HI1177 8-Bit, 40MSPS, 2-Channel D/A Converter FN4114 Rev 2.00 January 1999 The HI1177 is a dual 8-bit CMOS digital-to-analog converter. It has input/output equivalent to 2 channels of Y and C for video use or I and Q for modulators. The HI1177 is available in the industrial temperature range and is supplied in a 32 lead plastic metric quad flatpack (MQFP) package. ## **Ordering Information** | PART
NUMBER | TEMP.
RANGE (°C) | | | |----------------|---------------------|------------|-----------| | HI1177JCQ | -40 to 85 | 32 Ld MQFP | Q32.7x7-S | ## **Pinout** HI1177 (MQFP) TOP VIEW #### **Features** | • Resolution 8-Bit | |---------------------------------------| | Maximum Conversion Speed 40MHz | | YC 2-Channel Input/Output | | Differential Linearity Error ±0.3 LSB | | Low Power Consumption | | • Power Supply +5V Single | | Power-Down Mode | | | - · Low Glitch Noise - Direct Replacement for Sony CXD1177 ### **Applications** - I/Q Modulation - YC Video - · Digital TV - · Wireless Transmitters ## Functional Block Diagram ## Pin Descriptions | NUMBER | SYMBOL | EQUIVALENT CIRCUIT | DESCRIPTION | |---------|----------|--------------------------------------|--| | 1 to 8 | Y0 to Y7 | φ DV _{DD} | Digital Input. | | 9 to 16 | C0 to C7 | 1 DV _{SS} | | | 17 | BLK | 17 DV _{DD} DV _{SS} | Blanking Pin. No signal at "H" (Output 0V). Output condition at "L". | # Pin Descriptions (Continued) | NUMBER | SYMBOL | EQUIVALENT CIRCUIT | DESCRIPTION | | | | |--------|------------------|---|--|--|--|--| | 22 | V _B | DV _{DD} DV _{DD} 22 DV _{SS} | Connect a capacitor of about 0.1μF. | | | | | 19 | YCK | Ŷ DV _{DD} | Clock Pin. Moreover all input pins are | | | | | 20 | CLK | 19 DV _{SS} | TTL-CMOS compatible. | | | | | 21 | DV _{SS} | | Digital GND. | | | | | 23 | AV _{SS} | | Analog GND. | | | | | 18 | CE | 18 DV _{SS} | Chip Enable Pin. No signal (Output 0V) at "H" and minimizes power consumption. | | | | | 24 | I _{REF} | AV _{DD} Q AV _{DD} | Connect a resistance 16 times "16R" that of output resistance value "R". | | | | | 25 | V_{REF} | Ĭ Ţ | Set full scale output value. | | | | | 30 | V_{G} | AV _{DD} Q ⁽²⁴⁾ | Connect a capacitor of about 0.1µF. | | | | | 31 | AV _{DD} | AV _{SS} AV _{DD} AV _{DD} AV _{SS} | Analog V _{DD} . | | | | | 27 | СО | AV _{DD} γ ι | Current Output Pin. Voltage output can be | | | | | 29 | YO | 1 | obtained by connecting a resistance. | | | | | 26 | CO | | Inverted Current Output Pin. Normally | | | | | 28 | ΫŌ | AV _{SS} AV _{SS} AV _{SS} | dropped to analog GND. | | | | | 32 | DV_DD | | Digital V _{DD} . | | | | ## **Absolute Maximum Ratings** $T_A = 25^{\circ}C$ | Supply Voltage, V _{DD} | .7V | |---|-----| | Input Voltage, V _{IN} | ss/ | | Output Current (For Each Channel), I _{OUT} 0mA to 15 | mΑ | ### **Operating Conditions** | - | |--| | Supply Voltage | | AV _{DD} , AV _{SS} 4.75V to 5.25V | | DV _{DD} , DV _{SS} | | Reference Input Voltage, V _{REF} | | Clock Pulse Width | | t _{PW1} | | t _{PW0} | | Temperature Range, T _{OPB} 40°C to 85°C | #### **Thermal Information** | Thermal Resistance (Typical, Note 7) | θ_{JA} (°C/W) | |--|--------------------------------------| | MQFP Package | 122 | | Maximum Junction Temperature (Plastic Package) | | | Maximum Storage Temperature Range65 | ^o C to 150 ^o C | | Maximum Lead Temperature (Soldering 10s) | 300°C | | (MQFP - Lead Tips Only) | | | | | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE: 1. $\theta_{\mbox{\scriptsize JA}}$ is measured with the component mounted on an evaluation PC board in free air. ## $\textbf{Electrical Specifications} \quad \text{f_{CLK} = 40MHz, V_{DD} = 5V, R_{OUT} = 200Ω, V_{REF} = $2.0V$, T_{A} = $25^{\circ}C$}$ | PARA | METER | SYMBOL | TEST CONDITIONS | TEST
LEVEL
OR NOTES | MIN | TYP | MAX | UNITS | |---------------------------|--------------|------------------|----------------------------------|---------------------------|------|-----|-----|-------| | Resolution | | n | | | - | 8 | - | bit | | Maximum Conve | ersion Speed | f _{MAX} | | | 40 | - | - | MHz | | Linearity Error | | EL | | | -2.5 | - | 2.5 | LSB | | Differential Linea | arity Error | ED | | | -0.3 | - | 0.3 | LSB | | Full Scale Output Voltage | | V _{FS} | | | 1.9 | 2.0 | 2.2 | V | | Full Scale Output Ratio | | F _{SR} | | Note 1 | 0 | 1.5 | 3 | % | | Full Scale Output | t Current | I _{FS} | | | - | 10 | 15 | mA | | Offset Output Voltage | | Vos | | | - | - | 1 | mV | | Power Supply Current | | I _{DD} | 14.3MHz, at Color Bar Data Input | | - | - | 32 | mA | | Digital Input High Level | | I _{IH} | | | - | - | 5 | μА | | Current | Low Level | I _{IL} | | | -5 | - | - | μА | | Setup Time | | t _S | | | 5 | - | - | ns | | Hold Time | | t _H | | | 10 | - | - | ns | | Propagation Delay Time | | t _{PD} | | | - | 10 | - | ns | | Glitch Energy | | GE | R _{OUT} = 75Ω | | - | 30 | - | pV-s | | Cross Talk | | СТ | 1MHz Sin Wave Output | | - | 57 | - | dB | #### NOTE: 1. Full scale output ratio = $\frac{\text{Full-scale voltage of channel}}{\text{Average of the full-scale voltage of the channels}} (-1) x 100 (%).$ ## I/O Correspondence Table (Output Full Scale Voltage: 2V) | | INPUT CODE | | | | | | OUTPUT VOLTAGE | | |----|------------|---|---|---|---|----|----------------|------| | MS | В | | | | | LS | BB | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2.0V | | | | | | • | | | | | | | | | | • | | | | | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.0V | | ' | U | U | U | | U | U | U | 1.00 | | | | | | | | | | | | | | | | • | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0V | ## **Timing Diagram** ### **Test Circuits** © Copyright Intersil Americas LLC 1999-2000. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners. For additional products, see www.intersil.com/en/products.html Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com ## Test Circuits (Continued) FIGURE 3. SETUP HOLD TIME AND GLITCH ENERGY FIGURE 4. CROSSTALK FIGURE 5. DC CHARACTERISTICS ### Test Circuits (Continued) FIGURE 6. PROPAGATION DELAY TIME ## **Typical Performance Curves** FIGURE 7. OUTPUT FULL SCALE VOLTAGE vs REFERENCE VOLTAGE FIGURE 9. OUTPUT FULL SCALE VOLTAGE vs AMBIENT TEMPERATURE AMBIENT TEMPERATURE (°C) FIGURE 8. GLITCH ENERGY vs OUTPUT RESISTANCE FIGURE 10. CROSSTALK vs OUTPUT FREQUENCY 100 75 -25 ## **Application Circuit** FIGURE 11. ### Operation - How to select the output resistance: - The HI1177 is a D/A converter of the current output type. To obtain the output voltage connect the resistance to IO pin (Y0, C0). For specifications we have: Output full scale voltage V_{FS} = less than 2V Output full scale current I_{FS} = less than 15mA - Calculate the output resistance value from the relation of $V_{FS} = I_{FS} \ X \ R$. Also, 16 times resistance of the output resistance is connected to reference current pin I_{REF} . In some cases, however, this turns out to be a value that does not actually exist. In such a case a value close to it can be used as a substitute. Here please note that V_{FS} becomes $V_{FS} = V_{REF} \ X \ 16R/R'$. R is the resistance connected to IO while R' is connected to I_{REF} . Increasing the resistance value can curb power consumption. On the other hand glitch energy and data settling time will inversely increase. Set the most suitable value according to the desired application. - Phase relation between data and clock: - To obtain the expected performance as a D/A converter, it is necessary to set properly the phase relation between data and clock applied from the exterior. Be sure to satisfy the provisions of the set up time (t_S) and hold time (t_H) as stipulated in the Electrical Characteristics. - V_{DD}, V_{SS}: - To reduce noise effects separate analog and digital systems in the device periphery. For V_{DD} pins, both digital and analog, bypass respective GNDs by using a ceramic capacitor of about 0.1μF, as close as possible to the pin.