(RAM-Provided 128-Channel Driver for Dot-Matrix Graphic LCD)

Preliminary

HITACHI

Description

The HD66410 drives and controls a dot-matrix graphic LCD using a bit-mapped display method. It provides a highly flexible display through its onchip display RAM, in which each bit of data can be used to turn on or off one dot on the LCD panel.

A single HD66410 can display a maximum of 128 \times 33 dots using its powerful display control functions. It features 24-channel annunciator output operating with 1/3 duty cycle that is available even during standby modes, which makes it suitable for time and other mark indications.

An MPU can access the HD66410 at any time because the MPU operations are asynchronous with the HD66410's system clock and display operations.

Its low-voltage operation at 2.2 to 3.6 V and the standby function provides low power-dissipation, making the HD66410 suitable for small portable device applications.

Features

- 4.2-kbit (128×33 -bit) bit-mapped display RAM
- 128×33 dots displayed using a single HD66410
 - 8 characters \times 2 lines (16 \times 16-dot character)
 - 21 characters \times 4 lines (6 \times 8-dot character)

- Annunciator display using dedicated output channels
 - Maximum of 72 segments displayed with 1/3 duty cycle
 - Available even during standby modes
- Flexible LCD driver configuration
 - Row output from both sides of an LCD panel
 - Row output from one side of an LCD panel
- Low power-dissipation suitable for long batterybased operation
 - Low-voltage operation: 2.2 to 3.6 V
 - Two standby modes: modes with and without annunciator display
- On-chip double to quadruple booster
- Versatile display control functions
 - Display data read/write
 - Display on/off
 - Column address inversion according to column driver layout
 - Vertical display scroll
 - Blink area select
 - Read-modify-write
- 80-system CPU interface through 8-bit asynchronous data bus
- On-chip oscillator combined with external resistors and capacitors
- Tape carrier package (TCP)

Ordering Information

Туре No.	Package
HD66410Txx	ТСР

Pin Arrangement

AV3 V_5 V_{CL} V_{SCH} V_{SCH} V_{SCH} V_{SCH} V_{CC} GND C R CR TEST1 TEST0 RES CS RS WR RD DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7 V_{CC} GND V_{C1} C1+ C1- C2+ C2- C3+ V_{2E} V_5 V_4 V_3 V_2 V_1 V_{SLO} V_{CSH} V_{CSL} AV3	I/O pins		LCD drive signal output pins	COM3 COM2 COM1 SEG24 SEG11 SEG10 X161 X160 X159 X159 X159 X159 X159 X159 X159 X159
---	----------	--	------------------------------	---

Note: This figure is not drawn to a scale.

Pin Description

Pin Name	Number of Pins	I/O	Connected to	Description
V _{CC} , GND	5	_	Power supply	V _{CC} : +2.2 to +3.6 V, GND: 0 V
Vci	1	—	Power supply	Inputs voltage to the booster to generate the base of the LCD drive voltages (V_{EEC} and V_{EEL}); must be below V_{CC} . Vci: 0 to +3.6 V.
AV3	1		Power supply	Supplies power to the internal annunciator drivers to generate the annunciator drive voltages using AV3 and V_{CC} . V_{CC} -AV3: 0 to 3.6 V; must be above GND.
V _{EE}	1	I/O	Booster capacitors and V5	Boosts and outputs the voltage input to the Vci pin; must be connected to the booster capacitors and V5 pin.
V1, V2, V3, V4, V5	5		Resistive divider	Supplies several levels of power to the internal LCD drivers for dot-matrix display; must be applied with the appropriate level of bias for the LCD panel used.
C1+ to C3+, C1- to C3-	6	—	Booster capacitor	Must be connected to external capacitors according to the boosting ratio.
V _{SHO} , V _{SLO}	2	0	VSH, VSL, VCSH, VCSL, VSCH, VSCL	Output voltage to be supplied to the internal column drivers.
V _{CHO} , V _{CLO}	2	0	VCH, VCL, VCSH, VCSL, VSCH, VSCL	Output voltage to be supplied to the internal row drivers.
V _{SH} , V _{SL}	2	I	VSHO, VSLO	Input voltage to be supplied to internal drivers X17 to X128.
V _{CH} , V _{CL}	2	I	VCHO, VCLO	Input voltage to be supplied to internal drivers X145 to X160.
V _{CSH} , V _{CSL}	2	I	VCHO, VCLO, VSHO, VSLO	Input voltage to be supplied to internal drivers X1 to X16.
V _{SCH} , V _{SCL}	2	Ι	VCHO, VCLO, VSHO, VSLO	Input voltage to be supplied to internal drivers X129 to X144.
C, R, CR	3	I, I/O	Oscillator resistor and capacitor	Must be connected to external capacitors and resistors when using R-C oscillation. When using an external clock, it must be input to the CR pin.
RES	1	I	_	Resets the LSI internally when driven low.
CS	1	I	MPU	Selects the LSI, specifically internal registers (index and data registers) when driven low.
RS	1	I	MPU	Selects one of the internal registers; selects the index register when driven low and data registers when driven high.
WR	1	I	MPU	Inputs write strobe; allows a write access when driven low.

Pin Name	Number of Pins	I/O	Connected to	Description
RD	1	I	MPU	Inputs read strobe; allows a read access when driven low.
DB7 to DB0	8	I/O	MPU	8-bit three-state bidirectional data bus; transfers data between the HD66410 and MPU through this bus.
X1 to X16, X129 to X144	32	0	Liquid crystal display	Output column or row drive signals; either column or row can be selected by programming.
X17 to X128	112	0	Liquid crystal display	Output column drive signals.
X145 to X161	17	0	Liquid crystal display	Output row drive signals.
COM1 to COM3	3	0	Liquid crystal display	Output row drive signals for annunciator display; available even during standby modes. Can operate statically or with 1/3 duty cycle.
SEG1 to SEG24	24	0	Liquid crystal display	Output column drive signals for annunciator display; available even during standby modes.
TEST0	1	Ι	GND	Tests the LSI; must be grounded.
TEST1	1	0	_	Tests the LSI; must be left unconnected.

Register List

6	De	Ind	ex R	egis	ter l	Bits	ster bol	Pogistor Namo	DW				Data	Bits			
	N3	4	3	2	1	0	Sym	Register Name	1.7.00	7	6	5	4	3	2	1	0
1	-	—	-	—	—	-											
0	0	—	_	_	—	-	IR	Index register	W				IR4	IR3	IR2	IR1	IR0
0	1	0	0	0	0	0	R0	Control register 1	W		DISP	STBY	PWR	OSC	IDTY	CNF	ADC
0	1	0	0	0	0	1	R1	Control register 2	W					RMW	DDTY	INC	BLK
0	1	0	0	0	1	0	R2	X address register	W					XA3	XA2	XA1	XA0
0	1	0	0	0	1	1	R3	Y address register	W			YA5	YA4	YA3	YA2	YA1	YA0
0	1	0	0	1	0	0	R4	Display memory access register	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	1	0	1	R5	Display start raster register	W			ST5	ST4	ST3	ST2	ST1	ST0
0	1	0	0	1	1	0	R6	Blink register 1	W	BK0	BK1	BK2	BK3	BK4	BK5	BK6	BK7
0	1	0	0	1	1	1	R7	Blink register 2	W	BK8	BK9	BK10	BK11	BK12	BK13	BK14	BK15
0	1	0	1	0	0	0	R8	Blink start raster register	W			BSL5	BSL4	BSL3	BSL2	BSL1	BSL0
0	1	0	1	0	0	1	R9	Blink end raster register	W			BEL5	BEL4	BEL3	BEL2	BEL1	BEL0
0	1	0	1	0	1	0		Reserved									
0	1	0	1	0	1	1		Reserved									
0	1	0	1	1	0	0		Reserved									
0	1	0	1	1	0	1		Reserved									
0	1	0	1	1	1	0		Reserved									
0	1	0	1	1	1	1		Reserved									
0	1	1	0	0	0	0	A0	Annunciator display data register 1	W	IC1A	IC1B	IC1C	IC1D	IC1E	IC1F	IC1G	IC1H
0	1	1	0	0	0	1	A1	Annunciator display data register 2	W	IC2A	IC2B	IC2C	IC2D	IC2E	IC2F	IC2G	IC2H
0	1	1	0	0	1	0	A2	Annunciator display data register 3	W	IC3A	IC3B	IC3C	IC3D	IC3E	IC3F	IC3G	ІСЗН
0	1	1	0	0	1	1	A3	Annunciator display data register 4	W	IC1I	IC1J	IC1K	IC1L	IC1M	IC1N	IC10	IC1P
0	1	1	0	1	0	0	A4	Annunciator display data register 5	W	IC2I	IC2J	IC2K	IC2L	IC2M	IC2N	IC2O	IC2P
0	1	1	0	1	0	1	A5	Annunciator display data register 6	W	IC3I	IC3J	ІСЗК	IC3L	IC3M	IC3N	IC3O	IC3P
0	1	1	0	1	1	0	A6	Annunciator display data register 7	W	IC1Q	IC1R	IC1S	IC1T	IC1U	IC1V	IC1W	IC1X
0	1	1	0	1	1	1	A7	Annunciator display data register 8	W	IC2Q	IC2R	IC2S	IC2T	IC2U	IC2V	IC2W	IC2X
0	1	1	1	0	0	0	A8	Annunciator display data register 9	W	IC3Q	IC3R	IC3S	IC3T	IC3U	IC3V	IC3W	IC3X
0	1	1	1	0	0	1	A9	Annunciator blink register 1	W	IP11	IP10	IB15	IB14	IB13	IB12	IB11	IB10
0	1	1	1	0	1	0	A10	Annunciator blink register 2	W	IP21	IP20	IB25	IB24	IB23	IB22	IB21	IB20
0	1	1	1	0	1	1	A11	Annunciator blink register 3	W	IP31	IP30	IB35	IB34	IB33	IB32	IB31	IB30
0	1	1	1	1	0	0		Reserved									
0	1	1	1	1	0	1		Reserved									
0	1	1	1	1	1	0		Reserved									
0	1	1	1	1	1	1		Reserved									

Block Diagram

System Description

The HD66410 comprises two kinds of independent LCD drivers: one operating with 1/33 or 1/17 duty cycle for dot-matrix displays and the other operating statically or with 1/3 duty cycle for annunciator displays. These drivers can display a maximum of 128×33 dots (eight 16×16 -dot characters $\times 2$ lines) on an LCD panel together with a 72-segment annunciator. Annunciator display is available even during standby modes, thus

enabling constant display such as for a time function. The HD66410 can reduce power dissipation without affecting display because data is retained in the display RAM even during standby modes. An LCD system can be configured simply by attaching external capacitors and resistors (figure 1) since the HD66410 incorporates booster circuits.

Figure 1 System Block Diagram

MPU Interface

The HD66410 can interface directly to an MPU through an 8-bit data bus or through an I/O port (figure 2). The MPU can access the HD66410 internal registers independent of internal clock timing.

The index register can be directly accessed but the

other registers (data registers) cannot. Before accessing a data register, its register number must be written to the index register. Once written, the register number is held until it is rewritten, enabling the same register to be consecutively accessed without having to rewrite to the register number for each access. An example of a register access sequence is shown in figure 3.

Figure 2 8-Bit MPU Interface Examples

Figure 3 8-Bit Data Transfer Sequence

LCD Driver Configuration

Row/Column Output Assignment: The HD66410 can assign LCD driver output pins X1 to X16 and X129 to X144 to either row or column output depending on the CNF bit value in control register 1, while X17 to X128 and X145 to X161 are fixed to column output and row output, respectively. With this function, row output can be positioned on either one side or two sides of an LCD panel.

Figure 4 shows an example where 33-channel row output is positioned to the right of an LCD panel, with X129 to X144 assigned to row output and X1 to X16 assigned to column output. Figure 5 shows an example where 33-channel row output is divided into two and positioned to the right and left of the LCD panel, with X129 to X144 assigned to column output and X1 to X16 assigned to row output.

Figure 4 Row Output on Right Side

Figure 5 Row Output on Right and Left Sides

Column Address Inversion According to LCD Driver Layout: The HD66410 can always display data in address \$0 on the top left of an LCD panel regardless of where it is positioned with respect to the panel. This is because the HD66410 can invert the positional relationship between display RAM addresses and LCD driver output pins by inverting RAM addresses. Specifically, the HD66410 outputs data in address \$0 from X1 (X17) when the ADC bit in control register 1 is 0, and from X128 (X144) otherwise. Here, the scan direction of row output is also inverted according to the situation, as shown in figure 6. Note that addresses and scan direction are inverted when data is written to the display RAM, and thus changing the ADC bit after data has been written has no effect. Therefore, hardware control bits such as CNF and ADC must be set immediately after reset is canceled, and must not be set while data is being displayed.

Figure 6 LCD Driver Layout and RAM Addresses

Display RAM Configuration and Display

The HD66410 incorporates a bit-mapped display RAM. It has 128 bits in the X direction and 33 bits in the Y direction. The 128 bits are divided into sixteen 8-bit groups. As shown in figure 7, data written by the MPU is stored horizontally with the MSB at the far left and the LSB at the far right. A display data of 1 turns on (black) the corresponding dot of an LCD panel and 0 turns it off (transparent).

The ADC bit of control register 1 can control the positional relationship between X addresses of the RAM and LCD driver output (figure 8). Specifically, the data in address \$0 is output from X1 (X17) when the ADC bit in control register 1 is 0, and from X128 (X144) otherwise. Here, data in each 8-bit group is also inverted. Because of this function, the data in X address \$0 can be always displayed on the top left of an LCD panel with the MSB at the far left regardless of the LSI is positioned with respect to the panel.

Figure 7 Display RAM Data and Display

Figure 8 Display RAM Configuration

Access to Internal Registers and Display RAM

Access to Internal Registers by the MPU: The internal registers includes the index register and data registers. The index register can be accessed by driving both the \overline{CS} and RS signals low. To access a data register, first write its register number to the index register with RS set to 0, and then access the data register with RS set to 1. Once written, the register number is held until it is rewritten, enabling the same register to be consecutively accessed without having to rewrite to the register number for each access. Some data registers contain unused bits; they should be set to 0. Note that all data registers except the display memory access register can only be written to.

Access to Display RAM by the MPU: To access the display RAM, first write the RAM address desired to the X address register (R2) and the Y address register (R3). Then read/write the display memory access register (R4). Memory access by the MPU is independent of memory read by the HD66410 and is also asynchronous with the system clock, thus enabling an interface independent of HD66410's internal operations. However, when reading, data is temporarily latched into a HD66410's buffer and then output next time a read is performed in a subsequent cycle. This means that a dummy read is necessary after setting X and Y addresses. The memory read sequence is shown in figure 9.

X and Y addresses are automatically incremented after each memory access according to the INC bit value in control register 2; therefore, it is not necessary to update the addresses for each access. Figure 10 shows two cases of incrementing display RAM address. When the INC bit is 0, the Y address will be incremented up to \$3F with the X address unchanged. However, actual memory is valid only within \$00 to \$20; accessing an invalid address is ignored. When the INC bit is 1, the X address will be incremented up to \$F with the Y address unchanged. After address \$F, the X address will return to \$0; if more than 16 bytes of data are consecutively written, data will be overwritten at the same address.

Figure 9 Display RAM Read Sequence

Display RAM Reading by LCD Controller: Data is read by the HD66410 to be displayed asynchronously with accesses by the MPU. However, because simultaneous access could damaging data in the display RAM, the HD66410 internally arbitrates access timing; access by the MPU usually has priority and so access by the HD66410 is placed between accesses by the MPU. Accordingly, an appropriate time must be secured (see the given electrical characteristics between two accesses by the MPU).

Figure 10 Display RAM Address Increment

Vertical Scroll Function

The HD66410 can vertically scroll a display by varying the top raster to be displayed, which is specified by the display start raster register. Figure 11 shows a vertical scroll example. As shown,

when the top raster to be displayed is set to 1, data in Y address \$00 is displayed on the 33rd raster. To display another frame on the 33rd raster, therefore, data in Y address \$00 must be modified after setting the top raster.

Figure 11 Vertical Scroll

Blink Function

Blinking Dot-Matrix Display Area: The HD66410 can blink a specified area on the dot-matrix display. Blinking is achieved by repeatedly turning on and off the specified area at a frequency of one sixty-fourth the frame frequency. For example, when the frame frequency is 80 Hz, the area is turned on and off every 0.8 seconds.

The area to be blinked can be designated by specifying vertical and horizontal positions of the area. The vertical position, or the rasters to be blinked, are specified by the blink start raster register (R8) and blink end raster register (R9).

The horizontal position, or the dots to be blinked in the specified rasters, are specified by the blink registers (R6 and R7) in an 8-dot group; each data bit in the blink registers controls its corresponding 8-dot group. The relationship between the registers and blink area is shown in figure 12. Setting the BLK bit to 1 in control register 2 after setting the above registers starts blinking the designated area. Note that since the area to be blinked is designated absolutely with respect to the display RAM, it will move along with a scrolling display (figure 13).

Figure 12 Blink Area Designation by Blink Control Registers

Figure 13 Scrolling Blink Area

Blinking Annunciator Display Area: The HD66410 can blink up to 18 dots among a maximum of 72 dots on the annunciator display. This function is controlled by a blink controller independent of that for the main dot-matrix display

part. The dots to be blinked can be designated by annunciator blink registers 1, 2, and 3, each of which contains two bits to specify a block and six bits to specify dots to be blinked in the specified block (figures 14 and 15).

Figure 14 Blink Area Designation by Annunciator Blink Control Registers

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Annunciator blink register 1	IP11	IP10	IB15	IB14	IB13	IB12	IB11	IB10
Annunciator blink register 2	IP21	IP20	IB25	IB24	IB23	IB22	IB21	IB20
Annunciator blink register 3	IP31	IP30	IB35	IB34	IB33	IB32	IB31	IB30
	IPn1	IPn0		В	link Blo	ock		
	0	0	Block	< 0 (SE	G1–SE	G6)		
	0	1	Block	< 1 (SE	G7–SE	G12)		
	1	0	Block	< 2 (SE	G13–SI	EG18)		
	1	1	Block	< 3 (SE	G19–SI	EG24)		
		I	Pn1, IP	n0: Blo	ock sele	ect bits	(n = 1, 2	2, 3)

Γ

Figure 15 Annunciator Blink Registers

Power Down Modes

The HD66410 has a standby function providing low power-dissipation, which is initiated by internal register settings. There are two standby modes: in one, all the HD66410 functions are inactive, and in the other, only the annunciator display function is active. In both modes, the internal booster halts but data in the display RAM and internal registers except the DISP bit is retained. However, only control registers can be accessed during standby modes. In the standby mode with annunciator display, the oscillator does not halt, thus dissipating more power than in the other standby mode. Table 1 lists the LCD driver output pin status during standby modes. Figure 16 shows the procedure for initiating and canceling a standby mode. Note that the cancelation procedure must be strictly followed to protect data in the display RAM.

X1 to X161	Output V _{CC}	(display off)	
COM1 to COM3	OSC = 0	Output V _{CC} (display off)	
	OSC = 1	Output common signals (display on)	
SEG1 to SEG24	OSC = 0	Output V _{CC} (display off)	
	OSC = 1	Output segment signals (display on)	

Figure 16 Procedure for Initiating and Canceling a Standby Mode

Power On/Off Procedure

Figure 17 shows the procedure for turning the power supply on and off. This procedure must be

strictly followed to prevent incorrect display because the HD66410 incorporates all power supply circuits .

Figure 17 Procedure for Turning Power Supply On/Off

Annunciator Display Function

The HD66410 can display up to 72 dots of annunciator using 24 segment (column) drivers (SEG1 to SEG24) and three common (row) drivers (COM1 to COM3). These drivers, independent of the display RAM, operate statically or with a 1/3 duty cycle. They are available even during standby modes, where dot-matrix display and the internal booster is turned off, making them suitable for time and other mark indications with reduced power dissipation. The dots to be displayed are designated by annunciator display data registers 1 to 9. For static drive, only display data registers 1, 4, and 7 and row driver COM1 are used. A maximum of 18 turnedon dots can be blinked. For details on blinking, see the Blink Function section. Figure 18 shows the relationship between annunciator display data register bits and display positions. In the figure, alphanumerics in the ovals indicate the bit names of annunciator display data registers. Data value 1 turns on the corresponding dot on the panel, and data value 0 turns off the corresponding dot. Table 2 lists the annunciator display data registers.

Table 2 Annunciator Display Data Register Bits

Register		DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Annunciator display data register 1	A0	IC1A	IC1B	IC1C	IC1D	IC1E	IC1F	IC1G	IC1H
Annunciator display data register 2	A1	IC2A	IC2B	IC2C	IC2D	IC2E	IC2F	IC2G	IC2H
Annunciator display data register 3	A2	IC3A	IC3B	IC3C	IC3D	IC3E	IC3F	IC3G	IC3H
Annunciator display data register 4	A3	IC1I	IC1J	IC1K	IC1L	IC1M	IC1N	IC10	IC1P
Annunciator display data register 5	A4	IC2I	IC2J	IC2K	IC2L	IC2M	IC2N	IC2O	IC2P
Annunciator display data register 6	A5	IC3I	IC3J	IC3K	IC3L	IC3M	IC3N	IC3O	IC3P
Annunciator display data register 7	A6	IC1Q	IC1R	IC1S	IC1T	IC1U	IC1V	IC1W	IC1X
Annunciator display data register 8	A7	IC2Q	IC2R	IC2S	IC2T	IC2U	IC2V	IC2W	IC2X
Annunciator display data register 9	A8	IC3Q	IC3R	IC3S	IC3T	IC3U	IC3V	IC3W	IC3X
	1.4		4 1	7					

Note: Only annunciator display data registers 1, 4, and 7 are used for static display.

Figure 18 Annunciator Display Data and Display Positions

Oscillator

The HD66410 incorporates an R-C oscillator with low power-dissipation, in which the oscillation frequency can be adjusted by appropriate selection of oscillator resistor Rf and capacitor Cf. The adjusted clock signal is used for system internal circuits; thus, if this oscillator is not used, an appropriate clock signal must be externally input through the CR pin. In this case, the C and R pins must be left unconnected. Figure 19 shows oscillator connections.

Clock and Frame Frequency

The HD66410 generates the frame frequency (LCD drive frequency) by dividing the input clock frequency by 132. The division ratio is the same for all LCD duty cycles.

The frame frequency is usually 70 to 90 Hz; when the frame frequency is 80 Hz, for example, the input clock frequency must be 10.56 kHz.

Figure 19 Oscillator Connections

Power Supply Circuits

The HD66410 incorporates a double to quadruple booster to supply power to LCD drivers. The booster is automatically turned off during standby mode, dissipating no power. If the current capacity provided is insufficient for the user system, external power supply circuits are necessary. In this case, the internal power supply can be turned off by register settings. Figure 20 shows examples of power supply circuits for different boosting ratios. **Booster:** The internal booster raises the input voltage between V_{CC} and GND two to four times every raster by turning on the internal power supply with capacitors attached between C1+ and C1-, C2+ and C2-, C3+ and C3-, and to V_{EE} . The booster uses the system clock, and thus the internal oscillator must be operating to activate the booster (if the internal oscillator has been selected to generate the system clock).

- Notes: 1. Adjust the power supply voltage and capacitance of external capacitors according to the characteristics of the LCD used because the output voltage (V_{EE}) drop depends on the load current, operation temperature, operation frequency, capacitance of external capacitors, and manufacturing tolerance. Refer to the Electrical Characteristics section for details.
 - 2. Adjust the power supply voltage so that the output voltage (V_{EE}) after boosting will not exceed the absolute maximum rating of the LCD power supply voltage (13 V).
 - Vci is both a reference voltage and power supply for the booster; it needs to be supplied with at least three times the current consumed by the LCD drivers including the current flowing in the resistive divider. Make sure that Vci is below V_{CC}.
 - 4. Be sure to connect polarized capacitors correctly.

Figure 20 Power Supply Circuit Examples

LCD Drive Voltage Power Supply Levels: To drive the LCD, a 6-level power supply is necessary. These levels can be usually generated by dividing the V_{CC} -V5 power supply using resistive dividers. If the total resistance is small, current consumption increases, and if the total resistance is large, display quality degrades. Appropriate resistance should be selected for the user system.

Brightness Adjust: The booster drives liquid crystals with a voltage after raising the voltage supplied to the Vci pin two to four times. Accordingly, brightness can be adjusted by varying the Vci level. Attaching a thermister is recommended to vary the voltage according to the thermal characteristics of liquid crystals.

Row/Column Output Switchover: LCD column drivers use V_{CC}, V2, V3, and V5, while row drivers use V_{CC}, V1, V4, and V5. These voltage levels are switched to AC and are output to an LCD panel. Since the HD66410 can assign X1 to X16 and X129 to X144 to either row or column output, the power supply connection must be externally changed according to the assignment, which is determined by the CNF bit value in control register 1. The select and deselect levels for row output are temporarily output from the V_{CHO} and V_{CLO} pins, and the two levels for column output are output from the V_{SHO} and V_{SLO} pins; these outputs must be connected according to row and column output assignment as shown in figure 21.

Figure 21 Connection of LCD Drive Voltage Level Pins

Reset

The low $\overline{\text{RESET}}$ signal initializes the HD66410, clearing all the bits in the internal registers. During reset, the internal registers cannot be accessed.

Note that if the reset conditions specified in the Electric Characteristics section are not satisfied, the HD66410 will not be correctly initialized. In this case, the internal registers of the HD66410 must be initialized by software.

Initial Setting of Internal Registers: All the internal register bits are cleared to 0. Details are listed below.

- Data registers (DR: R0 to R9, A0 to A11)
 - Normal operation
 - Oscillator is active
 - Display is off (including annunciator display)
 - Booster is not used
 - Y address of display RAM is incremented
 - 1/33 duty cycle
 - X and Y addresses are 0
 - Data in address \$0 is output from the X1 pin
 - Blink function is inactive

Initial Setting of Pins:

- Bus interface pins During reset, the bus interface pins do not accept signals to access internal registers; data is undefined when read.
- LCD driver output pins

During reset, all the LCD driver output pins (X1 to X161, SEG1 to SEG33, COM1 to COM3) output V_{CC} -level voltage, regardless of data value in the display RAM, turning off the LCD. Here, the output voltage is not alternated. Note that the same voltage (V_{CC}) is applied to both column and row output pins to prevent liquid crystals from degrading.

· Booster output pins

Since the PWR bit in control register 1 is 0 during reset, the booster halts. Accordingly, the output state of the V_{EE} pin depends on the value of the booster's external capacitor.

Internal Registers

The HD66410 has one index register and 22 data registers, all of which can be accessed asynchronously with the internal clock. All the registers except the display memory access register are write-only. Accessing unused bits or addresses affects nothing; unused bits should be set to 0 when written to.

Index Register (IR): The index register (figure 22) selects one of 22 data registers. The index register itself is selected when both the \overline{CS} and RS signals are low. Data bits 7 to 5 are unused; they should be set to 0 when written to.

Control Register 1 (R0): Control register 1 (figure 23) controls general operations of the HD66410. Each bit has its own function as described below. Data bit 7 bit is unused; it should be set to 0 when written to.

• DSP bit

DSP = 1: Display on

- DSP = 0: Display off (all LCD driver output pins output V_{CC} level)
- STBY bit

STBY = 1: Internal operation and booster halt; display off

STBY = 0: Normal operation

The STBY bit does not affect the state of PWR and DISP bit.

• PWR bit

PWR = 1: Booster active PWR = 0: Booster inactive

- OSC bit
 - OSC = 1: Internal operation and booster halt; oscillator does not halt to provide annunciator display
 - OSC = 0: Internal operation, booster, and oscillator halt

The OSC bit is valid only when the STBY bit is 1.

- IDTY bit
 - IDTY = 1: Annunciator display signals are operating statically
 - IDTY = 0: Annunciator display signals are operating with 1/3 duty cycle
- CNF bit
 - CNF = 1: Row output on both sides of the LCD panel
 - CNF = 0: Row output on one side of the LCD panel
- ADC bit
 - ADC = 1: Data in X address \$0 is output from X128 or X144; row signals are scanned from X129 to X161.
 - ADC = 0: Data in X address \$0 is output from X1 or X17; row signals are scanned from X161 to X129.

	Data bit	7	6	5	4	3	2	1	0
IR	Set value					Regi	ister nur	nber	

Figure 22 Index Register (IR)

				_					-
	Data bit	7	6	5	4	3	2	1	0
R0	Set value		DISP	STBY	PWR	OSC	IDTY	CNF	ADC

Figure 23 Control Register 1 (R0)

Control Register 2 (R1): Control register 2 (figure 24) controls general operations of the HD66410. Each bit has its own function as described below. Data bits 7 to 4 are unused; they should be set to 0 when written to.

- RMW bit
 - RMW = 1: Read-modify-write mode Address is incremented only after write access RMW = 0: Address is incremented after both
 - RMW = 0: Address is incremented after both write and read accesses
- DDTY bit

DDTY = 1: 1/17 display duty cycle DDTY = 0: 1/33 display duty cycle

• INC bit

INC = 1: X address is incremented for each access

- INC = 0: Y address is incremented for each access
- BLK bit

BLK = 1: Blink function is used

BLK = 0: Blink function is not used

The blink counter is reset when the BLK bit is set to 0. It starts counting and at the same time initiates blinking when the BLK bit is set to 1.

X Address Register (R2): The X address register (figure 25) designates the X address of the display RAM to be accessed by the MPU. The set value must range from \$0 to \$F; setting a greater value is ignored. The set address is automatically incremented each time the display RAM is accessed; it is not necessary to update the address each time. Data bits 7 to 3 are unused; they should be set to 0 when written to.

Y Address Register (R3): The Y address register (figure 26) designates the Y address of the display RAM to be accessed by the MPU. The set value must range from \$00 to \$20; setting a greater value is ignored. The set address is automatically incremented each time the display RAM is accessed; it is not necessary to update the address each time. Data bit 7 is unused; it should be set to 0 when written to.

	Data bit	7	6	5	4	3	2	1	0
R1	Set value					RMW	DDTY	INC	BLK

Figure 24 Control Register 2 (R1)

	Data bit	7	6	5	4	3	2	1	0
R2	Set value					XA3	XA2	XA1	XA0

Figure 25 X Address Register (R2)

	Data bit	7	6	5	4	3	2	1	0
R3	Set value			YA5	YA4	YA3	YA2	YA1	YA0

Figure 26 Y Address Register (R3)

Display Memory Access Register (R4): The display memory access register (figure 27) is used to access the display RAM. If this register is write-accessed, data is directly written to the display RAM. If this register is read-accessed, data is first latched to this register from the display RAM and sent out to the data bus on the next read; therefore, a dummy read access is necessary after setting the display RAM address.

Display Start Raster Register (R5): The display start raster register (figure 28) designates the raster to be displayed at the top of the LCD panel. Varying the set value scrolls the display vertically. The set value must be one less than the actual top raster and range from 0 to 32 for 1/33 duty cycle and from 0 to 16 for 1/17 duty cycle. If the value is set outside these ranges, data may not be displayed correctly. Data bits 7 and 6 are unused; they should be set to 0 when written to.

Blink Registers (R6, R7): The blink bit registers (figure 29) designate the 8-bit groups to be blinked. Setting a bit to 1 blinks the corresponding 8-bit group. Any number of groups can be blinked; setting all the bits to 1 will blink the entire LCD panel. These bits are valid only when the BLK bit of control register 2 is 1.

									-
	Data bit	7	6	5	4	3	2	1	0
R4	Set value	D7	D6	D5	D4	D3	D2	D1	D0

Figure 27 Display Memory Access Register (R4)

	Data bit	7	6	5	4	3	2	1	0
R5	Set value			ST5	ST4	ST3	ST2	ST1	ST0

Figure 28 Display Start Raster Register (R5)

		-			-		-	-	
	Data bit	7	6	5	4	3	2	1	0
R6	Set value	BK0	BK1	BK2	ВКЗ	BK4	BK5	BK6	BK7
R7	Set value	BK8	BK9	BK10	BK11	BK12	BK13	BK14	BK15

Figure 29 Blink Registers (R6, R7)

Blink Start Raster Register (R8): The blink start raster register (figure 30) designates the top raster in the area to be blinked. The set value must be one less than the actual top raster and range from 0 to 32 for 1/33 duty cycle and from 0 to 16 for 1/17 duty cycle. If the value is set outside these ranges, operations may not be correct. Data bits 7 and 6 are unused; they should be set to 0 when written to.

Blink End Raster Register (R9): The blink end raster register (figure 31) designates the bottom

raster in the area to be blinked. The area to be blinked is designated by the blink registers, blink start raster register, and blink end raster register. The set value must be one less than the actual bottom raster and range from 0 to 32 for 1/33 duty cycle and from 0 to 16 for 1/17 duty cycle. It must also be greater than the value set in the blink start raster register. If an inappropriate value is set, operations may not be correct. Data bits 7 and 6 are unused; they should be set to 0 when written to.

								-	
	Data bit	7	6	5	4	3	2	1	0
R8	Set value			BSL5	BSL4	BSL3	BSL2	BSL1	BSL0

Figure 30 Blink Start Raster Register (R8)

		-		-	-		-	-	-
	Data bit	7	6	5	4	3	2	1	0
R9	Set value			BEL5	BEL4	BEL3	BEL2	BEL1	BEL0

Figure 31 Blink End Raster Register (R9)

Annunciator Display Data Registers (A0 to A8): The annunciator display data registers (figure 32) store data for annunciator (icon) display. Setting a data bit to 1 turns on the corresponding dot on the LCD panel.

Annunciator Blink Registers (A9 to A11): The annunciator blink registers (figure 33) designate bits to be blinked on the annunciator display. For details, see the Blink Function section.

• IPn1, IPn0 bits (n = 1, 2, 3)

These bits select annunciator blocks to be blinked.

- IPn1, IPn0 = 0, 0: Block 0 is selected (SEG1 to SEG6) IPn1, IPn0 = 0, 1: Block 1 is selected (SEG7 to SEG12) IPn1, IPn0 = 1, 0: Block 2 is selected (SEG13 to SEG18) IPn1, IPn0 = 1, 1: Block 3 is selected (SEG19 to SEG24)
- IBn5, IBn0 bits (n = 1, 2, 3) These bits select bits to be blinked in the selected blocks.

Data bit76543210A0Set valueIC1AIC1BIC1CIC1DIC1EIC1FIC1GIC1FA1Set valueIC2AIC2BIC2CIC2DIC2EIC2FIC2GIC2FA2Set valueIC3AIC3BIC3CIC3DIC3EIC3FIC3GIC3FA3Set valueIC1IIC1JIC1KIC1LIC1MIC1NIC1OIC1FA4Set valueIC2IIC2JIC2KIC2LIC2MC2NIC2OIC2FA5Set valueIC1QIC1RIIC1SIC1TIC1UIIC1VIIC1NIC1NA6Set valueIC2QIC2RIC2SIC2TIC2UIC2VIC2WIC2NA7Set valueIC2QIC2RIC2SIC2TIC2UIC2VIC2WIC2N	Γ										
A0Set valueIC1AIC1BIC1CIC1DIC1EIC1FIC1GIC1FA1Set valueIC2AIC2BIC2CIC2DIC2EIC2FIC2GIC2FA2Set valueIC3AIC3BIC3CIC3DIC3EIC3FIC3GIC3FA3Set valueIC1IIC1JIC1KIC1LIC1MIC1NIC1OIC1FA4Set valueIC2IIC2JIC2KIC2LIC2MC2NIC2OIC3FA5Set valueIC3IIC3JIC3KIC3LIC3MC3NIC3OIC3FA6Set valueIC1QIC1RIIC1SIC1TIC1UIIC1VIIC1VIC1XA7Set valueIC2QIC2RIC2SIC2TIC2UIC2VIC2WIC2X			Data bit	7	6	5	4	3	2	1	0
A1Set valueIC2AIC2BIC2CIC2DIC2EIC2FIC2GIC2FA2Set valueIC3AIC3BIC3CIC3DIC3EIC3FIC3GIC3FA3Set valueIC1IIC1JIC1KIC1LIC1MIC1NIC1OIC1FA4Set valueIC2IIC2JIC2KIC2LIC2MC2NIC2OIC2FA5Set valueIC3IIC3JIC3KIC3LIC3MC3NIC3OIC3FA6Set valueIC1QIC1RIIC1SIC1TIC1UIIC1VIIC1VIC1NA7Set valueIC2QIC2RIC2SIC2TIC2UIC2VIC2WIC2N		A0	Set value	IC1A	IC1B	IC1C	IC1D	IC1E	IC1F	IC1G	IC1H
A2Set valueIC3AIC3BIC3CIC3DIC3EIC3FIC3GIC3FA3Set valueIC1IIC1JIC1JIC1KIC1LIC1MIC1NIC1OIC1FA4Set valueIC2IIC2JIC2JIC2KIC2LIC2MC2NIC2OIC2FA5Set valueIC3IIC3JIC3KIC3LIC3MC3NIC3OIC3FA6Set valueIC1QIC1RIIC1SIC1TIC1UIIC1VIIC1VIC1XA7Set valueIC2QIC2RIC2SIC2TIC2UIC2VIC2WIC2X		A1	Set value	IC2A	IC2B	IC2C	IC2D	IC2E	IC2F	IC2G	IC2H
A3Set valueIC1IIC1JIC1KIC1LIC1MIC1NIC1OIC1FA4Set valueIC2IIC2JIC2KIC2LIC2MC2NIC2OIC2FA5Set valueIC3IIC3JIC3KIC3LIC3MC3NIC3OIC3FA6Set valueIC1QIC1RIIC1SIC1TIC1UIIC1VIIC1WIC1XA7Set valueIC2QIC2RIC2SIC2TIC2UIC2VIC2WIC2X		A2	Set value	IC3A	IC3B	IC3C	IC3D	IC3E	IC3F	IC3G	ІСЗН
A4 Set value IC2I IC2J IC2K IC2L IC2M C2N IC2O IC2F A5 Set value IC3I IC3J IC3K IC3L IC3M C3N IC3O IC3F A6 Set value IC1Q IC1R IIC1S IC1T IC1U IIC1V IIC1V IC1X A7 Set value IC2Q IC2R IC2S IC2T IC2U IC2V IC2W IC2X		A3	Set value	IC1I	IC1J	IC1K	IC1L	IC1M	IC1N	IC10	IC1P
A5 Set value IC3I IC3J IC3K IC3L IC3M C3N IC3O IC3F A6 Set value IC1Q IC1R IIC1S IC1T IC1U IIC1V IIC1V IIC1X IC1X A7 Set value IC2Q IC2R IC2S IC2T IC2U IC2V IC2W IC2X		A4	Set value	IC2I	IC2J	IC2K	IC2L	IC2M	C2N	IC2O	IC2P
A6 Set value IC1Q IC1R IIC1S IC1T IC1U IIC1V IIC1W IC1X A7 Set value IC2Q IC2R IC2S IC2T IC2U IC2W IC2X IC2X		A5	Set value	IC3I	IC3J	ІСЗК	IC3L	IC3M	C3N	IC3O	IC3P
A7 Set value IC2Q IC2R IC2S IC2T IC2U IC2V IC2W IC2S A8 A9 A		A6	Set value	IC1Q	IC1R	IIC1S	IC1T	IC1U	IIC1V	IIC1W	IC1X
		A7	Set value	IC2Q	IC2R	IC2S	IC2T	IC2U	IC2V	IC2W	IC2X
A8 Set value 1030 1038 1035 1031 1030 1030 1030 1037		A8	Set value	IC3Q	IC3R	IC3S	IC3T	IC3U	IC3V	IC3W	IC3X

Figure 32 Annunciator Display Data Registers (A0 to A8)

	Data bit	7	6	5	4	3	2	1	0
A9	Set value	IP11	IP10	IB15	IB14	IB13	IB12	IB11	IB10
A10	Set value	IP21	IP20	IB25	IB24	IB23	IB22	IB21	IB20
A11	Set value	IP31	IP30	IB35	IB34	IB33	IB32	IB31	IB30

Figure 33 Annunciator Blink Registers (A9 to A11)

Absolute Maximum Ratings

Item		Symbol	Ratings	Unit	Notes
Power supply	Logic circuit	V _{CC}	–0.3 to +7.0	V	1
voltage	LCD drive circuits	V _{EE}	V_{CC} – 18.0 to V_{CC} + 0.3	V	
Input voltage 1		V _{T1}	-0.3 to VCC + 0.3	V	1, 2
Input voltage 2		V _{T2}	$V_{EE} - 0.3$ to V_{CC} + 0.3	V	1, 3
Operating temperature		T _{opr}	-20 to +75	°C	
Storage temperature		T _{stg}	-40 to +125	°C	

Notes: 1. Measured relative to GND.

2. Applies to pins CR, DB7 to DB0, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{CS}}$, RS, $\overline{\text{RES}}$, TEST0, AV3.

3. Applies to pins V1, V2, V3, V4, V5, C1+, C1–, C2+, C2–, C3+, C3–, V_{SH}, V_{SL}, V_{CH}, V_{CL}, V_{SCH}, V_{SCL}, V_{SCL}, V_{CSL}, V_{CS}

 If the LSI is used beyond its absolute maximum rating, it may be permanently damaged. It should always be used within the limits of its electrical characteristics to prevent malfunction or unreliability.

Electrical Characteristics

Table 3 DC Characteristics (V_{CC} = 2.2 to 3.6 V, GND = 0 V, V_{CC} -V5 = 6 to 15 V, Ta = -20 to +75°C)

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Measurement Condition	Notes
Input leakage current (1)	I _{IL1}	Except for DB0 to DB7	-1.0		1.0	μA	$V_{IN} = V_{CC}$ to GND	
Input leakage current (2)	I _{IL1}	DB7 to DB0	-2.5	—	2.5	μA	$V_{IN} = V_{CC}$ to GND	
Driver "on" resistance (1)	R _{COM}	X1 to X16, X129 to X161	—	—	20	kΩ	I _{ON} = 100 μA V _{CC} – V5 = 8 V	
Driver "on" resistance (2)	R_{SEG}	X17 to X128	—	—	30	kΩ	I _{ON} = 100 μA V _{CC} – V5 = 8 V	
Driver "on" resistance (3)	R _{ICON}	COM_1 to COM_3 , SEG ₁ to SEG ₂₄	—	—	50	kΩ	I _{ON} = 100 μA	
Input high voltage	V _{IH1}		$0.7 imes V_{CC}$	—	V _{CC}	V		
Input low voltage	V_{IL1}		0	—	$0.3 imes V_{CC}$	V		
Output high voltage	V _{OH}		$0.8 imes V_{CC}$	—	—	V	I _{OH} = -50 μA	
Output low voltage	V _{OL}		—	—	$0.2 \times V_{CC}$	V	I _{OL} = 50 μA	
Current consumption during display	I _{DISP}				T.B.D.	μA		1
Current consumption during standby (1)	I _{STB1}				T.B.D.	μA	Annunciator displayed	2
Current consumption during standby (2)	I _{STB2}				T.B.D.	μA	Annunciator not displayed	3
Current consumption during RAM access	I _{CC}				T.B.D.	μA		
Notes: 1. Inp	out and out	put currents are ex	cluded. Whe	en a CN	IOS input is	floatir	ng, excess current f	lows

from the power supply to the input circuit. To avoid this, $V_{\rm IH}$ and $V_{\rm IL}$ must be held to $V_{\rm CC}$ and GND levels, respectively.

2. Measured when STBY bit = 1 and OSC (ICON) bit = 1

3. Measured when STBY bit = 1 and OSC (ICON) bit = 0

Table 4Booster Characteristics

Item	Symbol	Min	Тур	Max	Unit	Measurement Conditions	Notes
Output voltage	V _{FF}	10.0	11.0	_	V		1
Input voltage	V _{ci}	—	_	3.6	V		2

Notes: 1. Measured when V_{CC} = 3.0 V, Io (load current) = 0.25 mA, C = 1 μ F, f_{OSC} (oscillation frequency) = 10 kHz, and the input voltage is boosted four times.

2. Input voltage must be below $V_{\mbox{\scriptsize CC}}.$

AC Characteristics

Table 5 Clock Characteristics ($V_{CC} = 2.2$ to 3.6 V, GND = 0 V, Ta = -20 to +75°C)

Item	Symbol	Min	Тур	Max	Unit	Measurement Conditions	Notes
Oscillation frequency	f _{OSC}	7	10	13	kHz	C = 100 pF, R = 470 k Ω	
External clock frequency	f _{CP}	5	10	20	kHz		
External clock duty cycle	Duty	45	50	55	%		
External clock rise time	t _r	_	_	0.2	μS		
External clock fall time	t _f	_	_	0.2	μS		

Table 6 MPU Interface ($V_{CC} = 2.2$ to 3.6 V, GND = 0 V, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Notes
RD low-level width	t _{WRDL}	450	_	ns	
RD high-level width	t _{WRDH}	450	_	ns	
WR low-level width	t _{WWRL}	450	_	ns	
WR high-level width	t _{WWRH}	450	_	ns	
Address setup time	t _{AS}	0	_	ns	
Address hold time	t _{AH}	0	_	ns	
Data delay time	t _{DDR}	_	300	ns	
Data output hold time	t _{DHR}	10	_	ns	
Data setup time	t _{DSW}	100	_	ns	
Data hold time	t _{DHW}	0	_	ns	

Table 7Reset Timing

Item	Symbol	Min	Max	Unit	Notes
RES low-level width	t _{RES}	1	_	ms	

Figure 34 MPU Interface