

HD74HC373, HD74HC533

Octal D-type Transparent Latches (with 3-state outputs)
Octal D-type Transparent Latches (with inverted 3-state outputs)

REJ03D0619-0300 Rev.3.00 Mar 25, 2009

Description

When the latch enable input is high, the Q outputs of HD74HC373 will follow the D inputs and the Q outputs of HD74HC533 will follow the inversion of the D inputs. When the latch enable goes low, data at the D inputs will be retained at the outputs until latch enable returns high again. When a high logic level is applied to the output control input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.

Features

• High Speed Operation: t_{pd} (D to Q) = 16 ns typ ($C_L = 50 \text{ pF}$)

• High Output Current: Fanout of 15 LSTTL Loads

• Wide Operating Voltage: $V_{CC} = 2$ to 6 V

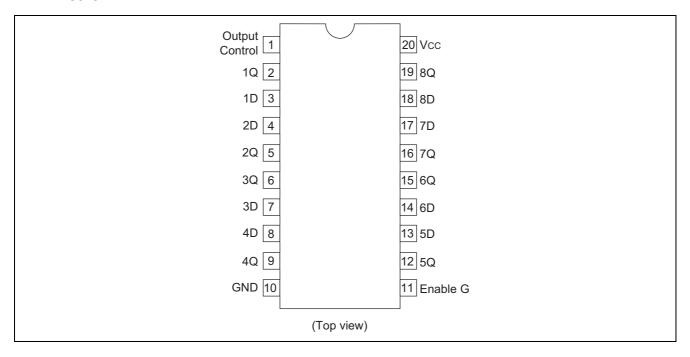
• Low Input Current: 1 μA max

• Low Quiescent Supply Current: I_{CC} (static) = 4 μ A max (Ta = 25°C)

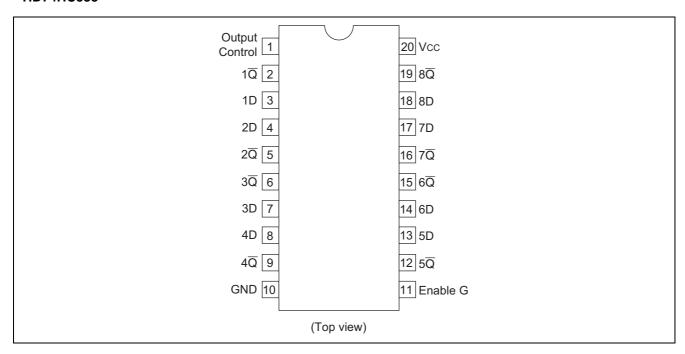
• Ordering Information

Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)	
HD74HC373P	DILP-20 pin	PRDP0020AC-B	Р	_	
HD74HC533P	DIEI -20 piii	(DP-20NEV)	·		
HD74HC373FPEL	SOP-20 pin (JEITA)	PRSP0020DD-B	FP	EL (2,000 pcs/reel)	
HD74HC533FPEL	30F-20 piii (3E11A)	(FP-20DAV)	ГГ	EL (2,000 pcs/reei)	
HD74HC373RPEL	SOP-20 pin (JEDEC)	PRSP0020DC-A	RP	EL (1,000 pcs/reel)	
HD74HC533RPEL	30F-20 pill (JEDEC)	(FP-20DBV)	NF	EL (1,000 pcs/reei)	
HD74HC373TELL	TSSOP-20 pin	PTSP0020JB-A	т	ELL (2,000 pcs/reel)	
HD14HC3/31ELL	1 330F-20 pili	(TTP-20DAV)	'		

Note: Please consult the sales office for the above package availability.

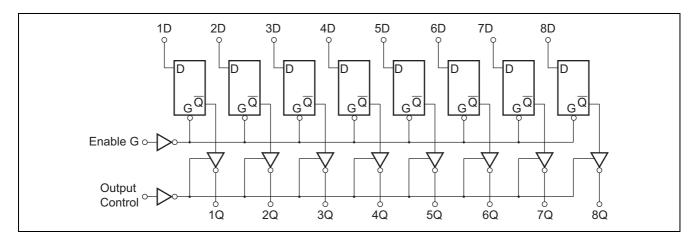

Function Table

Output Control	Enable G	D	HD74HC373 Q	HD74HC533
L	Н	Н	Н	L
L	Н	L	L	Н
L	L	X	No change	No change
Н	X	X	Z	Z

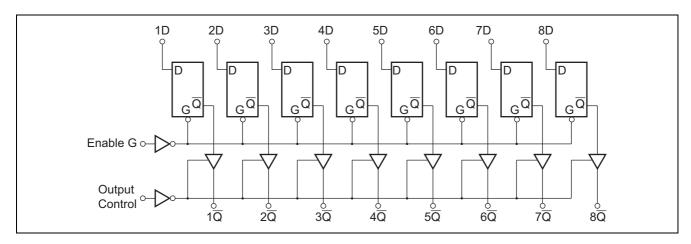

Note: 1. H; High level, L; Low level, X; Irrelevant, Z; High impedance

Pin Arrangement

HD74HC373



HD74HC533



Logic Diagram

HD74HC373

HD74HC533

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage range	Vcc	-0.5 to 7.0	V
Input / Output voltage	V _{IN} , V _{OUT}	-0.5 to V _{CC} +0.5	V
Input / Output diode current	I _{IK} , I _{OK}	±20	mA
Output current	l _{OUT}	±35	mA
V _{CC} , GND current	I _{CC} or I _{GND}	±75	mA
Power dissipation	P _T	500	mW
Storage temperature	Tstg	-65 to +150	°C

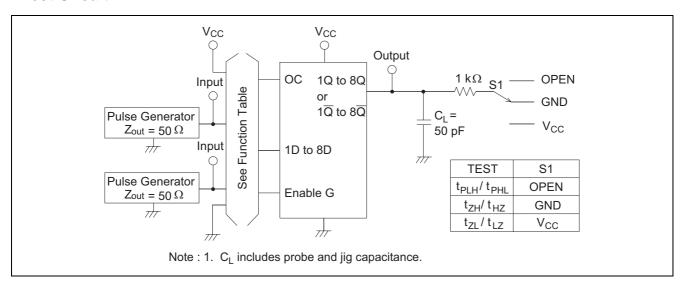
Note: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

Recommended Operating Conditions

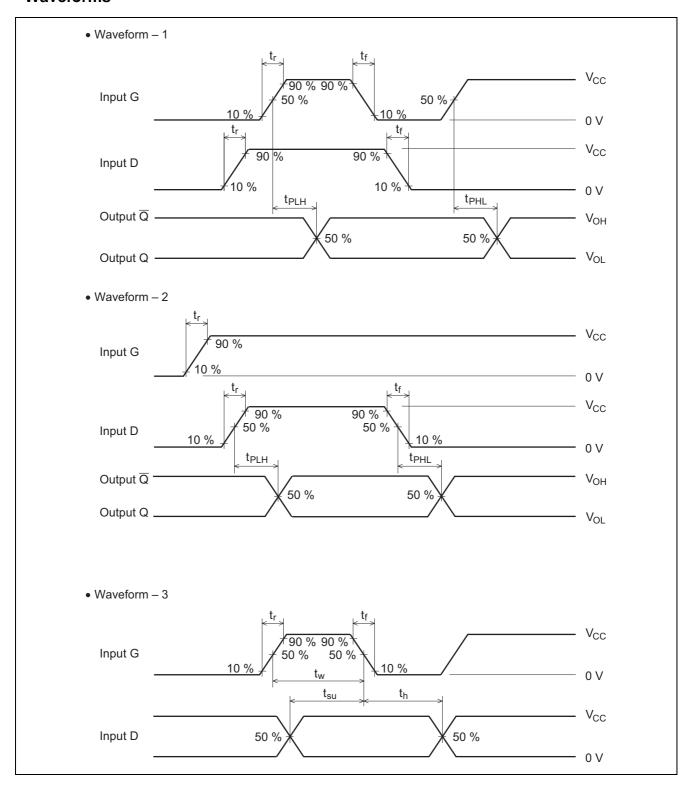
Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V _{CC}	2 to 6	V	
Input / Output voltage	V_{IN}, V_{OUT}	0 to V _{CC}	V	
Operating temperature	Та	-40 to 85	°C	
		0 to 1000		V _{CC} = 2.0 V
Input rise / fall time*1	t _r , t _f	0 to 500	-}	V _{CC} = 4.5 V
		0 to 400		$V_{CC} = 6.0 \text{ V}$

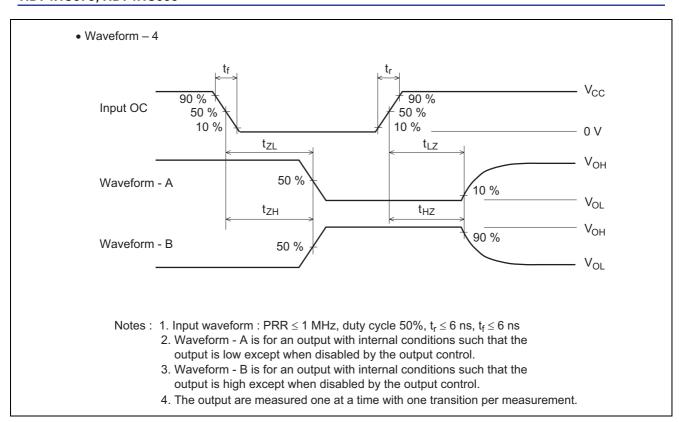
Note: 1. This item guarantees maximum limit when one input switches.

Waveform: Refer to test circuit of switching characteristics.

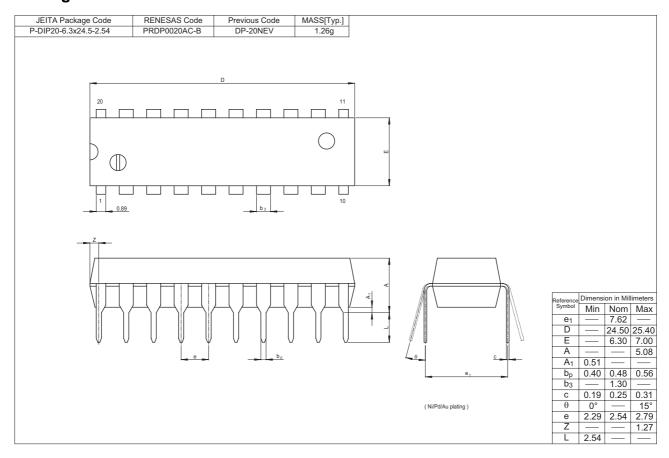

Electrical Characteristics

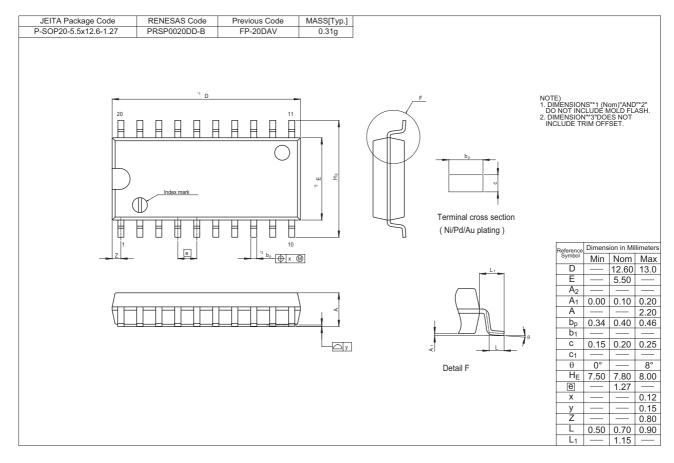
Item	Symbol	V _{CC} (V)	Ta = 25°C		Ta = -40 to+85°C		Unit	Test Conditions		
item			Min	Тур	Max	Min	Max	Onn	rest Conditions	
		2.0	1.5	_	_	1.5	_			
	V_{IH}	4.5	3.15	l	_	3.15		V		
Input voltage		6.0	4.2	l	_	4.2				
input voltage		2.0		l	0.5	_	0.5			
	V_{IL}	4.5		l	1.35	_	1.35	V		
		6.0		l	1.8	_	1.8			
		2.0	1.9	2.0	_	1.9				
	V _{OH}	4.5	4.4	4.5	_	4.4	_	V	$Vin = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -20 \mu A$
		6.0	5.9	6.0	_	5.9				
		4.5	4.18	l	_	4.13				$I_{OH} = -6 \text{ mA}$
Output voltage		6.0	5.68	l	_	5.63				$I_{OH} = -7.8 \text{ mA}$
Output voltage	V _{OL}	2.0	-	0.0	0.1	_	0.1		Vin = V _{IH} or V _{IL}	
		4.5	-	0.0	0.1	_	0.1			$I_{OL} = 20 \mu A$
		6.0		0.0	0.1	_	0.1	V		
		4.5		l	0.26	_	0.33			$I_{OH} = 6 \text{ mA}$
		6.0		l	0.26	_	0.33			$I_{OH} = 7.8 \text{ mA}$
Off-state output	l _{oz}	6.0			±0.5		±5.0	μA	$Vin = V_{IH} or V_{IL}$	
current	102	0.0			±0.5	_	±5.0	μΑ	Vout = V_{CC} or G	ND
Input current	lin	6.0	_	_	±0.1		±1.0	μΑ	$Vin = V_{CC} \text{ or } GN$	D
Quiescent supply	laa	I _{CC} 6.0	<u> </u>	_	4.0	_	40	μA	Vin = V_{CC} or GND, lout = 0 μ A	
current	icc	0.0			7.0		70	μι	V VCC 51 GIV	Σ, ισαι – σ μΑ

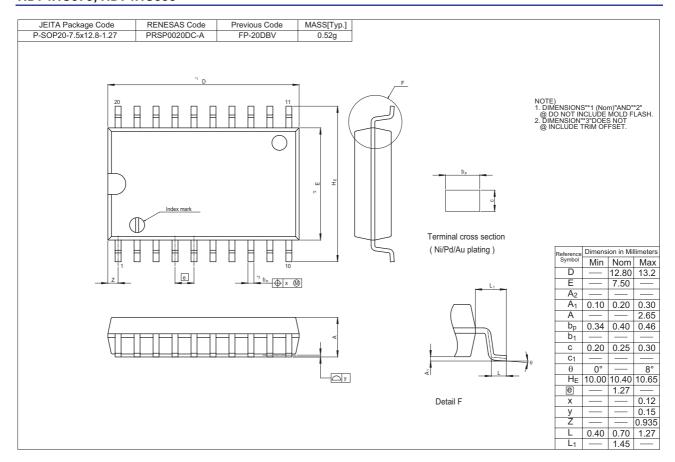

Switching Characteristics ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

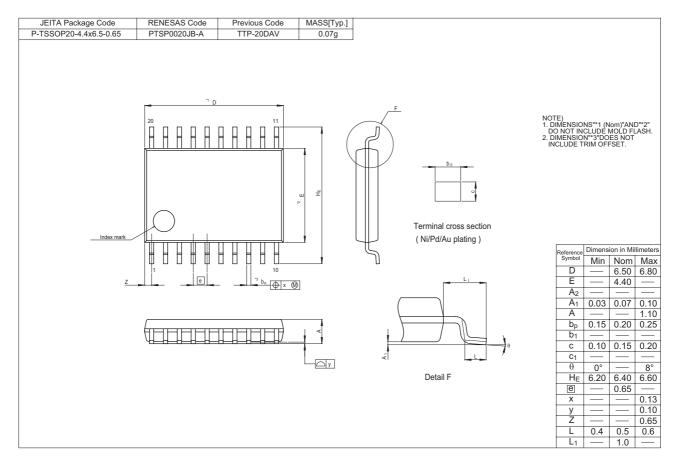

Item	Symbol	v 00	Т	a = 25°	С	Ta = -40	Ta = -40 to +85°C		Test Conditions
item	Syllibol	V _{CC} (V)	Min	Тур			Max	Unit	rest Conditions
		2.0	_	_	150	_	190		
	t _{PLH}	4.5	_	18	30	_	38	ns	G to Q
Propagation delay	t _{PHL}	6.0	_	_	26	_	33		
time	4	2.0	_	_	125	_	155		
	t _{PLH}	4.5	_	16	25	_	31	ns	D to Q
	t _{PHL}	6.0	_	_	21	_	26		
		2.0	_	_	150	_	190		
	t_{ZL}	4.5	_	12	30	_	38	ns	
Output enable		6.0	_	_	26	_	33		
time		2.0	_	_	150	_	190		
	t _{zH}	4.5	_	15	30	_	38	ns	
		6.0	_	_	26	_	33		
	t _{LZ}	2.0	_	_	150	_	190	ns	
		4.5	_	13	30	_	38		
Output disable		6.0	_	_	26	_	33		
time		2.0	_	_	150	_	190	ns	
	t _{HZ}	4.5	_	16	30	_	38		
		6.0	_	_	26	_	33		
		2.0	100	_	_	125	_		
Setup time	t _{su}	4.5	20	1	_	25	_	ns	
		6.0	17	_	_	21	_		
		2.0	50	_	_	65	_		
Hold time	t _h	4.5	10	1	_	13	_	ns	
		6.0	9	_	_	11	_		
		2.0	80	_	_	100	_		
Pulse width	t _w	4.5	16	6	_	20	_	ns	
		6.0	14	_	_	17	_		
Output via a /fall		2.0		_	60	_	75		
Output rise/fall	t _{⊤LH}	4.5		4	12	_	15	ns	
time	t_{THL}	6.0	_	_	10	_	13		
Input capacitance	Cin	_	_	5	10	_	10	pF	

Test Circuit




Waveforms





Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect to the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the development of the

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510