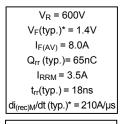
International **IOR** Rectifier

HFA08PB60

HEXFRED™

Ultrafast, Soft Recovery Diode


Features

- · Ultrafast Recovery
- · Ultrasoft Recovery
- Very Low I_{RRM}
- Very Low Q_{rr}
- · Specified at Operating Conditions

Benefits

- · Reduced RFI and EMI
- Reduced Power Loss in Diode and Switching Transistor
- · Higher Frequency Operation
- · Reduced Snubbing
- · Reduced Parts Count

BNSE CATHODE 4 4 CATHODE ANDRE

Description

International Rectifier's HFA08PB60 is a state of the art center tap ultra fast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600 volts and 8 amps continuous current, the HFA08PB60 is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultra fast recovery time, the HEXFRED product line features extremely low values of peak recovery current (IRRM) and does not exhibit any tendency to "snap-off" during the tb portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED HFA08PB60 is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

Absolute Maximum Ratings

	Parameter	Max	Units
V _R	Cathode-to-Anode Voltage	600	V
I _F @ T _C = 25°C	Continuous Forward Current		
I _F @ T _C = 100°C	Continuous Forward Current	8.0	A
I _{FSM}	Single Pulse Forward Current	60	_ ^
I _{FRM}	Maximum Repetitive Forward Current	24	
P _D @ T _C = 25°C	Maximum Power Dissipation	36	W
P _D @ T _C = 100°C	Maximum Power Dissipation	14	vv
TJ	Operating Junction and	-55 to +150	С
T _{STG}	Storage Temperature Range	-55 to 1150	

^{* 125°}C

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	-						
Parameter	Min	Тур	Max	Units	Test Conditions		
Cathode Anode Breakdown Voltage	600			V	$I_R = 100 \mu A$		
Max Forward Voltage		1.4	1.7	V	I _F = 8.0A		
		1.7	2.1		I _F = 16A	See Fig. 1	
		1.4	1.7		I _F = 8.0A, T _J = 125°C	C	
Max Reverse Leakage Current		0.3	5.0	μА	V _R = V _R Rated	See Fig. 2	
		100	500		$T_J = 125^{\circ}C$, $V_R = 0.8 \times V_R$ Rated		
Junction Capacitance		10	25	pF	V _R = 200V	See Fig. 3	
Series Inductance	_	8.0		nH	Measured lead to lead package body	5mm from	
	Cathode Anode Breakdown Voltage Max Forward Voltage Max Reverse Leakage Current Junction Capacitance	Cathode Anode Breakdown Voltage 600 Max Forward Voltage — Max Reverse Leakage Current — Junction Capacitance —	Cathode Anode Breakdown Voltage 600 — Max Forward Voltage — 1.4 Max Reverse Leakage Current — 0.3 Junction Capacitance — 10	Cathode Anode Breakdown Voltage 600 — — — — — — — — — 1.4 1.7 2.1 — 1.4 1.7 2.1 — 1.4 1.7 — 1.4 1.7 — 0.3 5.0 — 100 500 — 100 500 — 10 25	Cathode Anode Breakdown Voltage 600 — V Max Forward Voltage — 1.4 1.7 — 1.7 2.1 V — 1.4 1.7 — 1.4 1.7 — 1.4 1.7 — 1.0 500 µA Junction Capacitance — 10 25 pF	Cathode Anode Breakdown Voltage 600 — V I _R = 100μA Max Forward Voltage — 1.4 1.7 V I _F = 8.0A Max Forward Voltage — 1.7 2.1 V I _F = 16A — 1.4 1.7 I _F = 8.0A, T _J = 125°C Max Reverse Leakage Current — 0.3 5.0 I _P A V _R = V _R Rated T _J = 125°C, V _R = 0.8 Junction Capacitance — 10 25 pF V _R = 200V Series Inductance — 8.0 — nH Measured lead to lead	

Dynamic Recovery Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min	Тур	Max	Units	Test Conditions	
t _{rr}	Reverse Recovery Time		18			$I_F = 1.0A$, $di_f/dt = 200A/\mu s$, $V_R = 30V$	
t _{rr1}	See Fig. 5, 10		37	55	ns	T _J = 25°C	
t _{rr2}			55	90		T _J = 125°C	I _F = 8.0A
I _{RRM1}	Peak Recovery Current		3.5	5.0	Α	T _J = 25°C	
I _{RRM2}	See Fig. 6		4.5	8.0	, · ·	T _J = 125°C	V _R = 200V
Q _{rr1}	Reverse Recovery Charge		65	138	nC	T _J = 25°C	
Q _{rr2}	See Fig. 7		124	360		T _J = 125°C	di₁/dt = 200A/µs
di _{(rec)M} /dt1	Peak Rate of Fall of Recovery Current		240		A/us	T _J = 25°C	
di _{(rec)M} /dt2	During t _b See Fig. 8		210		, υμο	T _J = 125°C	

Thermal - Mechanical Characteristics

	Parameter	Min	Тур	Max	Units
T _{lead} ①	Lead Temperature			300	ů
$R_{\theta JC}$	Thermal Resistance, Junction to Case			3.5	
R _{0JA} @	Thermal Resistance, Junction to Ambient			40	K/W
R _{θCS} ③	Thermal Resistance, Case to Heat Sink		0.25		
Wt	Weight		6.0		g
			0.21		(oz)
	Mounting Torque	6.0		12	Kg-cm
		5.0		10	lbf•in

 $\, \oplus \,$ 0.063 in. from Case (1.6mm) for 10 sec

Typical Socket Mount
 Mounting Surface, Flat, Smooth and Greased

Bulletin PD-20050 01/01

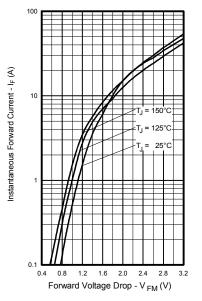


Fig. 1 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

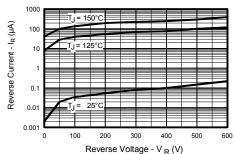
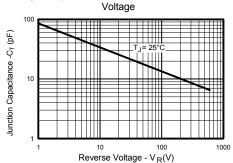



Fig. 2 - Typical Reverse Current vs. Reverse

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

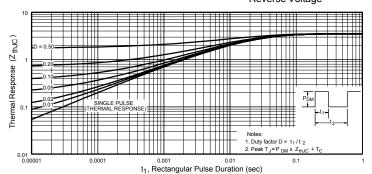
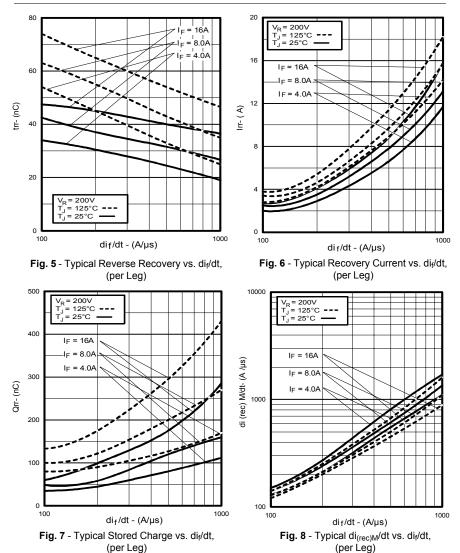



Fig. 4 - Maximum Thermal Impedance Z_{thjc} Characteristics

Bulletin PD-20050 01/01

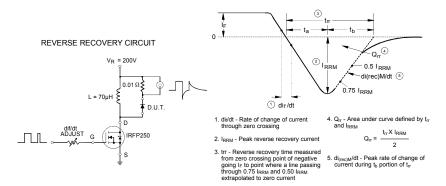
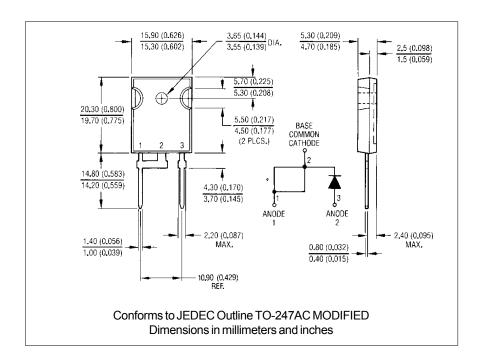



Fig. 9 - Reverse Recovery Parameter Test Circuit

Fig. 10 - Reverse Recovery Waveform and Definitions

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7309

Visit us at www.irf.com for sales contact information. 01/01