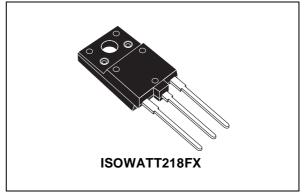


HD1750FX

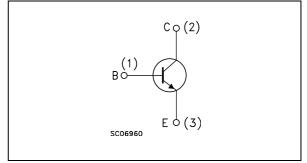
HIGH VOLTAGE NPN POWER TRANSISTOR FOR HIGH DEFINITION AND NEW SUPER-SLIM CRT DISPLAYS

- STATE-OF-THE-ART TECHNOLOGY: DIFFUSED COLLECTOR "ENHANCED GENERATION" EHVS1
- WIDER RANGE OF OPTIMUM DRIVE CONDITIONS
- LESS SENSITIVE TO OPERATING TEMPERATURE VARIATION
- FULLY INSULATED POWER PACKAGE U.L. COMPLIANT

APPLICATIONS


 HORIZONTAL DEFLECTION OUTPUT FOR DIGITAL TV, HDTV AND HIGH-END MONITORS

DESCRIPTION


The device is manufactured using Diffused Collector in Planar technology adopting "Enhance High Voltage Structure" (EHVS1) developed to fit High-Definition CRT displays.

The new HD product series show improved silicon efficiency bringing updated performance to the Horizontal Deflection stage.

Figure 1: Package

Figure 2: Internal Schematic Diagram

Table 1: Order Codes

Part Number	Marking	Package	Packaging
HD1750FX	HD1750FX	ISOWATT218FX	TUBE

1/8

HD1750FX

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	1700	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	800	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	10	V
Ι _C	Collector Current	24	А
I _{CM}	Collector Peak Current (t _p < 5ms)	36	Α
Ι _Β	Base Current	12	Α
I _{BM}	Base Peak Current (t _p < 5ms)	18	А
P _{tot}	Total Dissipation at $T_{C} = 25 \ ^{\circ}C$	75	W
V _{ins}	Insulation Withstand Voltage (RMS) from All Three Leads to External Heatsink	2500	V
T _{stg}	Storage Temperature	-65 to 150	°C
ТJ	Max. Operating Junction Temperature	150	°C

Table 2: Absolute Maximum Ratings

Table 3: Thermal Data

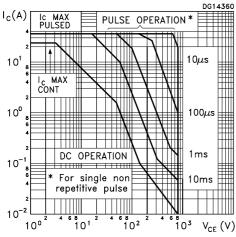
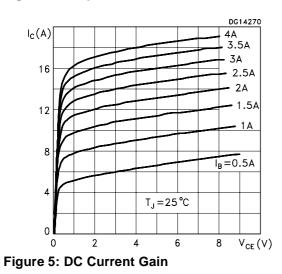

R _{thj-case} Thermal Resistance Junction-Case	ax 1.67	°C/W
--	---------	------

Table 4: Electrical Characteristics ($T_{case} = 25 \ ^{o}C$ unless otherwise specified)


Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
ICES	Collector Cut-off Current	V _{CE} = 1700 V				0.2	mA
	(V _{BE} = 0)	V _{CE} = 1700 V	T _C = 125 ^o C			2	mA
I _{EBO}	Emitter Cut-off Current	V _{EB} = 5 V				10	μA
	$(I_{\rm C} = 0)$						
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage	I _C = 10 mA		800			V
	$(I_{B} = 0)$						
V _{EBO}	Emitter-Base Voltage	I _E = 10 mA		10			V
	$(I_{\rm C}=0)$						
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 12 A	I _B = 3 A			3	V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 12 A	I _B = 3 A		0.95	1.5	V
h _{FE}	DC Current Gain	I _C = 1 A	$V_{CE} = 5 V$		30		
		I _C = 12 A	$V_{CE} = 5 V$	6.5		9.5	
	INDUCTIVE LOAD	I _C = 12 A	f _h = 31250 Hz				
t _s	Storage Time	I _{B(on)} = 1.9 A	I _{B(off)} = -8.1 A		3.1	3.8	μs
t _f	Fall Time	V _{CE(fly)} = 1320 V	V _{BE(off)} = -2.7 V		350	500	ns
		$L_{BB(off)} = 0.8 \ \mu H$	22(0)				
	INDUCTIVE LOAD	I _C = 6.5 A	f _h = 100 kHz				
t _s	Storage Time	I _{B(on)} = 1.2 A	I _{B(off)} = -5.85 A		1.7	2	μs
t _f	Fall Time	$V_{CE(fly)} = 1220 V$	$V_{BE(off)} = -2.7 V$		180	250	ns
		$L_{BB(off)} = 0.25 \ \mu H$					

* Pulsed: Pulsed duration = 300 μ s, duty cycle \leq 1.5 %.

Figure 3: Safe Operating Area

Figure 4: Output Chatacterisctics

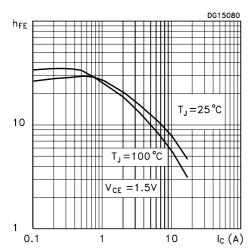
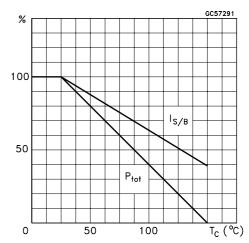
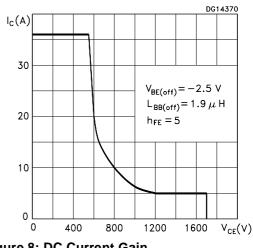
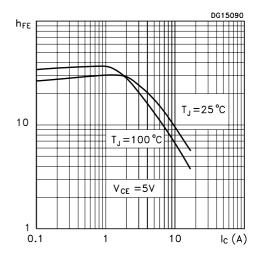


Figure 6: Derating Curve

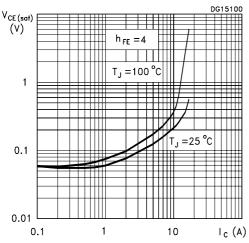

Figure 7: Reverse Biased SOA

Figure 9: Collector-Emitter Saturation Voltage

Figure 10: Power Losses

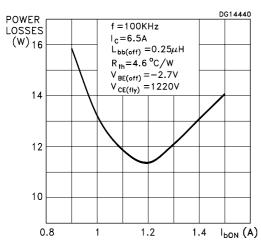
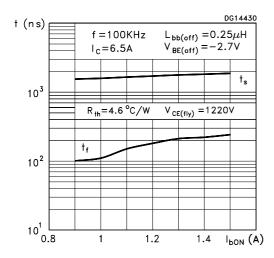



Figure 11: Inductive Load Switching Time

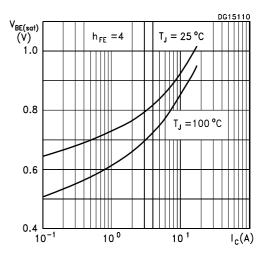


Figure 13: Power Losses

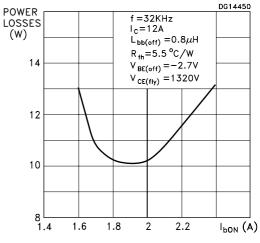
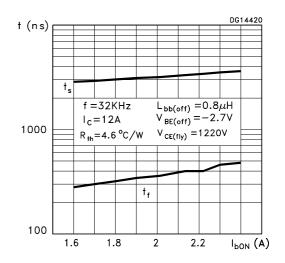
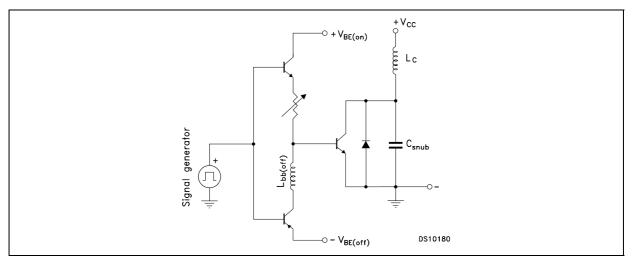
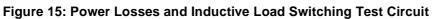
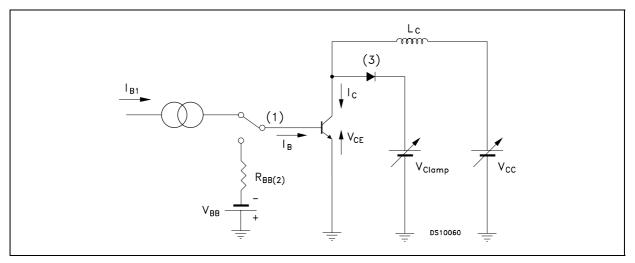
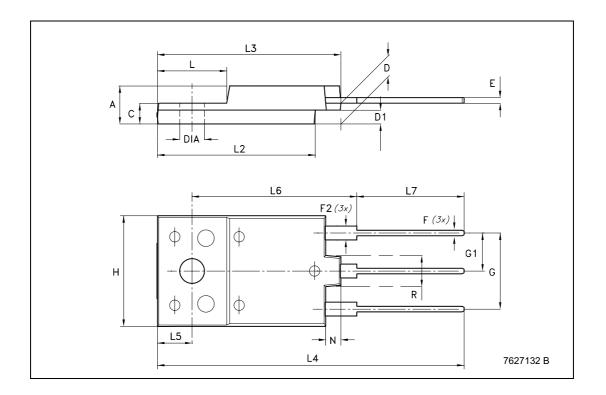




Figure 14: Inductive Load Switching Time


Figure 16: Reverse Biased Safe Operating Area Test Circuit

ISOWATT218FX MECHANICAL DATA

5.04		mm.				
DIM.	MIN.	ТҮР	MAX.			
A	5.30		5.70			
С	2.80		3.20			
D	3.10		3.50			
D1	1.80		2.20			
E	0.80		1.10			
F	0.65		0.95			
F2	1.80		2.20			
G	10.30		11.50			
G1		5.45				
Н	15.30		15.70			
L	9		10.20			
L2	22.80		23.20			
L3	26.30		26.70			
L4	43.20		44.40			
L5	4.30		4.70			
L6	24.30		24.70			
L7	14.60		15			
N	1.80		2.20			
R	3.80		4.20			
Dia	3.40		3.80			

Figure 5: Revision History

Release Date	Version	Change Designator
30-May-2005	1	Initial Release.
19-Dec-2005	2	New h _{FE} value in table 4

۲J/

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

8/8