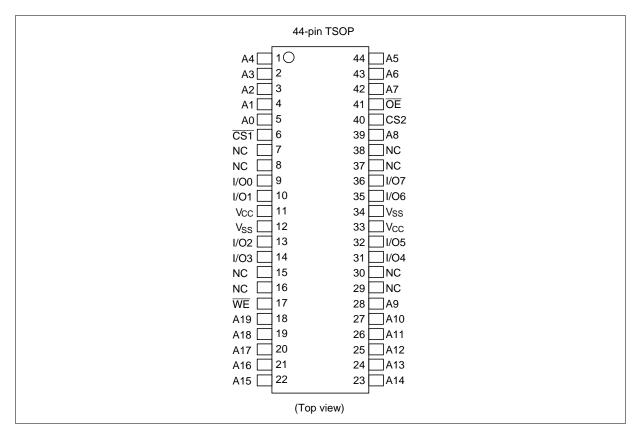
Wide Temperature Range Version 8 M SRAM (1024-kword × 8-bit)

ADE-203-1302B (Z) Rev. 1.0 Sep. 25, 2002

Description

The Hitachi HM628100I Series is 8-Mbit static RAM organized 1,048,576-word \times 8-bit. HM628100I Series has realized higher density, higher performance and low power consumption by employing CMOS process technology (6-transistor memory cell). It offers low power standby power dissipation; therefore, it is suitable for battery backup systems. It is packaged in standard 44-pin TSOP II for high density surface mounting.

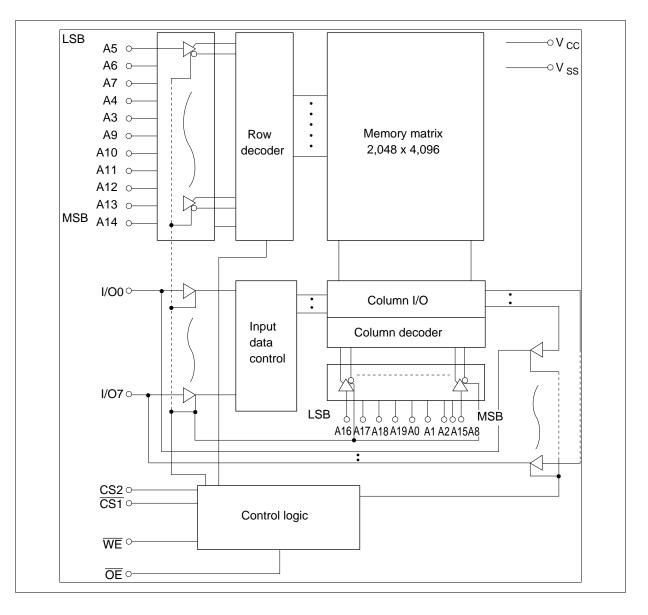

Features

- Single 5.0 V supply: $5.0 \text{ V} \pm 10 \%$
- Fast access time: 55 ns (max)
- Power dissipation:
 - Active: 10 mW/MHz (typ)
 - Standby: 7.5 μ W (typ)
- Completely static memory.
 - No clock or timing strobe required
- Equal access and cycle times
- Common data input and output.
 - Three state output
- Battery backup operation.
 - 2 chip selection for battery backup
- Temperature range: -40 to +85°C

Ordering Information

Туре No.	Access time	Package
HM628100LTTI-5SL	55 ns	400-mil 44pin plastic TSOP II (normal-bend type) (TTP-44DE)

Pin Arrangement



Pin Description (TSOP)

Pin name	Function			
A0 to A19	Address input			
I/O0 to I/O7	Data input/output			
CS1	Chip select 1			
CS2	Chip select 2			
WE	Write enable			
ŌĒ	Output enable			
V _{cc}	Power supply			
V _{ss}	Ground			
NC	No connection			

Block Diagram (TSOP)

Operation Table

CS1	CS2	WE	ŌĒ	I/O0 to I/O7	Operation
Н	×	×	×	High-Z	Standby
×	L	×	×	High-Z	Standby
L	Н	Н	L	Dout	Read
L	Н	L	×	Din	Write
L	Н	Н	Н	High-Z	Output disable

Note: H: V $_{\rm IH}$, L: V $_{\rm IL}$, $\times:$ V $_{\rm IH}$ or V $_{\rm IL}$

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power supply voltage relative to $V_{\mbox{\scriptsize SS}}$	V _{cc}	–0.5 to + 7.0	V
Terminal voltage on any pin relative to V_{ss}	V _T	-0.5^{*1} to V _{cc} + 0.3 ^{*2}	V
Power dissipation	P _T	1.0	W
Storage temperature range	Tstg	–55 to +125	°C
Storage temperature range under bias	Tbias	-40 to +85	°C

Notes: 1. V_{τ} min: -3.0 V for pulse half-width \leq 30 ns.

2. Maximum voltage is +7.0 V.

DC Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	V _{cc}	4.5	5.0	5.5	V	
	V_{ss}	0	0	0	V	
Input high voltage	V _{IH}	2.2	—	V_{cc} + 0.3	V	
Input low voltage	V _{IL}	-0.3	—	0.8	V	1
Ambient temperature range	Та	-40	_	85	°C	

Note: 1. V_{IL} min: -3.0 V for pulse half-width \leq 30 ns.

DC Characteristics

Parameter	Symbol	Min	Typ*1	Max	Unit	Test conditions
Input leakage current	I _{LI}		_	1	μΑ	$Vin = V_{SS}$ to V_{CC}
Output leakage current	_{LO}	_	—	1	μA	$\overline{CS1} = V_{\text{IH}} \text{ or } CS2 = V_{\text{IL}} \text{ or}$ $\overline{OE} = V_{\text{IH}} \text{ or } \overline{WE} = V_{\text{IL}}, \text{ or}$ $V_{\text{IVO}} = V_{\text{SS}} \text{ to } V_{\text{CC}}$
Operating current	I _{cc}	—	_	20	mA	$\label{eq:cs1} \begin{array}{l} \overline{CS1} = V_{\text{IL}}, \ CS2 = V_{\text{IH}}, \\ \text{Others} = V_{\text{IH}}/V_{\text{IL}}, \ I_{\text{I/O}} = 0 \ \text{mA} \end{array}$
Average operating current	I _{CC1}	_	14	25	mA	
	I _{CC2}	·	2	4	mA	$\begin{array}{l} \mbox{Cycle time} = 1 \ \mu s, \ duty = 100\%, \\ I_{I/O} = 0 \ mA, \ \overline{CS1} \leq 0.2 \ V, \\ \ CS2 \geq V_{CC} - 0.2 \ V \\ V_{IH} \geq V_{CC} - 0.2 \ V, \ V_{IL} \leq 0.2 \ V \end{array}$
Standby current	I _{SB}	—	0.1	0.3	mA	$CS2 = V_{IL}$
Standby current	I _{SB1}	_	0.8	10	μΑ	$\begin{array}{l} 0 \ V \leq Vin \\ (1) \ 0 \ V \leq CS2 \leq 0.2 \ V \ or \\ (2) \ \overline{CS1} \geq V_{\rm CC} - 0.2 \ V, \\ CS2 \geq V_{\rm CC} - 0.2 \ V \end{array}$
Output high voltage	V _{OH}	2.4	—	_	V	I _{он} = –1 mA
Output low voltage	V _{OL}		_	0.4	V	I _{oL} = 2.1 mA

Note: 1. Typical values are at V_{cc} = 5.0 V, Ta = +25°C and not guaranteed.

Capacitance (Ta = $+25^{\circ}$ C, f = 1.0 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions	Note
Input capacitance	Cin	_	—	8	pF	Vin = 0 V	1
Input/output capacitance	C _{I/O}	—	_	10	pF	$V_{I/O} = 0 V$	1

Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = -40 to $+85^{\circ}$ C, V_{CC} = 5.0 V ± 10 %, unless otherwise noted.)

Test Conditions

- Input pulse levels: $V_{IL} = 0.4 \text{ V}, V_{IH} = 2.2 \text{ V}$
- Input rise and fall time: 5 ns
- Input and output timing reference levels: 1.5 V
- Output load: 1 TTL Gate + C_L (50 pF) (Including scope and jig)

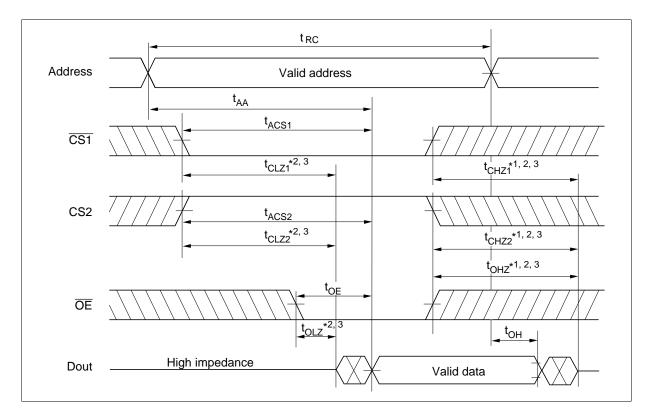
Read Cycle

		HM628	1001		
		-5			
Parameter	Symbol	Min	Max	Unit	Notes
Read cycle time	t _{RC}	55		ns	
Address access time	t _{AA}	_	55	ns	
Chip select access time	t _{ACS1}		55	ns	
	t _{ACS2}	_	55	ns	
Output enable to output valid	t _{oe}	_	35	ns	
Output hold from address change	t _{oH}	10	_	ns	
Chip select to output in low-Z	t _{CLZ1}	10	_	ns	2, 3
	t _{CLZ2}	10		ns	2, 3
Output enable to output in low-Z	t _{oLZ}	5	_	ns	2, 3
Chip deselect to output in high-Z	t _{CHZ1}	0	20	ns	1, 2, 3
	t _{CHZ2}	0	20	ns	1, 2, 3
Output disable to output in high-Z	t _{oHz}	0	20	ns	1, 2, 3

Write Cycle

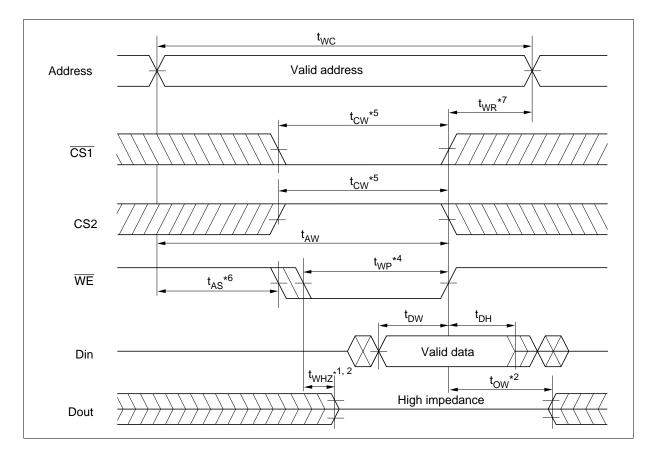
		HM628100I			
		-5			
Parameter	Symbol	Min	Max	Unit	Notes
Write cycle time	t _{wc}	55		ns	
Address valid to end of write	t _{AW}	50		ns	
Chip selection to end of write	t _{cw}	50		ns	5
Write pulse width	t _{wP}	40		ns	4
Address setup time	t _{AS}	0		ns	6
Write recovery time	t _{wR}	0		ns	7
Data to write time overlap	t _{DW}	25		ns	
Data hold from write time	t _{DH}	0		ns	
Output active from end of write	t _{ow}	5		ns	2
Output disable to output in high-Z	t _{oHZ}	0	20	ns	1, 2
Write to output in high-Z	t _{wHZ}	0	20	ns	1, 2

Notes: 1. t_{CHZ} , t_{OHZ} and t_{WHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

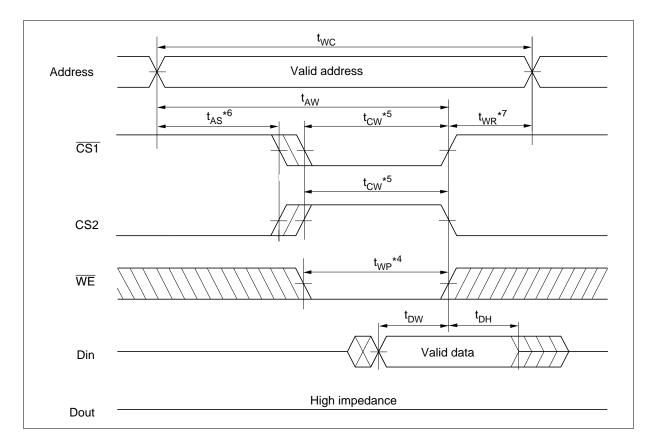

2. This parameter is sampled and not 100% tested.

3. At any given temperature and voltage condition, t_{Hz} max is less than t_{Lz} min both for a given device and from device to device.

- 4. A write occures during the overlap of a low CS1, a high CS2, a low WE. A write begins at the latest transition among CS1 going low, CS2 going high, WE going low. A write ends at the earliest transition among CS1 going high, CS2 going low, WE going high. t_{wP} is measured from the beginning of write to the end of write.
- 5. t_{cw} is measured from the later of $\overline{CS1}$ going low or CS2 going high to the end of write.
- 6. t_{AS} is measured from the address valid to the beginning of write.
- 7. t_{WR} is measured from the earliest of $\overline{CS1}$ or \overline{WE} going high or CS2 going low to the end of write cycle.

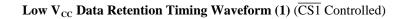

Timing Waveform

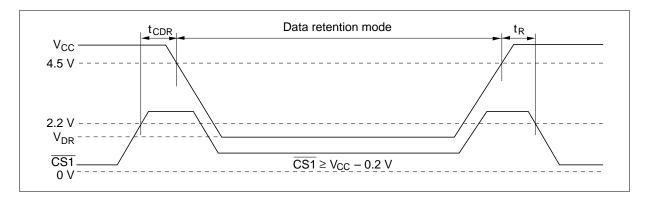
Read Cycle

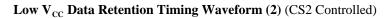


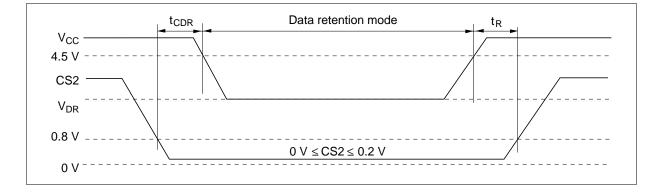
Write Cycle (1) ($\overline{\text{WE}}$ Clock)

Write Cycle (2) (\overline{CS} Clock, $\overline{OE} = V_{IH}$)

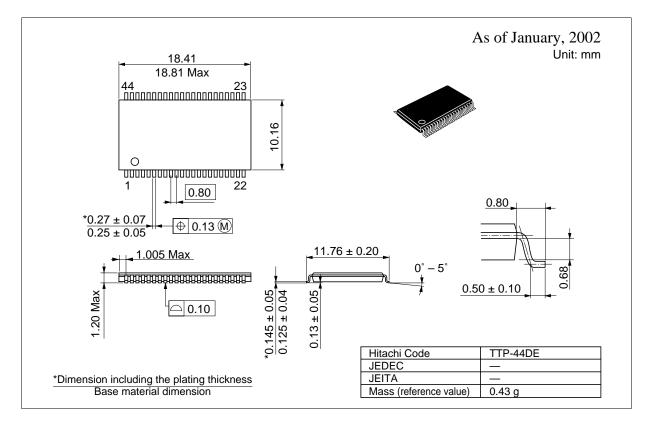

Parameter	Symbol	Min	Typ* ²	Max	Unit	Test conditions*1
V_{cc} for data retention	V_{DR}	2.0	_	_	V	$ \begin{array}{l} \mbox{Vin} \geq 0 \ \mbox{V} \\ \mbox{(1)} \ \ 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Data retention current	I _{CCDR}	_	0.8	10	μΑ	$\begin{array}{l} V_{\rm cc} = 3.0 \ V, \ Vin \geq 0 \ V \\ (1) \ 0 \ V \leq CS2 \leq 0.2 \ V \ or \\ (2) \ CS2 \geq V_{\rm cc} - 0.2 \ V, \\ \hline \overline{CS1} \geq V_{\rm cc} - 0.2 \ V \end{array}$
Chip deselect to data retention time	t_{cDR}	0	_	_	ns	See retention waveform
Operation recovery time	t _R	t _{RC} *3		—	ns	


Low V_{CC} **Data Retention Characteristics** (Ta = -40 to $+85^{\circ}$ C)


Notes: 1. CS2 controls address buffer, \overline{WE} buffer, $\overline{CS1}$ buffer, \overline{OE} buffer and Din buffer. If CS2 controls data retention mode, Vin levels (address, \overline{WE} , \overline{OE} , $\overline{CS1}$, I/O) can be in the high impedance state. If $\overline{CS1}$ controls data retention mode, CS2 must be $CS2 \ge V_{cc} - 0.2$ V or 0 V $\le CS2 \le 0.2$ V. The other input levels (address, \overline{WE} , \overline{OE} , I/O) can be in the high impedance state.


2. Typical values are at V_{cc} = 3.0 V, Ta = +25 $^\circ\text{C}$ and not guaranteed.

3. t_{RC} = read cycle time.



Package Dimensions

HM628100LTTI Series (TTP-44DE)

