

HMC3653LP3BE

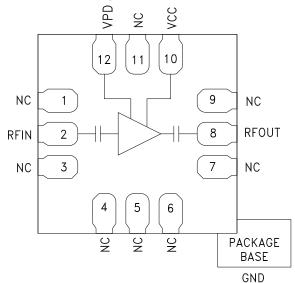
HBT GAIN BLOCK MMIC AMPLIFIER, 7 - 15 GHz

Features

High Output IP3: +28 dBm Single Positive Supply: +5V Low Noise Figure: 4.0 dB ^[1] 12 Lead 3x3 mm SMT Package: 9mm²

- VSAT
- LO Driver for HMC Mixers

Point-to-Multipoint Radios


Typical Applications

Point-to-Point Radios

The HMC3653LP3BE is ideal for:

• Military EW & ECM

Functional Diagram

General Description

The HMC3653LP3BE is a HBT Gain Block MMIC amplifier covering 7 GHz to 15 GHz and packaged in a 3x3 mm plastic QFN SMT package. This versatile amplifier can be used as a cascadable IF or RF gain stage in 50 Ohm applications. The HMC3653LP3BE delivers 15 dB gain, and +15 dBm output P1dB with only 4 dB noise figure.

Electrical Specifications, $T_{A} = +25^{\circ}$ C, Vcc =5V, Vpd = 5V

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Мах	Units
Frequency Range	7 - 9		9 - 14		14 - 15		GHz			
Gain ^[1]	10.5	14		12	15		12	15		dB
Gain Variation Over Temperature		0.016			0.016			0.022		dB / °C
Input Return Loss		14			15			11		dB
Output Return Loss		8			8			7		dB
Output Power for 1 dB Compression (P1dB) ^[1]	13	16		12	15		10.5	13.5		dBm
Output Third Order Intercept (IP3) (Pout = 0 dBm per tone, 1 MHz spacing)		26			28			26		dBm
Noise Figure ^[1]		6			4			4		dB
Supply Current 1 (Idd1)		40	55		40	55		40	55	mA
Supply Current 2 (Idd2)		4	6		4	6		4	6	mA

[1] Board loss subtracted out

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC3653* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

HMC3653LP3B Evaluation Board

DOCUMENTATION

Application Notes

 AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers

Data Sheet

• HMC3653 Data Sheet

TOOLS AND SIMULATIONS \square

HMC3653 S-Parameter

REFERENCE MATERIALS

Quality Documentation

- Package/Assembly Qualification Test Report: LP2, LP2C, LP3, LP3B, LP3C, LP3D, LP3F, LP3G (QTR: 2014-0364)
- Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

DESIGN RESOURCES

- HMC3653 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC3653 EngineerZone Discussions.

SAMPLE AND BUY

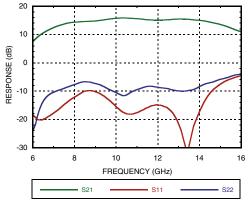
Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

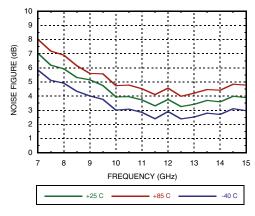
Submit feedback for this data sheet.



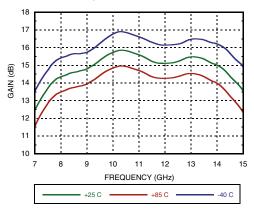
HMC3653LP3BE

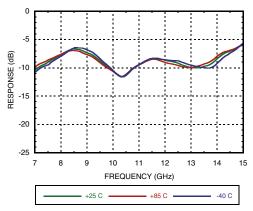
HBT GAIN BLOCK MMIC AMPLIFIER, 7 - 15 GHz

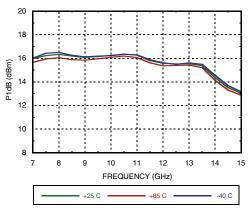
Gain & Return Loss



v01.0113

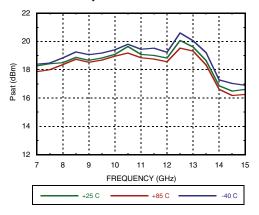

Input Return Loss vs. Temperature


Noise Figure vs. Temperature

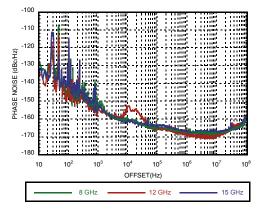

Gain vs. Temperature

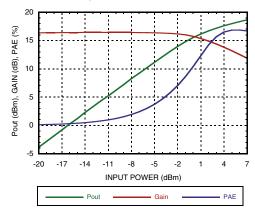
Output Return Loss vs Temperature

P1dB vs. Temperature

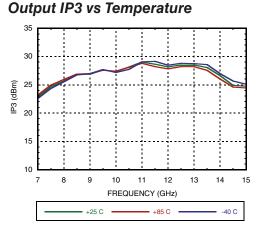


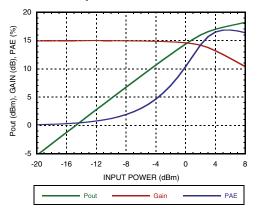
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



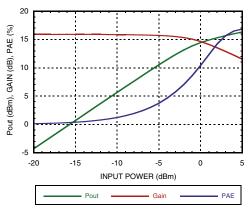

Psat vs. Temperature

Phase Noise @ Pin=0 dBm


Power Compression @ 11 GHz

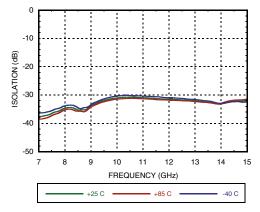

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent or patent go bevices. Trademarks and registered trademarks are the property of their respective owners.

HMC3653LP3BE


HBT GAIN BLOCK MMIC AMPLIFIER, 7 - 15 GHz

Power Compression @ 8 GHz

Power Compression @ 14 GHz



HMC3653LP3BE

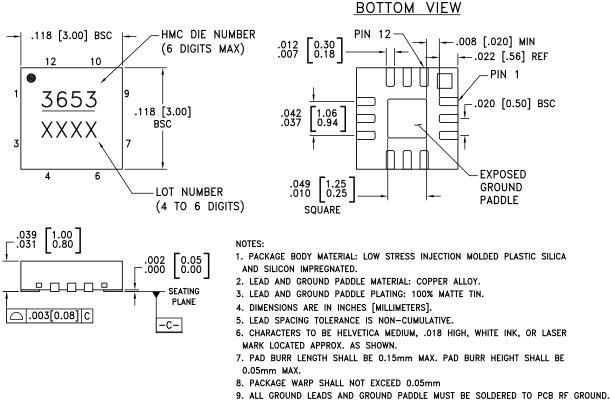
HBT GAIN BLOCK MMIC AMPLIFIER, 7 - 15 GHz

Reverse Isolation

Absolute Maximum Ratings

Drain Bias Voltage	6 Vdc
RF Input Power (RFIN)	+12 dBm
Channel Temperature	150 °C
Continuous Pdiss (T=85 °C) (derate 7.87 mW/ °C Above +85 °C)	512 mW
Thermal Resistance (channel to ground paddle)	127 °C/W
Storage Temperature	-65 to 150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


HMC3653LP3BE

HBT GAIN BLOCK MMIC AMPLIFIER, 7 - 15 GHz

Outline Drawing

10. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating ^[2]	Package Marking ^[1]	
HMC3653	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1	<u>H3653</u> XXXX	

[1] 4-Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C

HMC3653LP3BE

HBT GAIN BLOCK MMIC AMPLIFIER, 7 - 15 GHz

Pin Descriptions

Pid Number	Function	Description	Interface Schematic
1, 3, 4, 5, 6, 7, 9, 11	NC	No connection necessary. These pins may be connected to RF/DC ground. Performance will not be affected.	
2	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN ○
8	RFOUT	This pin is AC coupled and matched to 50 Ohms.	○ RFOUT
10	Vcc	Power supply voltage for the amplifier	ESD =
12	Vpd	Power Control Pin for proper control bias	ESD = =
GND Paddle	GND	Ground Paddle must be connected to RF/DC ground.	

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC3653LP3BE

MMIC AMPLIFIER, 7 - 15 GHz

C2 10pF

9

8

7

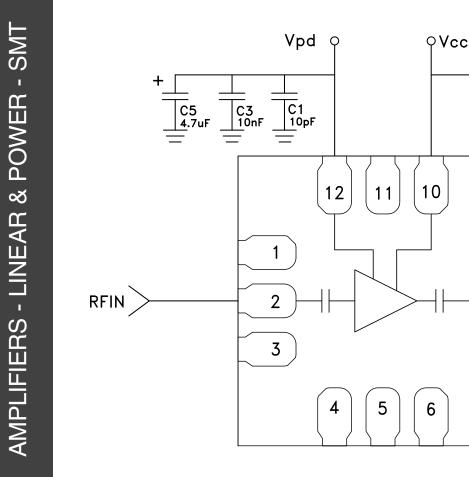
C4

10nF

HBT GAIN BLOCK

+

C6

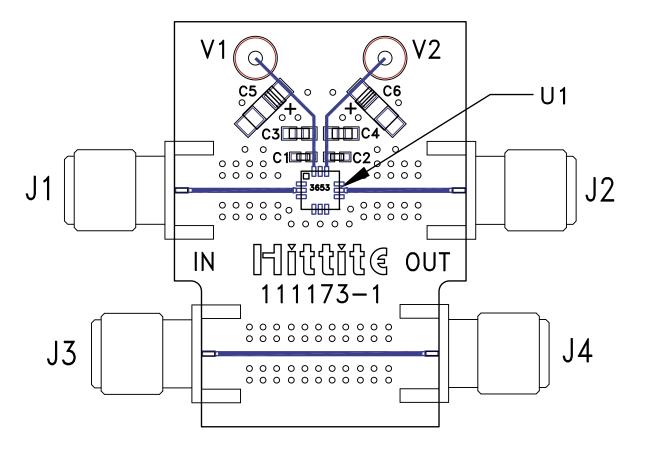

4.7uF

RFOUT

v01.0113

Application Circuit

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



HMC3653LP3BE

HBT GAIN BLOCK MMIC AMPLIFIER, 7 - 15 GHz

Evaluation PCB

List of Material for Evaluation PCB 113589-HMC3653LP3B-rev D [1]

v01.0113

Item	Description	
J1, J4	PCB Mount SMA RF Connector	
C1 - C2	10 pF Capacitor, 0402 Pkg.	
C3 - C4	10000 pF Capacitor, 0603 Pkg.	
C5 -C6	4.7 uF Capacitor, Tantalum.	
U1	HMC3653LP3BE	
PCB ^[2]	111173-1 Evaluation Board	

1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350 or Arlon 25FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.