

Typical Applications

This switch is suitable for usage in DC - 8.0 GHz 50-Ohm or 75-Ohm systems:

- Broadband
- Fiber Optics
- Switched Filter Banks
- Wireless below 8 GHz

Functional Diagram

Features

Broadband Performance: DC - 8 GHz

High Isolation: 35 dB@ 6 GHz

Low Insertion Loss: 2.0 dB@ 6 GHz

Integrated Positive Supply 2:4 TTL Decoder

16 Lead 3x3mm QFN Package: 9 mm²

General Description

The HMC345ALP3E is a broadband non-reflective GaAs MESFET SP4T switch in a low cost leadless surface mount packages. Covering DC to 8 GHz, this switch offers high isolation and low insertion loss. This switch also includes an on board binary decoder circuit which reduces the required logic control lines to two. The switch operates using a positive control voltage of 0/+5V, and requires a fixed bias of +5V.

Electrical Specifications, $T_A = +25^{\circ}$ C, With 0/+5V Control, 50 Ohm System

Parameter		Frequency	Min.	Тур.	Max.	Units
Insertion Loss		DC - 2.0 GHz DC - 6.0 GHz DC - 8.0 GHz		1.7 2.0 2.4	2.4 2.6 2.9	dB dB dB
Isolation		DC - 2.0 GHz DC - 4.0 GHz DC - 6.0 GHz DC - 8.0 GHz	37 32 31 27	42 37 35 33		dB dB dB dB
Return Loss	"On State"	DC - 2.0 GHz DC - 4.0 GHz DC - 6.0 GHz DC - 8.0 GHz		16 16 16 13		dB dB dB dB
Return Loss (RF1 - RF4)	"Off State"	2.0 - 8.0 GHz		14		dB
Input Power for 1 dB Compression		2.0 - 8.0 GHz	23	28		dBm
Input Third Order Intercept (Two-Tone Input Power = +10 dBm Each Tone, 1MHz Tone Separation)		2.0 - 8.0 GHz	37	43		dBm
Switching Characteristics tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)		DC - 8.0 GHz		40 100		ns ns

^{*} Blocking capacitors are required at ports RFC and RF1, 2, 3, & 4. Their value will determine the lowest transmission frequency.

HMC345A* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

EVALUATION KITS

· HMC345ALP3 Evaluation Board

DOCUMENTATION

Data Sheet

 HMC345A: GaAs MMIC SP4T Non-Reflective Positive Control Switch, DC*-8 GHz Data Sheet

TOOLS AND SIMULATIONS 🖵

HMC345ALP3E S-Parameters

DESIGN RESOURCES 🖵

- HMC345A Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

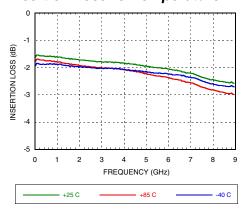
View all HMC345A EngineerZone Discussions.

SAMPLE AND BUY 🖵

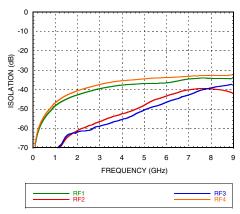
Visit the product page to see pricing options.

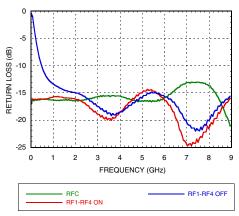
TECHNICAL SUPPORT

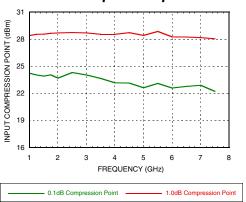
Submit a technical question or find your regional support number.

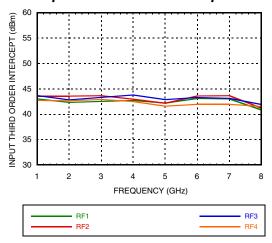

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.




Insertion Loss vs. Temperature


Isolation


Return Loss

0.1 and 1 dB Input Compression Point

Input Third Order Intercept Point

Absolute Maximum Ratings

Bias Voltage Range (Vdd)	+7.0 Vdc
Control Voltage Range (A & B)	-0.5V to Vdd +1.0 Vdc
Channel Temperature	150 °C
Thermal Resistance (Insertion Loss Path)	154 °C/W
Thermal Resistance (Terminated Path)	228 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
Maximum Input Power	+24 dBm
ESD Sensitivity (HBM)	Class 1A

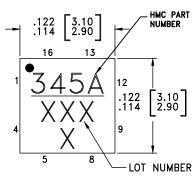
Bias Voltage & Current

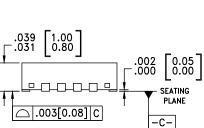
Vdd Range = +5 Vdc ± 10%			
Vdd (Vdc)	Idd (Typ.) (mA)	Idd (Max.) (mA)	
+5	2.5	6.0	

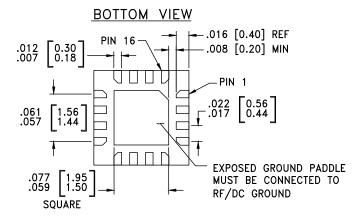
Control Voltages

	State	Bias Condition	
	Low	0 to +0.8 Vdc @ 1 μA Typical	
High +2.0 to +5 Vdc @ 50 μA Typical		+2.0 to +5 Vdc @ 50 μA Typical	

Truth Table


Control Input		Signal Path State
А	В	RFCOM to:
Low	Low	RF1
High	Low	RF2
Low	High	RF3
High	High	RF4


Note: DC blocking capacitors are required at ports RFC and RF1, 2, 3, & 4. Their value will determine the lowest transmission frequency.



Outline Drawing

NOTES:

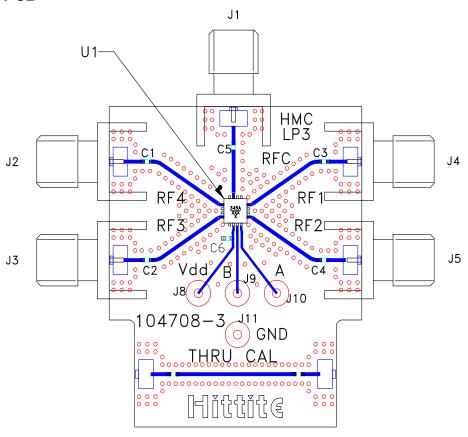
- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC345ALP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [1]	<u>345A</u> XXXX

^[1] Max peak reflow temperature of 260 °C

^{[2] 4-}Digit lot number XXXX


Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1, 4, 9, 12, 15	RF4, RF3, RF2, RF1, RFC	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required.		
2, 3, 10, 11, 13	N/C	This pin should be connected to PCB RF ground to maximize isolation.		
5, 14, 16	GND	Package bottom has exposed metal paddle that must also be connected to PCB RF ground.	GND =	
6	VDD	Supply Voltage +5V ± 10%	Vdd⊙ 5pF	
7	CTLB	See truth table and control voltage table.	100K	
8	CTLA	See truth table and control voltage table.		

Evaluation PCB

List of Materials for Evaluation PCB EV1HMC345ALP3[1]

Item	Description	
J1 - J5 PCB Mount SMA RF Connector		
J8 - J11	DC Pin	
C1 - C5	C1 - C5 100 pF Capacitor, 0402 Pkg.	
C6 1k pF Capacitor, 0402 Pkg.		
U1 HMC345ALP3E SP4T Switch PCB [2] 104708 Evaluation PCB 1.29"x1.55"		

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.