RENESAS

HD74HC4511

BCD-to-Seven Segment Latch/Decoder/Driver

REJ03D0652-0300 Rev.3.00 Nov 04, 2008

Description

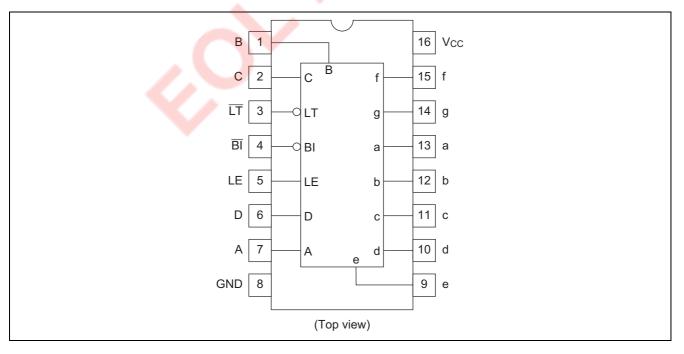
The HD74HC4511 provides the functions of a 4-bit storage latch, a BCD-to-seven-segment decoder, and an output driver. Lamp test (\overline{LT}), blanking (\overline{BI}), and latch enable (LE) inputs are used to test the display, to turn off or pulse-modulate the brightness of the display, and to store a BCD code, respectively.

Features

- High Speed Operation: t_{pd} (A, B, C, D to a g) = 31 ns typ (C_L = 50 pF)
- High Output Current: Fanout of 10 LSTTL Loads
- Wide Operating Voltage: $V_{CC} = 2 \text{ to } 6 \text{ V}$
- Low Input Current: 1 µA max
- Low Quiescent Supply Current: I_{CC} (static) = 4 μ A max (Ta = 25°C)
- Ordering Information

Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
HD74HC4511P	DILP-16 pin	PRDP0016AE-B (DP-16FV)	Р	_
HD74HC4511FPEL	SOP-16 pin (JEITA)	PRSP0016DH-B (FP-16DAV)	FP	EL (2,000 pcs/reel)
HD74HC4511RPEL	SOP-16 pin (JEDEC)	PRSP0016DG-A (FP-16DNV)	RP	EL (2,500 pcs/reel)

Note: Please consult the sales office for the above package availability.


Function Table

Inputs								Outputs						
LE	BĪ	ĹŢ	D	С	В	Α	а	b	С	d	е	f	g	Display
Х	Х	L	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	8
Х	L	Н	Х	Х	Х	Х	L	L	L	L	L	L	L	Blank
L	Н	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	0
L	Н	Н	L	L	L	Н	L	Н	Н	L	L	L	L	1
L	Н	Н	L	L	Н	L	Н	Н	L	Н	Н	L	Н	2
L	Н	Н	L	L	Н	Н	Н	Н	Н	Н	L	L	Н	3
L	Н	Н	L	Н	L	L	L	Н	Н	L	L	Н	Н	4
L	Н	Н	L	Н	L	Н	Н	L	Н	Н	L	Н	Н	5
L	Н	Н	L	Н	Н	L	L	L	Н	Н	Н	Н	Н	6
L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	L	L	L	7
L	Н	Н	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	8
L	Н	Н	Н	L	L	Н	Н	Н	Н	L	L	Н	Н	9
L	Н	Н	Н	L	Н	L	L	L	L	L	L	L	L	Blank
L	Н	Н	Н	L	Н	Н	L	L	L	L	L	L	L	Blank
L	Н	Н	Н	Н	L	L	L	L	L	L	5 L (L	L	Blank
L	Н	Н	Н	Н	L	Н	L	L	L	L) L	🍌 L	L	Blank
L	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	L	Blank
L	Н	Н	Н	Н	Н	Н	L	L	L		Ľ	L	L	Blank
Н	Н	Н	Х	Х	Х	Х				*1				*1

Note: 1. Depends upon the BCD code previously applied when LE = L

Pin Arrangement

Absolute Maximum Ratings

ltem	Symbol	Ratings	Unit
Supply voltage range	V _{CC}	-0.5 to 7.0	V
Input / Output voltage	V _{IN} , V _{OUT}	-0.5 to V _{CC} +0.5	V
Input / Output diode current	I _{IK} , I _{OK}	±20	mA
Output current	I _{OUT}	±25	mA
V _{CC} , GND current	I _{CC} or I _{GND}	±50	mA
Power dissipation	PT	500	mW
Storage temperature	Tstg	-65 to +150	۵°

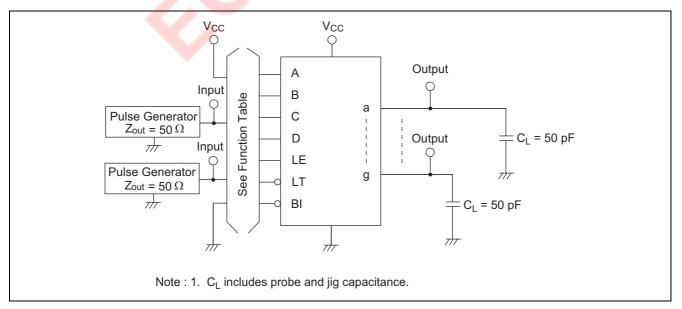
Note: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

Recommended Operating Conditions

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V _{CC}	2 to 6	V	
Input / Output voltage	V _{IN} , V _{OUT}	0 to V _{CC}	V	
Operating temperature	Та	-40 to 85	°C	
		0 to 1000		V _{CC} = 2.0 V
Input rise / fall time ^{*1}	t _r , t _f	0 to 500	ns	$V_{CC} = 4.5 V$
		0 to 400		$V_{CC} = 6.0 V$

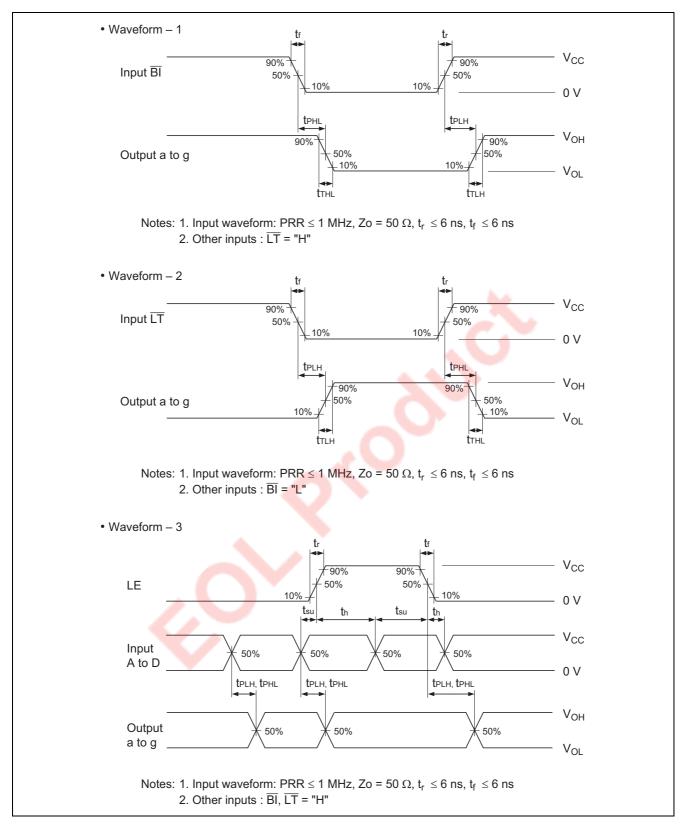
Note: 1. This item guarantees maximum limit when one input switches. Waveform: Refer to test circuit of switching characteristics.

Electrical Characteristics

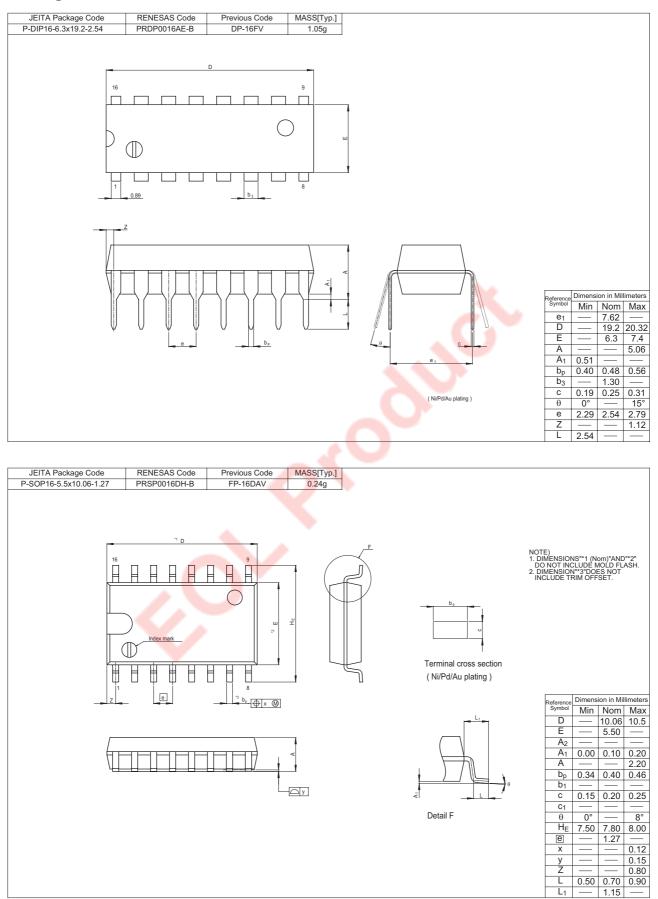

ltem	Symbol	V _{cc} (V)	Т	a = 25°	С	Ta = -40 to+85°C		Unit	Test Conditions	
nem	Symbol	VCC (V)	Min	Тур	Max	Min	Max	Unit	Test Cor	lations
		2.0	1.5		1	1.5	_			
	VIH	4.5	3.15	T	-	3.15		V		
Input voltage		6.0	4.2	_		4.2				
input voltage		2.0			0.5	_	0.5			
	VIL	4.5	-		1.35	_	1.35	V		
		6.0	-	-	1.8	_	1.8			
	V _{он}	2.0	1.9	2.0	_	1.9		V	Vin = V _{IH} or V _{IL} $I_{OH} = -4 \text{ mA}$	
		4.5	4.4	4.5	_	4.4				I _{OH} = -20 μA
		6.0	5.9	6.0	_	5.9				
		4.5	4.18		_	4.13				$I_{OH} = -4 \text{ mA}$
Output voltage		6.0	5.68		_	5.63				$I_{OH} = -5.2 \text{ mA}$
Output voltage		2.0	—	0.0	0.1	_	0.1			
	V _{OL}	4.5	—	0.0	0.1	_	0.1		$Vin = V_{IH} \text{ or } V_{IL} \frac{I_{OL} = 20 \ \mu A}{I_{OH} = 4 \ mA}$	I _{OL} = 20 μA
		6.0	—	0.0	0.1	_	0.1	V		
		4.5	—		0.26	_	0.33			I _{OH} = 4 mA
		6.0	_		0.26	_	0.33			I _{OH} = 5.2 mA
Input current	lin	6.0			±0.1	_	±1.0	μA	$Vin = V_{CC} \text{ or } GN$	D
Quiescent supply	I _{cc}	6.0	_	_	4.0		40	μA	Vin = V _{CC} or GN	D. lout = $0 \mu A$
current	100	0.0						μ.,		$=$, $\cdot \cdot \cdot \cdot \cdot = \circ \mu \cdot \cdot \cdot$

Switching Characteristics

 $(C_L = 50 \text{ pF}, \text{ Input } t_r = t_f = 6 \text{ ns})$

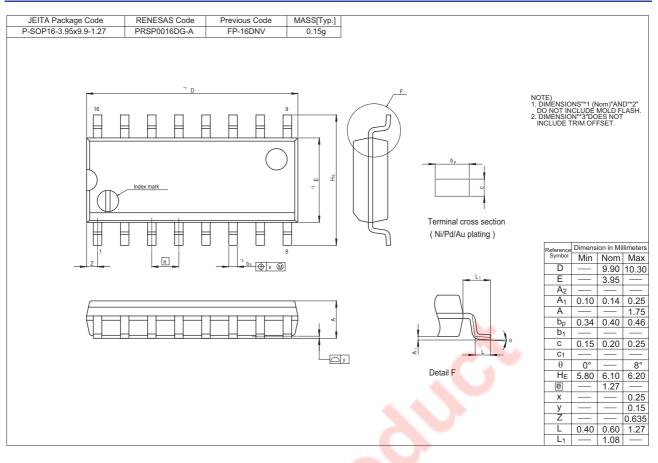

lt e m	Symbol	V 00	Т	a = 25°	С	Ta = -40 to +85°C		L Insit	Tast Osnalitiana	
Item		V _{cc} (V)	Min	Тур	Max	Min	Max	Unit	Test Conditions	
	4	2.0		—	400		500			
	t _{PLH} ≁	4.5		31	80		100		A, B, C or D to a – g	
	t _{PHL}	6.0	_	—	68	_	86			
	+	2.0		_	250	_	315			
	t _{PLH} t _{PHL}	4.5		25	50		63		BI to a − g	
Propagation delay	PHL	6.0		_	43		54	ns		
time	t	2.0		_	150		190	115		
	t _{PLH} t _{PHL}	4.5		17	30		38		LT to a − g	
	PHL	6.0		_	26	_	33			
	t	2.0		_	400	_	500		LE to a – g	
	t _{PLH} t _{PHL}	4.5		35	80		100			
		6.0		_	68	_	86			
	t _w	2.0	80	_	_	100	—	ns		
Pulse width		4.5	16	6	_	20	—			
		6.0	14	_	_	17	—			
	t _{su}	2.0	100	_	_	125	_			
Setup time		4.5	20	4	_	25	_	ns		
		6.0	17	—	—	21				
		2.0	5	—	—	5	-			
Hold time	t _h	4.5	5	0	—	5	-	ns		
		6.0	5	—	—	5				
		2.0			60		75			
Output rise time	t _{TLH}	4.5		4	12		15	ns		
		6.0		-	10	-	13			
		2.0		ł	75	_	95			
Output fall time	t_{THL}	4.5		5	15	—	19	ns		
		6.0			13	—	16			
Input capacitance	Cin	_	_	5	10	—	10	pF		

Test Circuit



RENESAS

Waveforms



Package Dimensions

RENESAS

HD74HC4511

RENESAS

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product date, diagrams, charts, programs, algorithms, and application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information included in this document, included in this document, included in this document (included in this document).
 You should not use the products or the technology described in this document (included in this document).
 All information included in this document (included in this document).
 We use the saved. Such information, theory is subject to charge without any prior notice. Before purchasing or using any Renesas products for the technology described herein, you should follow the applicable export control laws and regulations.
 Renesas has used reasonable care in compiling the information included in this document. Dut Renesas assumes no liability whatsoever for any damages incurred as a set of each different information included in this document. Dut Renesas assumes no liability of this tocuer or otherwise in systems the failude application. Renessas products for the technology described herein, one included in the information in this document.
 We use the subset Sub Mergin on the information included in this document.
 We use the subset Sub Mergin on the information information information in the subset Sub Mergin on the information include

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510