inter_{sil}"

HCTS373MS

Radiation Hardened Octal Transparent Latch, Three-State

Features

- 3 Micron Radiation Hardened CMOS SOS
- Total Dose 200K RAD (Si)
- SEP Effective LET No Upsets: >100 MEV-cm²/mg
- Single Event Upset (SEU) Immunity < 2 x 10⁻⁹ Errors/ Bit-Day (Typ)
- Dose Rate Survivability: >1 x 10¹² RAD (Si)/s
- Dose Rate Upset >10¹⁰ RAD (Si)/s 20ns Pulse
- Latch-Up Free Under Any Conditions
- Fanout (Over Temperature Range)
 - Bus Driver Outputs 15 LSTTL Loads
- Military Temperature Range: -55°C to +125°C
- Significant Power Reduction Compared to LSTTL ICs
- DC Operating Voltage Range: 4.5V to 5.5V
- LSTTL Input Compatibility
 - VIL = 0.8V Max
 - VIH = VCC/2 Min
- Input Current Levels Ii \leq 5µA at VOL, VOH

Description

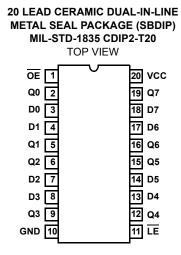
The Intersil HCTS373MS is a Radiation Hardened octal transparent three-state latch with an active-low output enable. The outputs are transparent to the inputs when the Latch Enable (\overline{LE}) is HIGH. When the Latch Enable (\overline{LE}) goes LOW, the data is latched. The Output Enable (\overline{OE}) controls the three-state outputs. When the Output Enable (\overline{OE}) is HIGH, the outputs are in the high impedance state. The latch operation is independent of the state of the Output Enable.

The HCTS373MS utilizes advanced CMOS/SOS technology to achieve high-speed operation. This device is a member of radiation hardened, high-speed, CMOS/SOS Logic Family.

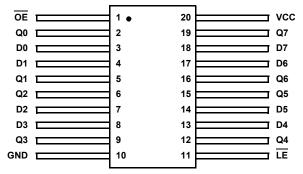
The HCTS373MS is supplied in a 20 lead Ceramic flatpack (K suffix) or a SBDIP Package (D suffix).

Suffix) or a SBDIP Package (D suffix). Ordering Information Free Package Package PART NUMBER TEMPERATURE RANGE SCREENING LEVEL PACKAGE HCTS373DMSR -55°C to +125°C Intersil Class S Equivalent 20 Lead SBDIP HCTS373KMSR -55°C to +125°C Intersil Class S Equivalent 20 Lead Ceramic Flatpack

+25°C


+25°C

+25°C


Rev 2.00 August 1995

FN2131

Pinouts

20 Lead SBDIP

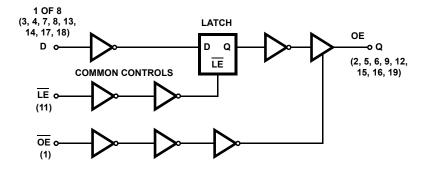
Die

20 Lead Ceramic Flatpack

HCTS373D/Sample

HCTS373K/Sample

HCTS373HMSR


Sample

Sample

Die

DATASHEET

Functional Diagram

TR	UTH	ТΑ	BL	Е
				-

OE	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	l	L
L	L	h	Н
Н	Х	Х	Z

H = High Level, L = Low Level

X = Immaterial, Z = High Impedance

I = Low voltage level prior to the high-to-low latch enable transition

h = High voltage level prior to the high-to-low latch enable transition

Absolute Maximum Ratings

Reliability Information	
-------------------------	--

Supply Voltage (VCC)	
Input Voltage Range, All Inputs0.5V to VCC +0.5V	
DC Input Current, Any One Input±10mA	
DC Drain Current, Any One Output	
(All Voltage Reference to the VSS Terminal)	
Storage Temperature Range (TSTG)65°C to +150°C	
Lead Temperature (Soldering 10sec)+265°C	
Junction Temperature (TJ) +175°C	
ESD Classification Class 1	

Thermal Resistance	θ_{JA}	θ_{JC}
SBDIP Package	72°C/W	24°C/W
Ceramic Flatpack Package	107 ⁰ C/W	28°C/W
Maximum Package Power Dissipation at +12	5 ^o C Ambien	t
SBDIP Package		0.69W
Ceramic Flatpack Package		0.47W
If device power exceeds package dissipation	capability, pr	ovide heat
sinking or derate linearly at the following rate:		
SBDIP Package	1	3.9mW/ ^o C
Ceramic Flatpack Package		9.3mW/ ^o C

CAUTION: As with all semiconductors, stress listed under "Absolute Maximum Ratings" may be applied to devices (one at a time) without resulting in permanent damage. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The conditions listed under "Electrical Performance Characteristics" are the only conditions recommended for satisfactory device operation.

Operating Conditions

Supply Voltage (VCC)	+4.5V to +5.5V
Input Rise and Fall Times at VCC = 4.5V (TR, TF) $$.	500ns Max
Operating Temperature Range (T _A)	55°C to +125°C

Input Low Voltage (VIL)	0.0V to 0.8V
Input High Voltage (VIH)	VCC/2 to VCC

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP		LIMITS		
PARAMETER	SYMBOL	(NOTE 1) CONDITIONS	A SUB- GROUPS	TEMPERATURE	MIN	MAX	UNITS
Quiescent Current	ICC	VCC = 5.5V,	1	+25°C	-	40	μA
		VIN = VCC or GND	2, 3	+125°C, -55°C	-	750	μA
Output Current	IOL	VCC = 4.5V, VIH = 4.5V,	1	+25°C	7.2	-	mA
(Sink)		VOUT = 0.4V, VIL = 0V	2, 3	+125°C, -55°C	6.0	-	mA
Output Current	IOH	VCC = 4.5V, VIH = 4.5V,	1	+25°C	-7.2	-	mA
(Source)		VOUT = VCC - 0.4V, VIL = 0V	2, 3	+125°C, -55°C	-6.0	-	mA
Output Voltage Low	VOL	VCC = 4.5V, VIH = 2.25V, IOL = 50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
		VCC = 5.5V, VIH = 2.75V, IOL = 50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
Output Voltage High	VOH	VCC = 4.5V, VIH = 2.25V, IOH = -50µA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
		VCC = 5.5V, VIH = 2.75V, IOH = -50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
Input Leakage	IIN	VCC = 5.5V, VIN = VCC or	1	+25°C	-	±0.5	μA
Current		GND	2, 3	+125°C, -55°C	-	±5.0	μA
Output Tri State	IOZ	VCC = 5.5V, VO = 0V or	1	+25°C	-	±1.0	μA
Leakage	_eakage	VCC	2, 3	+125°C, -55°C		±50	μA
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 2.25V, VIL = 0.8V (Note 2)	7, 8A, 8B	+25°C, +125°C, -55°C	-	-	-

NOTES:

1. All voltages reference to device GND.

2. For functional tests VO \ge 4.0V is recognized as a logic "1", and VO \le 0.5V is recognized as a logic "0".

			GROUP		LIMITS		
PARAMETER	SYMBOL	(NOTES 1, 2) CONDITIONS	A SUB- GROUPS	TEMPERATURE	MIN	МАХ	UNITS
Data to Qn	TPLH	VCC = 4.5V	9	+25°C	2	19	ns
			10, 11	+125°C, -55°C	2	24	ns
	TPHL	VCC = 4.5V	9	+25°C	2	26	ns
			10, 11	+125°C, -55°C	2	30	ns
LE to Qn	TPLH	VCC = 4.5V	9	+25°C	2	27	ns
			10, 11	+125°C, -55°C	2	30	ns
	TPHL	VCC = 4.5V	9	+25°C	2	30	ns
			10, 11	+125°C, -55°C	2	34	ns
Enable to Output	TPZL	VCC = 4.5V	9	+25°C	2	32	ns
			10, 11	+125°C, -55°C	2	36	ns
	TPZH	VCC = 4.5V	9	+25°C	2	26	ns
			10, 11	+125°C, -55°C	2	29	ns
	TPLZ,	VCC = 4.5V	9	+25°C	2	22	ns
	TPHZ		10, 11	+125°C, -55°C	2	25	ns

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTES:

1. All voltages referenced to device GND.

2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V.

					LIN	NITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS	
Capacitance Power	CPD	VCC = 5.0V, f = 1MHz	1	+25°C	-	57	pF	
Dissipation			1	+125°C, -55°C	-	57	pF	
Input Capacitance	CIN	VCC = 5.0V, f = 1MHz	1	+25°C	-	10	pF	
			1	+125°C, -55°C	-	10	pF	
Output Transition	TTHL			1	+25°C	-	12	ns
Time	TTLH		1	+125°C, -55°C	-	18	ns	
Setup Time Data to	TSU	VCC = 4.5V	1	+25°C	13	-	ns	
LE			1	+125°C, -55°C	20	-	ns	
Hold Time Data to	ТН	VCC = 4.5V	1	+25°C	10	-	ns	
LE		1	+125°C, -55°C	15	-	ns		
Pulse Width LE	TW	VCC = 4.5V	1	+25°C	16	-	ns	
			1	+125°C, -55°C	24	-	ns	

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTE:

1. The parameters listed in Table 3 are controlled via design or process parameters. Min and Max Limits are guaranteed but not directly tested. These parameters are characterized upon initial design release and upon design changes which affect these characteristics.

		(NOTES 1, 2)		200K RAD LIMITS		
PARAMETER	SYMBOL	CONDITIONS	TEMPERATURE	MIN	MAX	UNITS
Quiescent Current	ICC	VCC = 5.5V, VIN = VCC or GND	+25°C	-	0.75	mA
Output Current (Sink)	IOL	VCC = 4.5V, VIN = VCC or GND, VOUT = 0.4V	+25°C	6.0	-	mA
Output Current (Source)	IOH	VCC = 4.5V, VIN = VCC or GND, VOUT = VCC -0.4V	+25ºC	-6.0	-	mA
Output Voltage Low	VOL	VCC = 4.5V and 5.5V, VIH = VCC/2, VIL = 0.8V, IOL = 50µA	+25°C	-	0.1	V
Output Voltage High	VOH	VCC = 4.5V and 5.5V, VIH = VCC/2, VIL = 0.8V, IOH = -50 μA	+25°C	VCC -0.1	-	V
Input Leakage Current	IIN	VCC = 5.5V, VIN = VCC or GND	+25°C	-	±5	μA
Three-State Output Leakage Current	IOZ	Applied Voltage = 0V or VCC, VCC = 5.5V	+25°C	-	±50	μΑ
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 2.25V, VIL = 0.8V, (Note 3)	+25ºC	-	-	-
Data to Qn	TPLH	VCC = 4.5V	+25°C	2	24	ns
	TPHL	VCC = 4.5V	+25°C	2	30	ns
LE to Qn	TPLH	VCC = 4.5V	+25°C	2	30	ns
	TPHL	VCC = 4.5V	+25°C	2	34	ns
Enable to Output	TPZL	VCC = 4.5V	+25°C	2	36	ns
	TPZH	VCC = 4.5V	+25°C	2	29	ns
Disable to Output	TPLZ, TPHZ	VCC = 4.5V	+25°C	2	25	ns

TABLE 4. DC POST RADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS
TABLE 4. DOT OUT NADIATION ELECTRICAL TEN ORMANDE OTANAOTENOTION

NOTES:

1. All voltages referenced to device GND.

2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V.

3. For functional tests VO \ge 4.0V is recognized as a logic "1", and VO \le 0.5V is recognized as a logic "0".

PARAMETER	GROUP B SUBGROUP	DELTA LIMIT
ICC	5	12μΑ
IOL/IOH	5	-15% of 0 Hour
IOZL/IOZH	5	±200nA

TABLE 6. APPLICABLE SUBGROUPS

CONFOR	MANCE GROUPS	METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Prebu	ırn-ln)	100%/5004	1, 7, 9	ICC, IOL/H
Interim Test I (Po	stburn-In)	100%/5004	1, 7, 9	ICC, IOL/H
Interim Test II (Po	ostburn-In)	100%/5004	1, 7, 9	ICC, IOL/H
PDA		100%/5004	1, 7, 9, Deltas	
Interim Test III (P	Postburn-In)	100%/5004	1, 7, 9	ICC, IOL/H
PDA		100%/5004	1, 7, 9, Deltas	
Final Test		100%/5004	2, 3, 8A, 8B, 10, 11	
Group A (Note 1)		Sample/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample/5005	1, 7, 9	
Group D		Sample/5005	1, 7, 9	

NOTE:

1. Alternate Group A testing in accordance with method 5005 of MIL-STD-883 may be exercised.

TABLE 7. TOTAL DOSE IRRADIATION

CONFORMANCE		TEST		READ AND	D RECORD
GROUPS	METHOD	PRE RAD	POST RAD	PRE RAD	POST RAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4 (Note 1)

NOTE:

1. Except FN test which will be performed 100% Go/No-Go.

TABLE 8. STATIC AND DYNAMIC BURN-IN TEST CONNECTIONS

				OSCIL	LATOR
OPEN	GROUND	1/2 VCC = 3V \pm 0.5V	VCC = 6V \pm 0.5V	50kHz	25kHz
STATIC BURN-IN I TE	STATIC BURN-IN I TEST CONNECTIONS (Note 1)				
2, 5, 6, 9, 12, 15, 16, 19	1, 3, 4, 7, 8, 10, 11, 13, 14, 17, 18	-	20	-	-
STATIC BURN-IN II TEST CONNECTIONS (Note 1)					
2, 5, 6, 9, 12, 15, 16, 19	10	-	1, 3, 4, 7, 8, 11, 13, 14, 17, 18, 20	-	-
DYNAMIC BURN-IN TEST CONNECTIONS (Note 2)					
-	1, 10	2, 5, 6, 9, 12, 15, 16, 19	20	11	3, 4, 7, 8, 13, 14, 17, 18

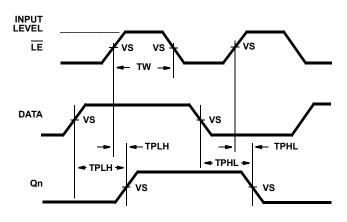
NOTES:

1. Each pin except VCC and GND will have a resistor of $10 \text{k}\Omega \pm 5\%$ for static burn-in

2. Each pin except VCC and GND will have a resistor of $680\Omega\pm5\%$ for dynamic burn-in

TABLE 9. IRRADIATION TEST CONNECTIONS

OPEN	GROUND	VCC = 5V \pm 0.5V
2, 5, 6, 9, 12, 15, 16, 19	10	1, 3, 4, 7, 8, 11, 13, 14, 17, 18, 20


NOTE: Each pin except VCC and GND will have a resistor of $47K\Omega \pm 5\%$ for irradiation testing. Group E, Subgroup 2, sample size is 4 dice/wafer 0 failures.

Intersil Space Level Product Flow - 'MS'	
 Wafer Lot Acceptance (All Lots) Method 5007 (Includes SEM) GAMMA Radiation Verification (Each Wafer) Method 1019, 4 Samples/Wafer, 0 Rejects 100% Nondestructive Bond Pull, Method 2023 Sample - Wire Bond Pull Monitor, Method 2011 Sample - Die Shear Monitor, Method 2019 or 2027 100% Internal Visual Inspection, Method 2010, Condition A 	 100% Interim Electrical Test 1 (T1) 100% Delta Calculation (T0-T1) 100% Static Burn-In 2, Condition A or B, 24 hrs. min., +125°C min., Method 1015 100% Interim Electrical Test 2 (T2) 100% Delta Calculation (T0-T2) 100% PDA 1, Method 5004 (Notes 1and 2) 100% Duramia Pure In Condition D, 240 hrs. (125°C or
 100% Temperature Cycle, Method 1010, Condition C, 10 Cycles 100% Constant Acceleration, Method 2001, Condition per Method 5004 100% PIND, Method 2020, Condition A 100% External Visual 100% Serialization 100% Initial Electrical Test (T0) 100% Static Burn-In 1, Condition A or B, 24 hrs. min., +125°C min., Method 1015 	 100% Dynamic Burn-In, Condition D, 240 hrs., +125°C or Equivalent, Method 1015 100% Interim Electrical Test 3 (T3) 100% Delta Calculation (T0-T3) 100% PDA 2, Method 5004 (Note 2) 100% Final Electrical Test 100% Fine/Gross Leak, Method 1014 100% Radiographic, Method 2012 (Note 3) 100% External Visual, Method 2009 Sample - Group A, Method 5005 (Note 4) 100% Data Package Generation (Note 5)

NOTES:

- 1. Failures from Interim electrical test 1 and 2 are combined for determining PDA 1.
- 2. Failures from subgroup 1, 7, 9 and deltas are used for calculating PDA. The maximum allowable PDA = 5% with no more than 3% of the failures from subgroup 7.
- 3. Radiographic (X-Ray) inspection may be performed at any point after serialization as allowed by Method 5004.
- 4. Alternate Group A testing may be performed as allowed by MIL-STD-883, Method 5005.
- 5. Data Package Contents:
 - Cover Sheet (Intersil Name and/or Logo, P.O. Number, Customer Part Number, Lot Date Code, Intersil Part Number, Lot Number, Quantity).
 - Wafer Lot Acceptance Report (Method 5007). Includes reproductions of SEM photos with percent of step coverage.
 - GAMMA Radiation Report. Contains Cover page, disposition, Rad Dose, Lot Number, Test Package used, Specification Numbers, Test equipment, etc. Radiation Read and Record data on file at Intersil.
 - X-Ray report and film. Includes penetrometer measurements.
 - Screening, Electrical, and Group A attributes (Screening attributes begin after package seal).
 - · Lot Serial Number Sheet (Good units serial number and lot number).
 - Variables Data (All Delta operations). Data is identified by serial number. Data header includes lot number and date of test.
 - The Certificate of Conformance is a part of the shipping invoice and is not part of the Data Book. The Certificate of Conformance is signed by an authorized Quality Representative.

AC Timing Diagrams

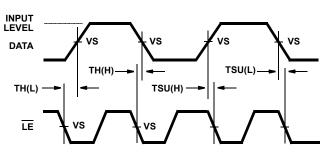
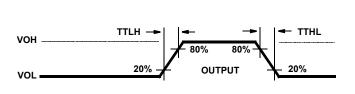
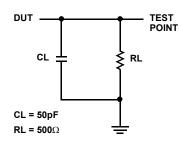



FIGURE 2. LATCH ENABLE PREREQUISITE TIMES


AC VOLTAGE LEVELS

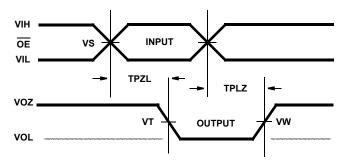
PARAMETER	HCTS	UNITS
VCC	4.50	V
VIH	3.00	V
VS	1.30	V
VIL	0	V
GND	0	V

FIGURE 3. DATA SET-UP AND HOLD TIMES

© Copyright Intersil Americas LLC 2002. All Rights Reserved.

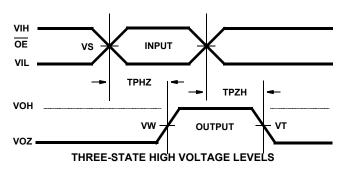
All trademarks and registered trademarks are the property of their respective owners.

For additional products, see <u>www.intersil.com/en/products.html</u>

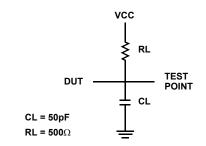

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

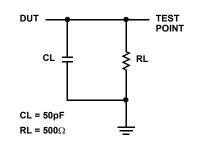
For information regarding Intersil Corporation and its products, see www.intersil.com


Three-State Low Timing Diagram

THREE-STATE LOW VOLTAGE LEVELS


PARAMETER	HCTS	UNITS
VCC	4.50	V
VIH	3.00	V
VS	1.30	V
VT	1.30	V
VW	0.90	V
VIL	0	V
GND	0	V

Three-State High Timing Diagram



PARAMETER	HCTS	UNITS
VCC	4.50	V
VIH	3.00	V
VS	1.30	V
VT	1.30	V
VW	3.60	V
VIL	0	V
GND	0	V

Three-State Load Circuit

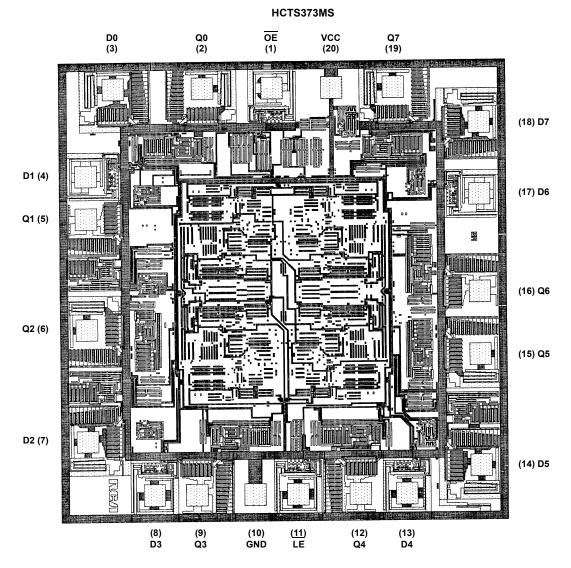
Three-State Load Circuit

Die Characteristics

DIE DIMENSIONS: 108 x 106 mils

METALLIZATION: Type: SiAl Metal Thickness: 11kÅ ± 1kÅ

GLASSIVATION:


Metallization Mask Layout

Type: SiO₂ Thickness: 13kÅ \pm 2.6kÅ

WORST CASE CURRENT DENSITY: $2.0 \times 10^5 \text{A/cm}^2$

BOND PAD SIZE: 100μm x 100μm

4 x 4 mils

NOTE: The die diagram is a generic plot from a similar HCS device. It is intended to indicate approximate die size and bond pad location. The mask series for the HCTS373 is TA14403A.

intersil