HD66214T (Micro-TAB)

(80-Channel Column Driver in Micro-TCP)

HITACHI

Description

The HD66214T, the column driver for a large liquid crystal graphic display, features as many as 80 LCD outputs powered by 80 internal LCD drive circuits. This device latches 4-bit parallel data sent from an LCD controller, and generates LCD drive signals. In standby mode provided by its internal standby function, only one drive circuit operates, lowering power dissipation. The HD66214, packaged in an 8-mm-wide micro-tape carrier package (micro-TCP), enables a compact LCD system with a narrower frame (peripheral areas for LCD drivers)—about half as large as that os an existing system. The HD66214T is a low power dissipation device powered by 2.7 to 5.5 V suitable for battery-driven portable equipment such as personal notebook computers and palm-top personal computers.

Features

• Duty cycle: 1/64 to 1/240

· High voltage

LCD drive: 10 to 28 V

· High clock speed

— 8 MHz max under 5-V operation

— 4 MHz max under 3-V operation

• Display off function

· Internal automatic chip enable signal generator

• Various LCD controller interfaces

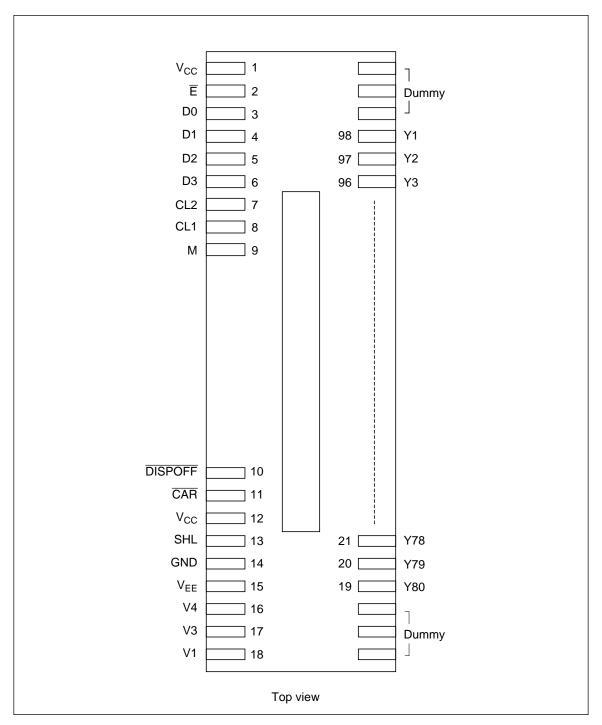
 LCTC series: HD63645, HD64645, HD64646

LVIC series: HD66840, HD66841

— CLINE: HD66850

• 98-pin TCP

Ordering Information


Type No.	Voltage Range	Outer Lead Pitch 1	Outer Lead Pitch 2	Device Length
HD66214TA1	2.7 to 5.5 V	0.15 mm	0.80 mm	3 sprocket holes
HD66214TA2	2.7 to 5.5 V	0.18 mm	0.80 mm	3 sprocket holes
HD66214TA3	2.7 to 5.5 V	0.20 mm	0.80 mm	3 sprocket holes
HD66214TA6	2.7 to 5.5 V	0.20 mm	0.45 mm	3 sprocket holes
HD66214TA9L	2.7 to 5.5 V	0.22 mm	0.45 mm	2 sprocket holes

Notes: 1. Outer lead pitch 1 is for LCD drive output pins, and outer lead pitch 2 for the other pins.

- 2. Device length includes test pad areas.
- 3. Spacing between two sprocket holes is 4.75 mm.
- 4. Tape film is Upirex (a trademark of Ube Industries, Ltd.).
- 5. 35-mm-wide tape is used.
- 6. Leads are plated with Sn.
- 7. The details of TCP pattern are shown in "The Information of TCP."

Pin Arrangement

1016

Pin Description

Symbol	Pin No.	Pin Name	Input/Output	Classification
V _{CC}	1, 12	V _{CC}	_	Power supply
GND	14	GND	_	Power supply
V _{EE}	15	V_{EE}	_	Power supply
V1	18	V1	Input	Power supply
V3	17	V3	Input	Power supply
V4	16	V4	Input	Power supply
CL1	8	Clock 1	Input	Control signal
CL2	7	Clock 2	Input	Control signal
M	9	М	Input	Control signal
D ₀ –D ₃	3 to 6	Data 0 to data 3	Input	Control signal
SHL	13	Shift left	Input	Control signal
Ē	2	Enable	Input	Control signal
CAR	11	Carry	Output	Control signal
DISPOFF	10	Display off	Input	Control signal
Y1-Y80	19 to 98	Y1 to Y80	Output	LCD drive output

Pin Functions

Power Supply

 V_{CC} , V_{EE} , GND: V_{CC} –GND supplies power to the internal logic circuits. V_{CC} – V_{EE} supplies power to the LCD drive circuits.

V1, V3, V4: Supply different levels of power to drive the LCD. V1 and $V_{\rm EE}$ are selected levels, and V3 and V4 are non-selected levels. See figure 1.

Control Signal

CL1: Inputs display data latch pulses for the line data latch circuit. The line data latch circuit latches display data input from the 4-bit latch circuit, and outputs LCD drive signals corresponding to the latched data, both at the falling edge of each CL1 pulse.

CL2: Inputs display data latch pulses for the 4-bit latch circuit. The 4-bit latch circuit latches display data input via D0–D3 at the falling edge of each CL2 pulse.

M: Changes LCD drive outputs to AC.

D0–D3: Input display data. High-voltage level of data corresponds to a selected level and turns an LCD pixel on, and low-voltage level data corresponds to a non-selected level and turns an LCD pixel off.

SHL: Shifts the destinations of display data output. See figure 2.

 $\overline{\mathbf{E}}$: A low $\overline{\mathbf{E}}$ enables the chip, and a high $\overline{\mathbf{E}}$ disables the chip.

 $\overline{\textbf{CAR}}$: Outputs the $\overline{\textbf{E}}$ signal to the next HD66214 if HD66214s are connected in cascade.

DISPOFF: A low **DISPOFF** sets LCD drive outputs Y1–Y80 to V1 level.

LCD Drive Output

Y1–Y80: Each Y outputs one of the four voltage levels V1, V3, V4, or V_{EE} , depending on a combination of the M signal and display data levels. See figure 3.

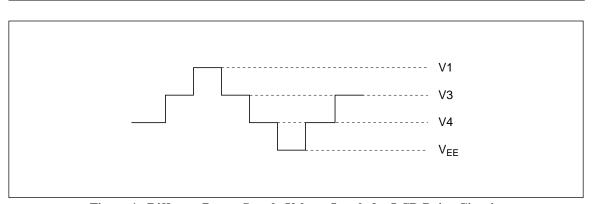


Figure 1 Different Power Supply Voltage Levels for LCD Drive Circuits

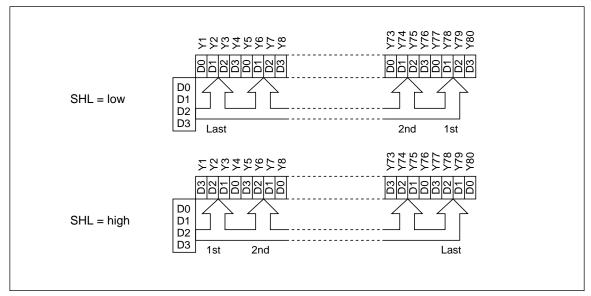


Figure 2 Selection of Destinations of Display Data Output

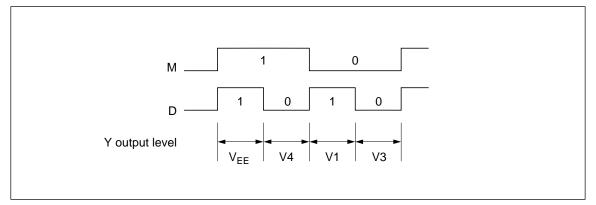


Figure 3 Selection of LCD Drive Output Level

Block Functions

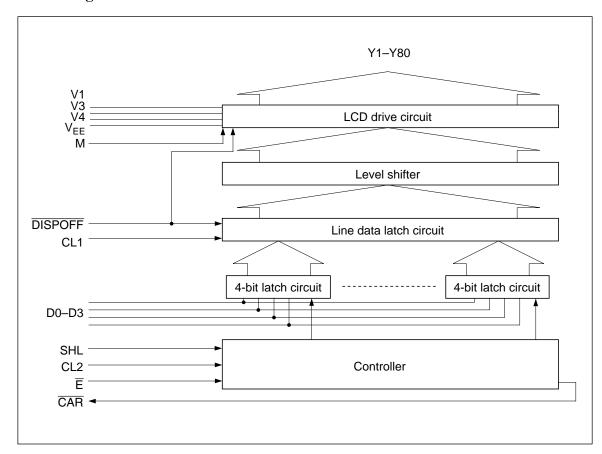
Controller: The controller generates the latch signal at the falling edge of each CL2 pulse for the 4-bit latch circuit.

4-Bit Latch Circuit

The 4-bit latch circuit latches 4-bit parallel data input via the D0 to D3 pins at the timing generated by the control circuit.

Line Data Latch Circuit

The 80-bit line data latch circuit latches data input from the 4-bit latch circuit, and outputs the latched data to the level shifter, both at the falling edge of each clock 1 (CL1) pulse.


Level Shifter

The level shifter changes 5-V signals into high-voltage signals for the LCD drive circuit.

LCD Drive Circuit

The 80-bit LCD drive circuit generates four voltage levels V1, V3, V4, and V_{EE} , for driving an LCD panel. One of the four levels is output to the corresponding Y pin, depending on a combination of the M signal and the data in the line data latch circuit.

Block Diagram

1020

Comparison of the HD66214 with the HD61104

Item	HD66214	HD61104
Clock speed	8.0 MHz max.	3.5 MHz max.
Display off function	Provided	Not provided
LCD drive voltage range	10 to 28 V	10 to 26 V
Relation between SHL and LCD output destinations	See figure 4	See figure 4
Relation between LCD output levels, M, and data	See figure 5	See figure 5
LCD drive V pins	V1, V3, V4 (V2 level is the same as V _{EE} level)	V1, V2, V3, V4
Storage temperature	−40 to 125°C	–55 to 125°C
Package	TCP (tape carrier package)	QFP (quad flat package)

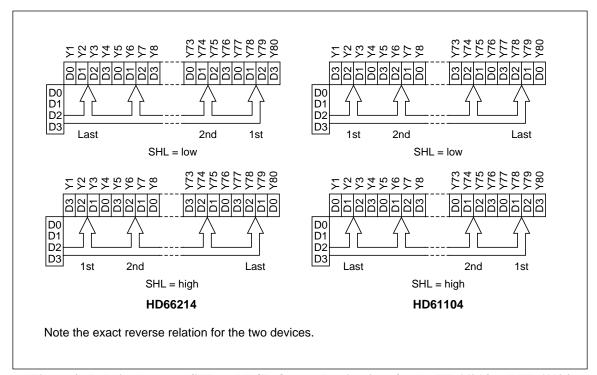


Figure 4 Relation between SHL and LCD Output Destinations for the HD66214 and HD61104

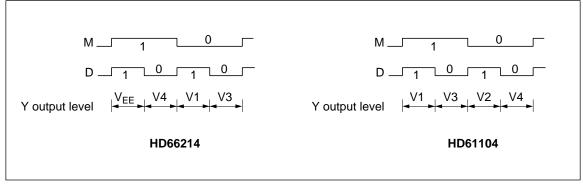
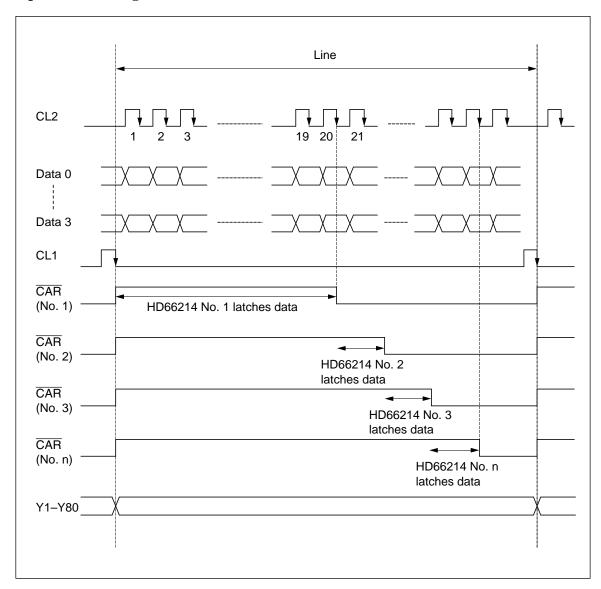
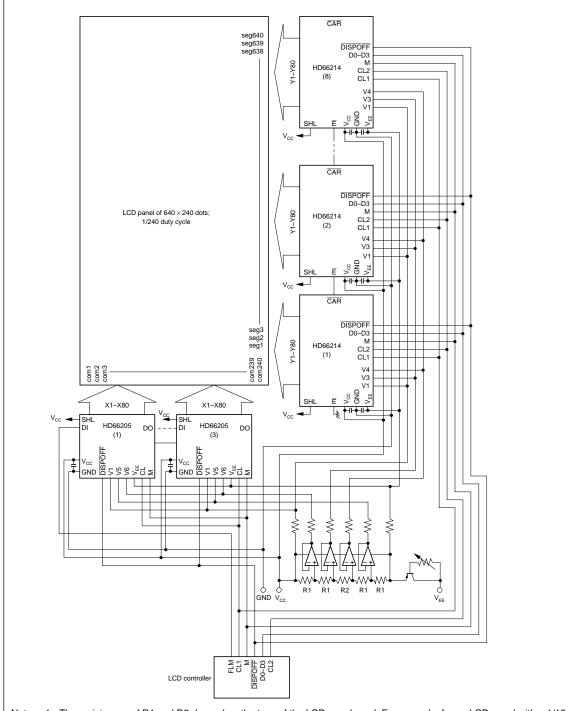




Figure 5 Relation between LCD Output Levels, M, and Data for the HD66214 and HD61104

Operation Timing

Application Example

Notes: 1. The resistances of R1 and R2 depend on the type of the LCD panel used. For example, for an LCD panel with a 1/15 bias, R1 and R2 must be 3 k Ω and 33 k Ω , respectively. That is, R1/(4-R1 + R2) should be 1/15.

2. To stabilize the power supply, place two $0.1-\mu F$ capacitors near each LCD driver: one between the V_{CC} and GND pins, and the other between the V_{CC} and V_{EE} pins.

Absolute Maximum Ratings

Item	Symbol	Rating	Unit	Notes
Power supply voltage for logic circuits	V_{CC}	-0.3 to +7.0	V	1
Power supply voltage for LCD drive circuits	V_{EE}	V_{CC} – 30.0 to V_{CC} + 0.3	V	
Input voltage 1	V_{T1}	-0.3 to $V_{CC} + 0.3$	V	1, 2
Input voltage 2	V_{T2}	V_{EE} – 0.3 to V_{CC} + 0.3	V	1, 3
Operating temperature	T _{opr}	-20 to +75	°C	
Storage temperature	T _{stg}	-40 to +125	°C	

Notes: 1. The reference point is GND (0 V).

- 2. Applies to pins CL1, CL2, M, SHL, E, D0-D3, DISPOFF.
- 3. Applies to pins V1, V3, and V4.
- 4. If the LSI is used beyond its absolute maximum ratings, it may be permanently damaged. It should always be used within its electrical characteristics in order to prevent malfunctioning or degradation of reliability.

Electrical Characteristics

DC Characteristics for the HD66214T ($V_{CC} = 5 \text{ V} \pm 10\%$, GND = 0 V, $V_{CC} - V_{EE} = 10$ to 28 V, and Ta = -20 to +75°C, unless otherwise noted)

Item	Symbol	Pins	Min	Тур	Max	Unit	Condition	Notes
Input high voltage	V _{IH}	1	$0.7 \times V_{CC}$	_	V_{CC}	V		
Input low voltage	V_{IL}	1	0	_	$0.3 \times V_{CC}$	V		
Output high voltage	V_{OH}	2	V _{CC} – 0.4	_	_	V	$I_{OH} = -0.4 \text{ mA}$	
Output low voltage	V_{OL}	2	_	_	0.4	V	$I_{OL} = 0.4 \text{ mA}$	
Vi–Yj on resistance	R _{ON}	3	_	_	4.0	kΩ	I _{ON} = 100 μA	1
Input leakage current 1	I _{IL1}	1	-1.0	_	1.0	μΑ	$V_{IN} = V_{CC}$ to GND	
Input leakage current 2	I _{IL2}	4	-25	_	25	μΑ	$V_{IN} = V_{CC}$ to V_{EE}	
Current consumption 1	I _{GND}	_	_	_	3.0	mA	$f_{CL2} = 8.0 \text{ MHz}$ $f_{CL1} = 20 \text{ kHz}$ $V_{CC} - V_{EE} = 28 \text{ V}$	2
Current consumption 2	I _{EE}	_	_	150	500	μΑ	Same as above	2
Current consumption 3	I _{ST}	_	_	_	200	μΑ	Same as above	2, 3

Pins and notes on next page.

DC Characteristics for the HD66214T ($V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $V_{CC} - V_{EE} = 10$ to 28 V, and Ta = -20 to +75°C, unless otherwise noted)

Item	Symbol	Pins	Min	Max	Unit	Condition	Notes
Input high voltage	V_{IH}	1	$0.7 \times V_{CC}$	V_{CC}	V		
Input low voltage	V_{IL}	1	0	$0.3 \times V_{CC}$	V		
Output high voltage	V_{OH}	2	$V_{CC} - 0.4$	_	V	$I_{OH} = -0.4 \text{ mA}$	
Output low voltage	V_{OL}	2	_	0.4	V	$I_{OL} = 0.4 \text{ mA}$	
Vi–Yj on resistance	R _{ON}	3	_	4.0	kΩ	I _{ON} = 100 μA	1
Input leakage current 1	I _{IL1}	1	-1.0	1.0	μΑ	$V_{IN} = V_{CC}$ to GND	
Input leakage current 2	I _{IL2}	4	-25	25	μΑ	$V_{IN} = V_{CC}$ to V_{EE}	
Current consumption 1	I _{GND}	_	_	1.0	mA	$\begin{split} f_{\text{CL2}} &= 4.0 \text{ MHz} \\ f_{\text{CL1}} &= 16.8 \text{ kHz} \\ f_{\text{M}} &= 35 \text{ Hz} \\ V_{\text{CC}} &= 3.0 \text{ V} \\ V_{\text{CC}} &= V_{\text{EE}} = 28 \text{ V} \\ \text{Checker-board} \\ \text{pattern} \end{split}$	2
Current consumption 2	I _{EE}	_	_	500	μΑ	Same as above	2
Current consumption 3	I _{ST}	_	_	50	μΑ	Same as above	2, 3

Pins: 1. CL1, CL2, M, SHL, E, D0-D3, DISPOFF

- 2. CAR
- 3. Y1-Y80, V1, V3, V4
- 4. V1, V3, V4

Notes: 1. Indicates the resistance between one pin from Y1–Y80 and another pin from V1, V3, V4, and V_{EE}, when load current is applied to the Y pin; defined under the following conditions.

$$V_{CC} - GND = 28 V$$

$$V1$$
, $V3 = V_{CC} - \{2/10(V_{CC} - V_{EE})\}$

$$V4 = V_{EE} + \{2/10(V_{CC} - V_{EE})\}$$

V1 and V3 should be near Vcc level, and V4 should be near V_{EE} level (figure 6). All voltage must be within ΔV . ΔV is the range within which R_{ON} , the LCD drive circuits' output impedance, is stable. Note that ΔV depends on power supply voltage V_{CC} – V_{EE} (figure 7).

- Input and output current is excluded. When a CMOS input is floating, excess current flows from the power supply through the input circuit. To avoid this, V_{IH} and V_{IL} must be held to V_{CC} and GND levels, respectively.
- 3. Applies to standby mode.

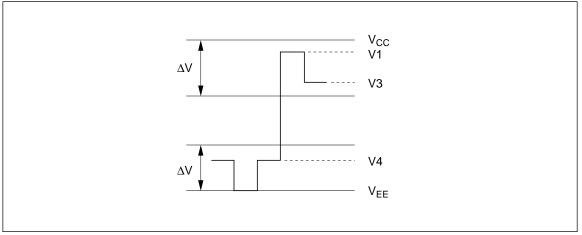


Figure 6 Relation between Driver Output Waveform and Level Voltages

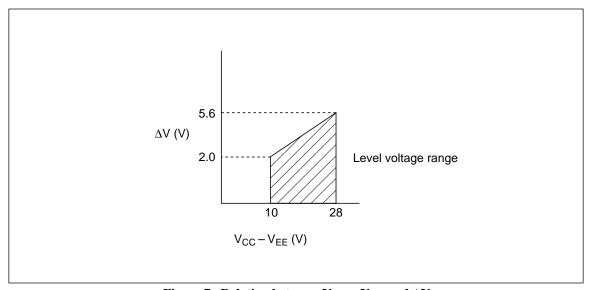


Figure 7 Relation between V_{CC} – V_{EE} and ΔV

AC Characteristics for the HD66214T (V_{CC} = 5 V \pm 10%, GND = 0 V, and Ta = -20 to +75°C, unless otherwise noted)

Item	Symbol	Pins	Min	Max	Unit	Notes
Clock cycle time	t _{CYC}	CL2	125	_	ns	
Clock high-level width	t _{CWH}	CL1, CL2	45	_	ns	
Clock low-level width	t_{CWL}	CL2	45	_	ns	
Clock setup time	t _{SCL}	CL1, CL2	80	_	ns	
Clock hold time	t _{HCL}	CL1, CL2	80	_	ns	
Clock rise time	t _r	CL1, CL2	_	*1	ns	1
Clock fall time	t _f	CL1, CL2	_	*1	ns	1
Data setup time	t _{DS}	D0-D3, CL2	20	_	ns	
Data hold time	t _{DH}	D0-D3, CL2	20	_	ns	
Enable (\overline{E}) setup time	t _{ESU}	E, CL2	30	_	ns	
Carry (CAR) output delay time	t _{CAR}	CAR, CL2	_	80	ns	2
M phase difference time	t _{CM}	M, CL2	_	300	ns	
CL1 cycle time	t _{CL1}	CL1	$t_{CYC} \times 50$	_	ns	

AC Characteristics for the HD66214T (V_{CC} = 2.7 to 5.5 V, GND = 0 V, and Ta = -20 to +75°C, unless otherwise noted)

Item	Symbol	Pins	Min	Max	Unit	Notes
Clock cycle time	t _{CYC}	CL2	250	_	ns	
Clock high-level width	t _{CWH}	CL1, CL2	95	_	ns	
Clock low-level width	t_{CWL}	CL2	95	_	ns	
Clock setup time	t _{SCL}	CL1, CL2	80	_	ns	
Clock hold time	t _{HCL}	CL1, CL2	120	_	ns	
Clock rise time	t _r	CL1, CL2	_	*1	ns	1
Clock fall time	t _f	CL1, CL2	_	*1	ns	1
Data setup time	t _{DS}	D0-D3, CL2	50	_	ns	
Data hold time	t _{DH}	D0-D3, CL2	50	_	ns	
Enable (\overline{E}) setup time	t _{ESU}	E, CL2	65	_	ns	
Carry (CAR) output delay time	t _{CAR}	CAR, CL2	_	155	ns	2
M phase difference time	t _{CM}	M, CL2	_	300	ns	
CL1 cycle time	t _{CL1}	CL1	$t_{CYC} \times 50$	_	ns	

Notes: 1. t_r , $t_f < (t_{CYC} - t_{CWH} - t_{CWL})/2$ and t_r , $t_f \le 50$ ns

2. The load circuit shown in figure 8 is connected.

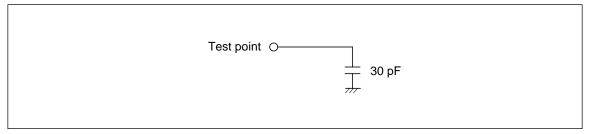


Figure 8 Load Circuit

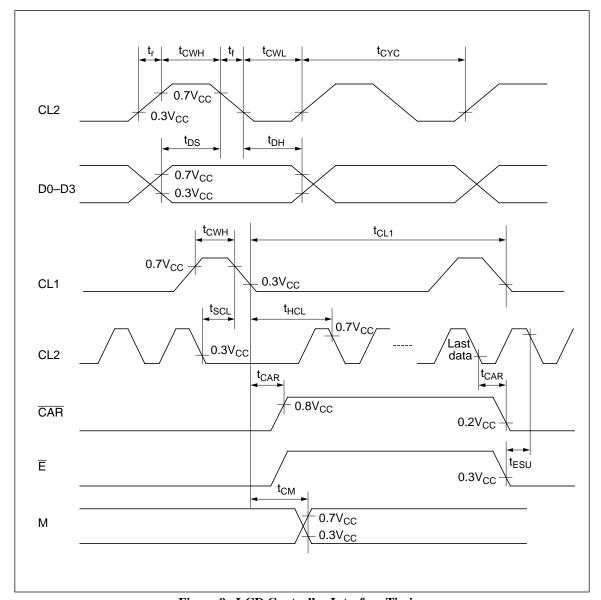


Figure 9 LCD Controller Interface Timing