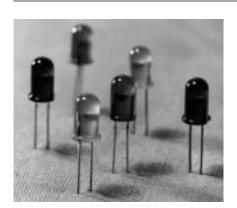


T-1³/₄ (5 mm) Diffused LED Lamps

Technical Data

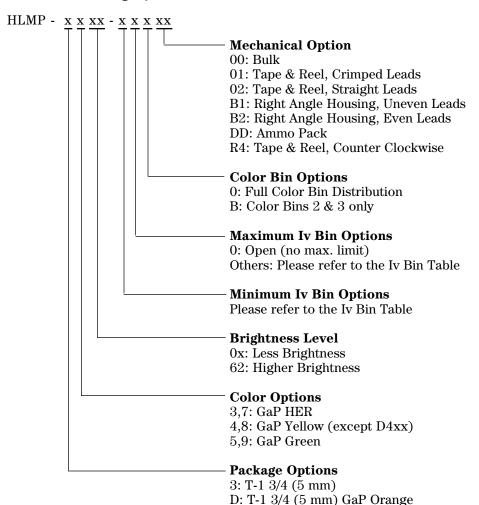
HLMP-3301 HLMP-3401 HLMP-3507 HLMP-3762 HLMP-3862 HLMP-3962 HLMP-D401

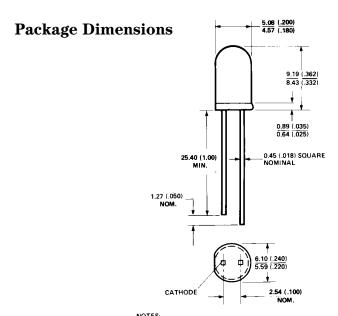

Features

- High Intensity
- Popular T-1³/₄ Diameter Package
- Selected Minimum Intensities
- Wide Viewing Angle
- General Purpose Leads

- Reliable and Rugged
- Available on Tape and Reel

Description


This family of T-1³/4 tinted, diffused LED lamps is widely used in general purpose indicator applications. Diffusants, tints, and optical design are balanced to yield superior light output and wide viewing angles. Several intensity choices are available in each color for increased design flexibility.



Selection Guide

		Luminous Intensity Iv (mcd) at 10 mA	
Material/Color	Part Number	Min.	Max.
	HLMP-3301	5.4	_
	HLMP-3301-D00xx	2.1	_
GaP HER	HLMP-3301-F00xx	5.4	_
Gai IIII	HLMP-3301-FG0xx	5.4	17.2
	HLMP-3762	8.6	_
	HLMP-3762-G00xx	8.6	_
	HLMP-3401	5.7	_
	HLMP-3401-E00xx	5.7	_
	HLMP-3401-EF0xx	5.7	18.4
GaP Yellow	HLMP-3401-EFBxx	5.7	18.4
	HLMP-3862	9.2	_
	HLMP-3862-F00xx	9.2	_
	HLMP-3862-FGBxx	9.2	29.4
	HLMP-D401	5.4	_
G D 0	HLMP-D401-D00xx	2.1	_
GaP Orange	HLMP-D401-EF0xx	3.4	10.8
	HLMP-D401-F00xx	5.4	_
	HLMP-3507	4.2	_
	HLMP-3507-D00xx	4.2	_
GaP Green	HLMP-3507-EF0xx	6.7	21.2
	HLMP-3962	10.6	_
	HLMP-3962-F00xx	10.6	

Part Numbering System

NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES). 2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1mm (.040") DOWN THE LEADS. www.DataSheet4U.com

Optical/Electrical Characteristics at $T_A = 25$ °C

Symbol	Parameter	Color	Min.	Тур.	Max.	Units	Test Condition
2θ1/2	Included Angle Between Half Luminous Intensity Points	High Efficiency Red Orange Yellow Green		60 60 60 60		Deg.	$I_F = 10 \text{ mA}$ See Note 1
$\lambda_{ ext{PEAK}}$	Peak Wavelength	High Efficiency Red Orange Yellow Green		635 600 583 565		nm	Measurement at Peak
$\Delta\lambda_{1/2}$	Spectral Line Halfwidth	HER/Orange Yellow Green		40 36 28		nm	
$\lambda_{ m d}$	Dominant Wavelength	High Efficiency Red Orange Yellow Green		626 602 585 569		nm	See Note 2
$ au_{ m s}$	Speed of Response	High Efficiency Red Orange Yellow Green		90 280 90 500		ns	
С	Capacitance	High Efficiency Red Orange Yellow Green		11 4 15 18		pF	$V_F = 0;$ f = 1 MHz
$R\theta_{ ext{J-PIN}}$	Thermal Resistance	All		260		°C/W	Junction to Cathode Lead
$V_{ m F}$	Forward Voltage	HER/Orange Yellow Green		1.9 2.0 2.1	2.4 2.4 2.7	V	$I_{\rm F} = 10 \text{ mA}$
V_{R}	Reverse Breakdown Voltage	All	5.0			V	$I_R = 100 \mu A$
$\eta_{ m V}$	Luminous Efficacy	High Efficiency Red Orange Yellow Green	-	145 380 500 595		lumens Watt	See Note 3

Notes:

^{1.} $\theta^1/2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the

^{3.} Radiant intensity, I_e , in Watts/steradian, may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/Watt.

Absolute Maximum Ratings at $T_A = 25$ °C

Parameter	HER/Orange	Yellow	Green/ Emerald Green	Units
Peak Forward Current	90	90 60		mA
Average Forward Current ^[1]	25	20	25	mA
DC Current ^[2]	30	20	30	mA
Power Dissipation ^[3]	135	85	135	mW
Reverse Voltage ($I_R = 100 \mu A$)	5	5	5	V
Transient Forward Current ^[4] (10 μsec Pulse)	500	500	500	mA
LED Junction Temperature	110	110	110	°C
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +100	$^{\circ}\mathrm{C}$
Storage Temperature Range			-55 to +100	
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]		260°C fo	or 5 seconds	

Notes:

- 1. See Figure 5 (Red/Orange), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.
- 2. For Red, Orange and Green series derate linearly from 50°C at 0.5 mA/°C. For Yellow series derate linearly from 50°C at 0.2 mA/°C.
- 3. 1.8 mW/°C. For Yellow series derate power linearly from 50°C at 1.6 mW/°C.
- 4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

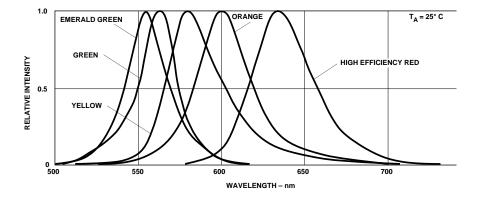
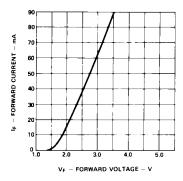



Figure 1. Relative Intensity vs. Wavelength.

T-13/4 High Efficiency Red, Orange Diffused Lamps

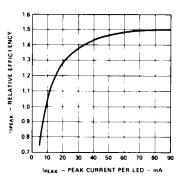
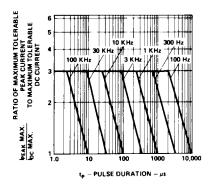



Figure 2. Forward Current vs. Forward Voltage Characteristics.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

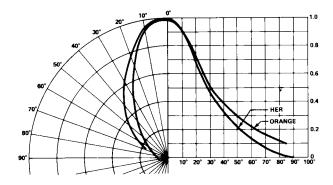
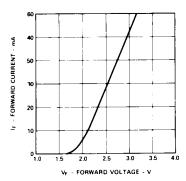
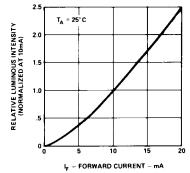




Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

 ${\bf Figure~6.~Relative~Luminous~Intensity~vs.~Angular~Displacement.}$

T-13/4 Yellow Diffused Lamps

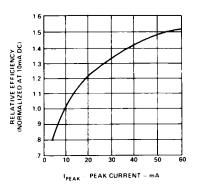
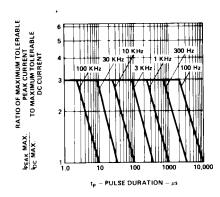



Figure 7. Forward Current vs. Forward Voltage Characteristics.

Figure 8. Relative Luminous Intensity vs. Forward Current.

Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

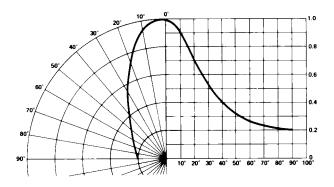
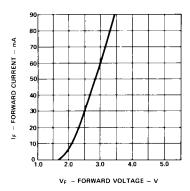



Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

T-13/4 Green/Emerald Green Diffused Lamps

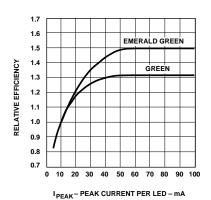
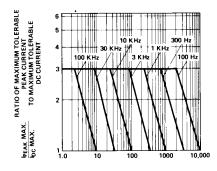



Figure 12. Forward Current vs. Forward Voltage Characteristics.

Figure 13. Relative Luminous Intensity vs. DC Forward Current.

Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

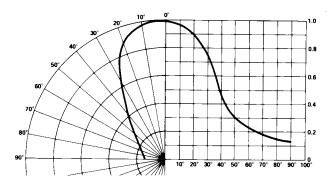


Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

Intensity Bin Limits

Intensity Bin					
Color	Bin	Min.	Intensity Range (mcd) Min. Max.		
Color	D	2.4	3.8		
	E	3.8	6.1		
	F	6.1	9.7		
	G	9.7	15.5		
	Н	15.5	24.8		
	I	24.8	39.6		
	J	39.6	63.4		
	K	63.4	101.5		
	L	101.5	162.4		
	M	162.4	234.6		
	N	234.6	340.0		
Red/Orange	0	340.0	540.0		
ned/Orange	P	540.0	850.0		
	Q	850.0	1200.0		
	R	1200.0	1700.0		
	S	1700.0	2400.0		
	T	2400.0	3400.0		
	U	3400.0	4900.0		
	V	4900.0	7100.0		
	W	7100.0	10200.0		
	X	10200.0	14800.0		
	Y	14800.0	21400.0		
	Z	21400.0	30900.0		
	E	6.5	10.3		
	F	10.3	16.6		
	G	16.6	26.5		
	Н	26.5	42.3		
	I	42.3	67.7		
	J	67.7	108.2		
	L	$\frac{108.2}{173.2}$	173.2 250.0		
		250.0			
37 - 11	M		360.0		
Yellow	N	360.0	510.0		
	O P	510.0	800.0		
		800.0	1250.0		
	Q	1250.0	1800.0		
	R	1800.0	2900.0		
	S	2900.0	4700.0		
	T	4700.0	7200.0		
	U	7200.0	11700.0		
	V	11700.0	18000.0		
	W	18000.0	27000.0		

www.DataSheet4U.com

Intensity Bin Limits, continued

		Intensity Range (mcd)		
Color	Bin	Min.	Max.	
	D	4.7	7.6	
	Е	7.6	12.0	
	F	12.0	19.1	
	G	19.1	30.7	
	Н	30.7	49.1	
	I	49.1	78.5	
	J	78.5	125.7	
	K	125.7	201.1	
	L	201.1	289.0	
Green	M	289.0	417.0	
	N	417.0	680.0	
	О	680.0	1100.0	
	P	1100.0	1800.0	
	Q	1800.0	2700.0	
	R	2700.0	4300.0	
	S	4300.0	6800.0	
	T	6800.0	10800.0	
	U	10800.0	16000.0	
	V	16000.0	25000.0	
	W	25000.0	40000.0	

Maximum tolerance for each bin limit is \pm 18%.

Color Categories

00101 0000801		Lambda (nm)		
Color	Category #	Min.	Max.	
	6	561.5	564.5	
	5	564.5	567.5	
Green	4	567.5	570.5	
	3	570.5	573.5	
	2	573.5	576.5	
	1	582.0	584.5	
	3	584.5	587.0	
Yellow	2	587.0	589.5	
	4	589.5	592.0	
	5	592.0	593.0	
	1	597.0	599.5	
	2	599.5	602.0	
	3	602.0	604.5	
Orange	4	604.5	607.5	
	5	607.5	610.5	
	6	610.5	613.5	
	7	613.5	616.5	
	8	616.5	619.5	

Tolerance for each bin limit is ± 0.5 nm.

www.DataSheet4U.com

10

Mechanical Option Matrix

Mechanical Option Code	Definition	
00	Bulk Packaging, minimum increment 500 pcs/bag	
01	Tape & Reel, crimped leads, minimum increment 1300 pcs/bag	
02	Tape & Reel, straight leads, minimum increment 1300 pcs/bag	
B1	Right Angle Housing, uneven leads, minimum increment 500 pcs/bag	
B2	Right Angle Housing, even leads, minimum increment 500 pcs/bag	
DD	Ammo Pack, straight leads with minimum increment 2K/pack	
R4	Tape & Reel, straight leads, counter clockwise, anode lead leaving the reel first	

Note

All categories are established for classification of products. Products may not be available in all categories. Please contact your local Agilent representative for further clarification/information.

www.semiconductor.agilent.com

Data subject to change.
Copyright © 2001 Agilent Technologies, Inc.
March 21, 2001
Obsoletes 5968-4161E (2/99)
5988-1857EN

WWW.DataSheet4U.com