

FAIRCHILD

HGTG30N60

transforming specialty electronics

600V Planar IGBT Chip

600V, 60A, $V_{CE(sat)} = 1.8V$

Part	V _{CES}	I _{Cn}	V _{CE (sat) Typ}	Die Size			
HGTG30N60	600V	60A	1.8	6.6 x 6.6 mm ²			
See page 2 for ordering part numbers & supply formats							

Applications

- AC & DC Motor Controls
- General Purpose Inverters

Features

- Fast Switching & Low Conduction Loss
- High Input Impedance
- Short Circuit Rated

Maximum Ratings

Symbol	Parameter		Ratings	Units
BV _{CES}	Collector to Emitter Voltage		600	V
V_{GES}	Gate to Emitter Voltage		±20	V
I _C	Drain Current ¹	Continuous (T _C = 25°C)	75	Α
		Continuous (T _C = 110°C)	60	Α
I _{CM}	Pulsed Collector Current		240	Α
SCWT	Short Circuit Withstand Time ³	$V_{CE} = 360V$, $R_G = 3\Omega$, $V_{GE} = 10V$, $T_C = 125$ °C	10	μS
T _J , T _{STG}	Operation Junction & Storage Temperature			°C

Static Characteristics, T_J = 25° unless otherwise noted

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
BV _{CES}	Collector to Emitter Breakdown Voltage	$V_{GE} = 0V, I_C = 250\mu A$		600	-	-	V
I _{CES}	I _{CES} Collector Cut-Off Current	V _{CF} = 600	$T_J = 25^{\circ}C$	-	-	250	μΑ
			$T_{J} = 125^{\circ}C$	-	-	4.0	mA
I _{GES}	G-E Leakage Current	V _{GE} = ±20		-	-	±250	nA

Notes

- 1. Defined by chip design, not subject to 100% production test at wafer level
- 2. Performance will vary based on assembly technique and substrate choice
- 3. Repetitive Rating: Pulse width limited by maximum junction temperature

On Characteristics, T_J = 25°C unless otherwise noted

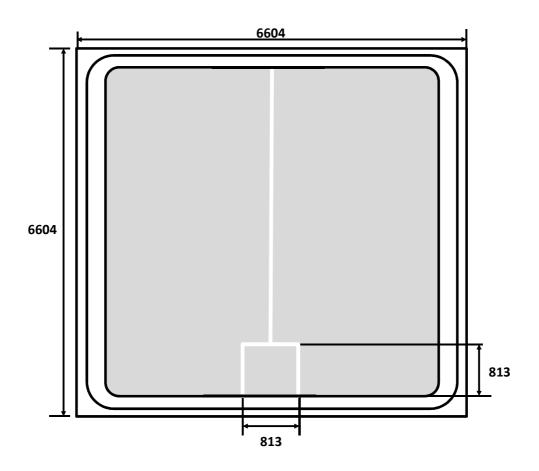
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
$V_{GE(th)}$	G-E Threshold Voltage	I _C = 250μA, V _{CE} = 600V	4.5	55	7.0	V
		$I_C = 30A, V_{GE} = 15V$	-	1.8	2.6	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	$I_C = 30A, V_{GE} = 15V$ $T_C = 125^{\circ}C$	-	1.6	2.0	V

Dynamic Characteristics², T_J = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
O State Cate Share	V _{CE} = 300V,	V _{GE} = 15V	-	225	-	nC	
Qg	On-State Gate Charge	$I_{\rm C} = 300$ V,	V _{GE} = 20V	-	300	-	TIC

Switching Characteristics³, T_J = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
t _{d(on)}	Turn-On Delay Time		-	25	-	ns
t _r	Rise Time	$V_{CE} = 390V, I_{CE} = 30A$ $R_G = 3\Omega, V_{GE} = 15V$ $V_{CE} = 390V$ $L = 200\mu H$ $T_C = 25^{\circ}$	-	12	-	ns
t _{d (off)}	Turn-Off Delay Time		-	150	-	ns
t _f	Fall Time		_	38	-	ns
E _{on}	Turn-On Switching Loss		-	280	-	mJ
E _{off}	Turn-Off Switching Loss		-	240	-	mJ
t _{d (on)}	Turn-On Delay Time		-	24	-	ns
t _r	Rise Time	.,	_	11	-	ns
t _{d (off)}	Turn-Off Delay Time	$V_{CE} = 390V, I_{C} = 30A$ $R_{G} = 3\Omega, V_{GE} = 15V$ $L=200\mu H$ $T_{C} = 125^{\circ}C$	-	180	-	ns
t _f	Fall Time		-	58	-	ns
E _{on}	Turn-On Switching Loss		-	280	-	μЈ
E _{off}	Turn-Off Switching Loss		-	450	-	μJ

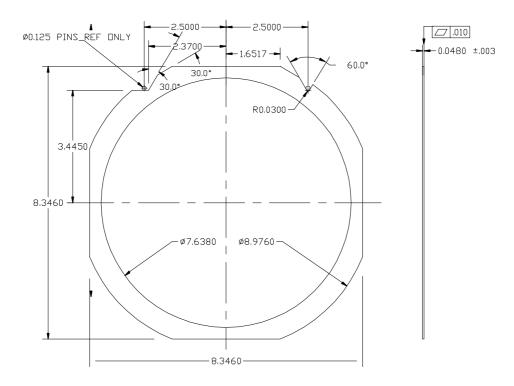

Notes:

- 1. Performance will vary based on assembly technique and substrate choice
- 2. Defined by chip design, not subject to 100% production test at wafer level
- 3. Specified in discrete package for indicative purposes only, bare die performance will vary depending on module design.

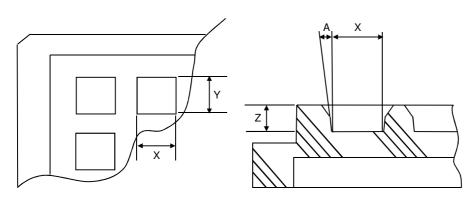
Ordering Guide

Part Number	Format	Detail / Drawing			
HGTG30N60MW	Un-sawn wafer, electrical rejects inked	Page 3			
HGTG30N60MF	Sawn wafer on film-frame	Page 4			
HGTG30N60MD	Singulated die / chips in waffle pack	Page 4			
Note: Singulated Die / Chips can also be supplied in Pocket Tape or SurfTape® on request					

Die Drawing – Dimensions (μm)



Mechanical Data


Parameter			Units	
Chip Dimensions Un-sawn	6604 x 6604		μm	
Chip Thickness (Nominal)	300		μm	
Gate Pad Size	813 x 8	313	μm	
Wafer Diameter	150 (subject to change)		mm	
Saw Street	80 (subject to change)		μm	
Wafer orientation on frame	Wafer notch pa	Wafer notch parallel with frame flat		
Topside Metallisation & Thickness	Al	4	μm	
Backside Metallisation & Thickness	V/Ni/Ag	0.45	μm	
Topside Passivation	Silicon Nitride			
Recommended Die Attach Material	Soft Solder or Conductive Epoxy			
Recommended Wire Bond - Gate	Al 150μm X1			
Recommended Wire Bond – Source	Al 500μm X2			

Dang

Sawn Wafer on Film-Frame – Dimensions (inches)

Die in Waffle Pack - Dimensions (mm)

 $\begin{array}{l} X = 6.86 \text{mm} \pm 0.13 \text{mm} \text{ pocket size} \\ Y = 6.86 \text{mm} \pm 0.13 \text{mm} \text{ pocket size} \\ Z = 0.89 \text{mm} \pm 0.08 \text{mm} \text{ pocket depth} \\ A = 5^{\circ} \pm 1/2^{\circ} \text{ pocket draft angle} \\ \text{No Cross Slots} \\ \text{Array} = 4 \text{ X 4 (16)} \\ \end{array}$

OVERALL TRAY SIZE

Size = 50.67mm ± 0.25 mm Height = 3.94mm ± 0.13 mm Flatness = 0.30mm

DISCLAIMER THE INFORMATION HEREIN IS GIVEN TO DESCRIBE CERTAIN COMPONENTS AND SHALL NOT BE CONSIDERED AS WARRANTED CHARACTERISTICS. NO RESPONSIBILITY IS ASSUMED FOR ITS USE; NOR FOR ANY INFRINGEMENT OF PATENTS OR OTHER RIGHTS OF THIRD PARTIES WHICH MAY RESULT FROM ITS USE. NO LICENSE IS GRANTED BY IMPLICATION OR OTHERWISE UNDER ANY PATENT OR PATENT RIGHTS OF EITHER MICROSS COMPONENTS OR FAIRCHILD SEMICONDUCTOR CORPORATION.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

1. Life support devices or systems are devices or systems which,

(a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labelling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Further Information - Contact your Micross sales office or email your enquiry to baredie@micross.com