1.07	V	$I_F = 10 \text{ A}, V_{GS} = 0^{Note 4}$
Body-drain diode reverse	t _{rr}	_	50	—	ns	$I_F = 10 \text{ A}, V_{GS} = 0$
recovery time						di _F /dt = 100 A/µs

Note: 4. Pulse test


Main Characteristics


RENESAS


RENESAS

RENESAS

Package Dimensions

Ordering Information

Part Name	Quantity	Shipping Container
HAT2142H-EL-E	2500 pcs	Taping

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the intersect on the information in this document.
 The document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the tendology described in this document.
 The order data. diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document with a pay with use. When exporting the products or the tendology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 All information included in this document, but has product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document, when the set of the date their document, we have been purchasing or using any Renesas products for the tendes of the date their document.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a state of the total system before deciding about the applicability of the total system before deciding about the applicability of the sease as indice and their document.
 When using or otherwise reliability of that describes the date.
 When using or otherwise reliability of the sease associable applications. Renesas products are not designed on tende of the sease of the tendes applicability or

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com