Wide Temperature Range Version 8 M SRAM (512-kword × 16-bit)

ADE-203-1303B (Z) Rev. 1.0 Oct. 23, 2002

Description

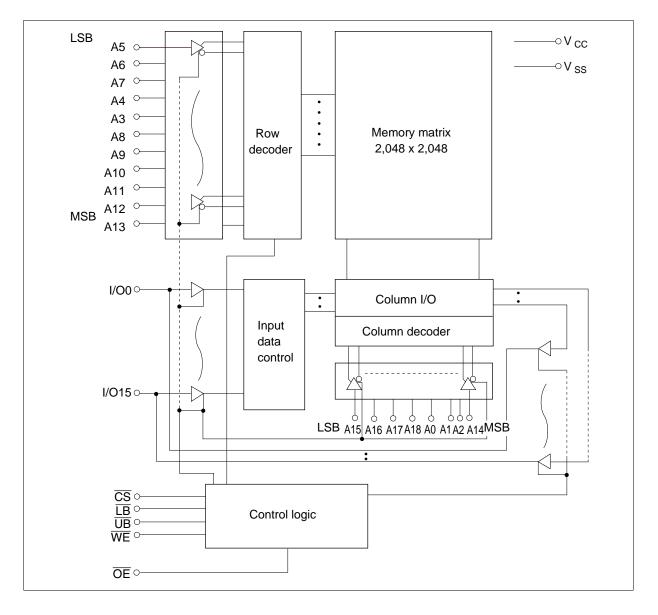
The Hitachi HM6216514I Series is 8-Mbit static RAM organized 524,288-word \times 16-bit. HM6216514I Series has realized higher density, higher performance and low power consumption by employing CMOS process technology (6-transistor memory cell). It offers low power standby power dissipation; therefore, it is suitable for battery backup systems. It is packaged in standard 44-pin plastic TSOPII.

Features

- Single 5.0 V supply: $5.0V \pm 10\%$
- Fast access time: 55 ns (Max)
- Power dissipation:
 - Active: 10 mW/MHz (Typ)
 - Standby: 7.5 µW (Typ)
- Completely static memory.
 - No clock or timing strobe required
- Equal access and cycle times
- Common data input and output.
 - Three state output
- Battery backup operation.
- Temperature range: -40 to +85°C

Ordering Information

Type No.	Access time	Package
HM6216514LTTI-5SL	55 ns	400-mil 44-pin plastic TSOPII (normal-bend type) (TTP-44DE)


Pin Arrangement

	44-pin TSOP	
A4	1 44	
A3	2 43	
A2	3 42	
A1	4 41	
A0 🗌	5 40	
	6 39	
I/O0 🗌	7 38	3 🔲 I/O15
I/O1 🗌	8 37	7 🔲 I/O14
I/O2 🗌	9 36	5 🔲 I/O13
I/O3 🗌	10 35	5 🔲 1/012
	11 34	4 🗍 V _{SS}
V _{SS}	12 33	
I/O4	13 32	
I/O5 🗌	14 31	1 🛄 I/O10
I/O6 🗌	15 30	D 🗌 I/O9
I/07 🗌	16 29	
WE	17 28	
A18	18 27	
A17	19 26	
A16	20 25	
A15	21 24	
A14	22 23	
	(Top view)	

Pin Description

Pin name	Function
A0 to A18	Address input
I/O0 to I/O15	Data input/output
CS	Chip select
WE	Write enable
ŌĒ	Output enable
LB	Lower byte select
UB	Upper byte select
V _{cc}	Power supply
V _{ss}	Ground

Block Diagram

Operation Table

CS	WE	OE	UB	LB	I/O0 to I/O7	I/O8 to I/O15	Operation
Н	×	×	×	×	High-Z	High-Z	Standby
×	х	×	Н	Н	High-Z	High-Z	Standby
L	Н	L	L	L	Dout	Dout	Read
L	Н	L	Н	L	Dout	High-Z	Lower byte read
L	Н	L	L	Н	High-Z	Dout	Upper byte read
L	L	×	L	L	Din	Din	Write
L	L	×	Н	L	Din	High-Z	Lower byte write
L	L	×	L	Н	High-Z	Din	Upper byte write
L	Н	Н	×	×	High-Z	High-Z	Output disable

Note: H: V_{IH} , L: V_{IL} , \times : V_{IH} or V_{IL}

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power supply voltage relative to $\rm V_{ss}$	V _{cc}	–0.5 to + 7.0	V
Terminal voltage on any pin relative to $\rm V_{\rm ss}$	V _T	-0.5^{*1} to V _{cc} + 0.3 ^{*2}	V
Power dissipation	P _T	1.0	W
Storage temperature range	Tstg	–55 to +125	°C
Storage temperature range under bias	Tbias	-40 to +85	°C

Notes: 1. V_{τ} min: -3.0 V for pulse half-width \leq 30 ns.

2. Maximum voltage is +7.0 V.

DC Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	V _{cc}	4.5	5.0	5.5	V	
	V _{ss}	0	0	0	V	
Input high voltage	V _{IH}	2.2	—	$V_{cc} + 0.3$	V	
Input low voltage	V _{IL}	-0.3	—	0.8	V	1
Ambient temperature range	Та	-40	_	85	°C	

Note: 1. V_{IL} min: -3.0 V for pulse half-width \leq 30 ns.

DC Characteristics

Parameter	Symbol	Min	Typ* ¹	Max	Unit	Test conditions
Input leakage current	I _{LI}			1	μΑ	Vin = V_{ss} to V_{cc}
Output leakage current	I _{LO}	_	—	1	μA	
Operating current	I _{cc}	—	_	20	mA	$\overline{CS} = V_{IL}$, Others = V_{IH}/V_{IL} , $I_{I/O} = 0 \text{ mA}$
Average operating current	I _{CC1}	_	16	35	mA	Min. cycle, duty = 100%, $I_{_{IO}} = 0 \text{ mA}, \overline{CS} = V_{_{IL}},$ Others = $V_{_{IH}}/V_{_{IL}}$
	I _{CC2}	_	2	5	mA	$ \begin{array}{l} \mbox{Cycle time} = 1 \ \mbox{\mu s, duty} = 100\%, \\ I_{\mbox{\tiny IO}} = 0 \ \mbox{mA, } \overline{CS} \leq 0.2 \ \mbox{V}, \\ V_{\mbox{\tiny IH}} \geq V_{\mbox{\tiny CC}} - 0.2 \ \mbox{V, } V_{\mbox{\tiny IL}} \leq 0.2 \ \mbox{V} \end{array} $
Standby current	I _{SB}	_	0.1	0.3	mA	$\overline{\text{CS}} = \text{V}_{\text{IH}}$
Standby current	I _{SB1}	—	0.8	10	μΑ	$\begin{array}{l} 0 \ V \leq Vin \\ (1) \ \overline{CS} \geq V_{\rm CC} - 0.2 \ V \ or \\ (2) \ \overline{LB} = \overline{UB} \geq V_{\rm CC} - 0.2 \ V, \\ \overline{CS} \leq 0.2 \ V \end{array}$
Output high voltage	V _{OH}	2.4	_	_	V	$I_{OH} = -1 \text{ mA}$
Output low voltage	V _{OL}		—	0.4	V	I _{oL} = 2.1 mA

Notes: 1. Typical values are at V_{cc} = 5.0 V, Ta = +25°C and not guaranteed.

Capacitance (Ta = $+25^{\circ}$ C, f = 1.0 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions	Note
Input capacitance	Cin	_	_	8	pF	Vin = 0 V	1
Input/output capacitance	C _{I/O}			10	pF	$V_{I/O} = 0 V$	1

Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = -40 to $+85^{\circ}$ C, V_{CC} = 5.0 V ± 10 %, unless otherwise noted.)

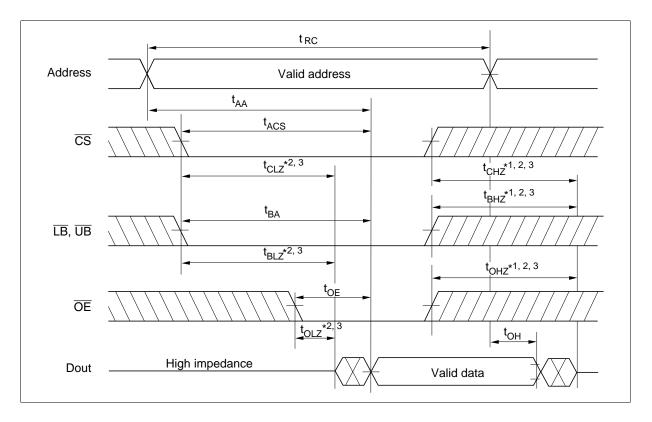
Test Conditions

- Input pulse levels: $V_{IL} = 0.4 \text{ V}, V_{IH} = 2.2 \text{ V}$
- Input rise and fall time: 5 ns
- Input and output timing reference levels: 1.5 V
- Output load: 1 TTL Gate + C_L (50 pF) (Including scope and jig)

Read Cycle

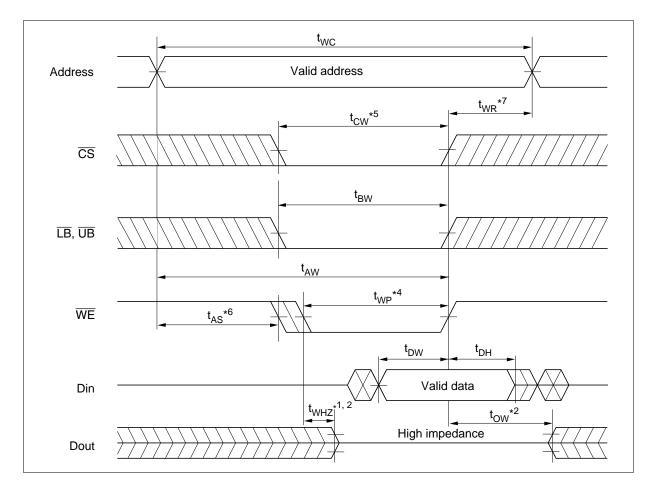
		HM621	6514I		
		-5			
Parameter	Symbol	Min	Max	Unit	Notes
Read cycle time	t _{RC}	55	_	ns	
Address access time	t _{AA}		55	ns	
Chip select access time	t _{ACS}	—	55	ns	
Output enable to output valid	t _{oe}		35	ns	
Output hold from address change	t _{oH}	10	—	ns	
LB, UB access time	t _{BA}		55	ns	
Chip select to output in low-Z	t _{cLZ}	10	—	ns	2, 3
LB, UB enable to low-z	t _{BLZ}	5	_	ns	2, 3
Output enable to output in low-Z	t _{oLZ}	5	—	ns	2, 3
Chip deselect to output in high-Z	t _{cHz}	0	20	ns	1, 2, 3
LB, UB disable to high-Z	t _{BHZ}	0	20	ns	1, 2, 3
Output disable to output in high-Z	t _{oHz}	0	20	ns	1, 2, 3

Write Cycle

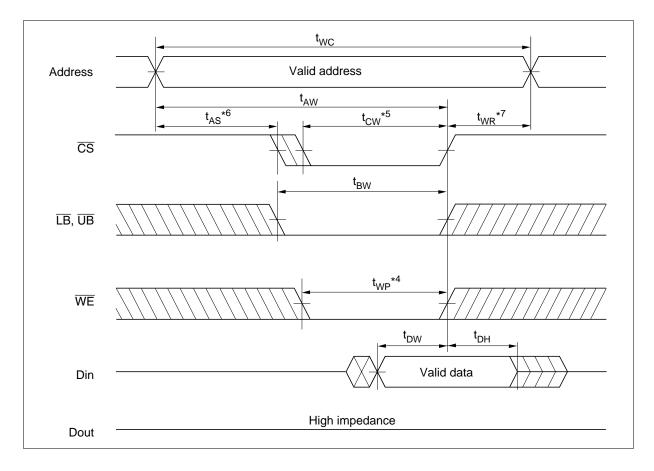

		HM621	6514I		
		-5			
Parameter	Symbol	Min	Max	Unit	Notes
Write cycle time	t _{wc}	55		ns	
Address valid to end of write	t _{AW}	50		ns	
Chip selection to end of write	t _{cw}	50		ns	5
Write pulse width	t _{wP}	40		ns	4
LB, UB valid to end of write	t _{BW}	50		ns	
Address setup time	t _{AS}	0	_	ns	6
Write recovery time	t _{wR}	0		ns	7
Data to write time overlap	t _{DW}	25		ns	
Data hold from write time	t _{DH}	0	_	ns	
Output active from end of write	t _{ow}	5		ns	2
Output disable to output in high-Z	t _{oHz}	0	20	ns	1, 2
Write to output in high-Z	t _{wHZ}	0	20	ns	1, 2

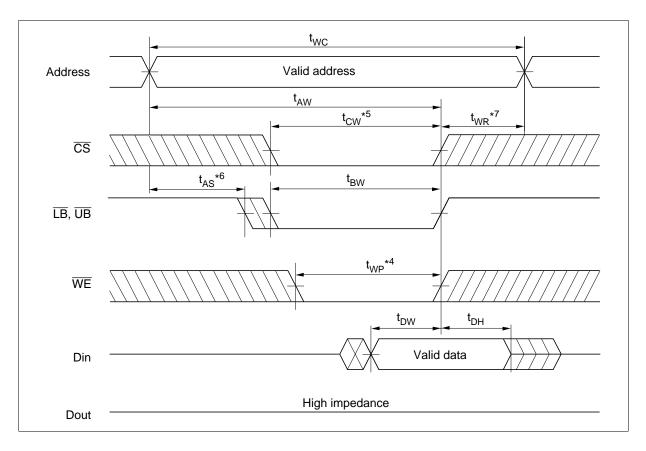
Notes: 1. t_{CHZ}, t_{OHZ}, t_{WHZ} and t_{BHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

- 2. This parameter is sampled and not 100% tested.
- 3. At any given temperature and voltage condition, t_{HZ} max is less than t_{LZ} min both for a given device and from device to device.
- 4. A write occures during the overlap of a low CS, a low WE and a low LB or a low UB. A write begins at the latest transition among CS going low, WE going low and LB going low or UB going low. A write ends at the earliest transition among CS going high, WE going high and LB going high or UB going high. t_{WP} is measured from the beginning of write to the end of write.
- 5. t_{cw} is measured from the later of \overline{CS} going low to the end of write.
- 6. t_{AS} is measured from the address valid to the beginning of write.
- 7. t_{WR} is measured from the earliest of \overline{CS} or \overline{WE} going high to the end of write cycle.


Timing Waveform

Read Cycle

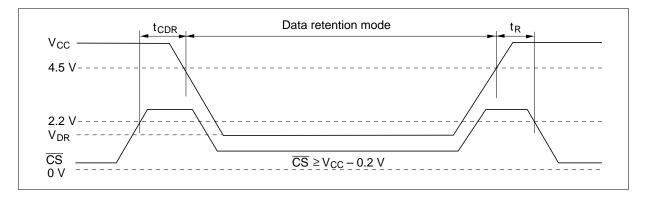



Write Cycle (1) ($\overline{\text{WE}}$ Clock)

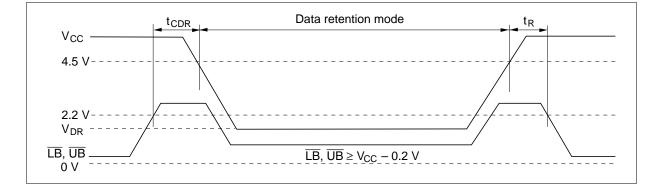
Write Cycle (2) (\overline{CS} Clock, $\overline{OE} = V_{IH}$)

Write Cycle (3) (\overline{LB} , \overline{UB} Clock, $\overline{OE} = V_{IH}$)

Parameter	Symbol	Min	Typ* ²	Max	Unit	Test conditions*1
V_{cc} for data retention	V _{dr}	2.0	_	_	V	$ \begin{array}{l} \text{Vin} \geq 0\text{V} \\ \text{(1)} \ \overline{\text{CS}} \geq \text{V}_{\text{cc}} - 0.2 \text{ V or} \\ \text{(2)} \ \overline{\text{LB}} = \overline{\text{UB}} \geq \text{V}_{\text{cc}} - 0.2 \text{ V} \\ \overline{\text{CS}} \leq 0.2 \text{ V} \end{array} $
Data retention current	I _{CCDR}	_	0.8	10	μΑ	$\begin{array}{l} V_{cc} = 3.0 \text{ V}, \text{ Vin} \geq 0V \\ \textbf{(1)} \overline{CS} \geq V_{cc} - 0.2 \text{ V or} \\ \textbf{(2)} \overline{LB} = \overline{UB} \geq V_{cc} - 0.2 \text{ V} \\ \overline{CS} \leq 0.2 \text{ V} \end{array}$
Chip deselect to data retention time	t _{CDR}	0		_	ns	See retention waveform
Operation recovery time	t _R	t _{RC} * ³	_	_	ns	_

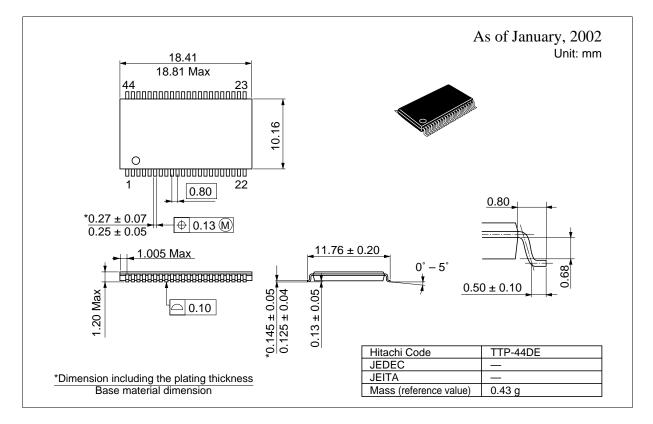

Low V_{CC} **Data Retention Characteristics** (Ta = -40 to $+85^{\circ}$ C)

Notes: 1. \overline{CS} controls address buffer, \overline{WE} buffer, \overline{OE} buffer, \overline{LB} , \overline{UB} buffer and Din buffer. If \overline{CS} controls data retention mode, Vin levels (address, \overline{WE} , \overline{OE} , \overline{LB} , \overline{UB} , \overline{UB} , I/O) can be in the high impedance state. If \overline{LB} , \overline{UB} controls data retention mode, \overline{LB} , \overline{UB} must be $\overline{LB} = \overline{UB} \ge V_{cc} - 0.2 \text{ V}$, \overline{CS} must be $\overline{CS} \le 0.2 \text{ V}$. The other input levels (address, \overline{WE} , \overline{OE} , I/O) can be in the high impedance state.


2. Typical values are at V_{cc} = 3.0 V, Ta = +25°C and not guaranteed.

3. t_{RC} = read cycle time.

Low V_{CC} Data Retention Timing Waveform (1) $(\overline{\text{CS}} \text{ Controlled})$



Low V_{CC} Data Retention Timing Waveform (2) (LB, UB Controlled)

Package Dimensions

HM6216514LTTI Series (TTP-44DE)

