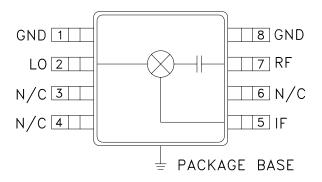


v00.0410

GaAs MMIC DOUBLE-BALANCED HIGH IP3 MIXER, 9 - 15 GHz

Typical Applications


The HMC410AMS8G(E) is ideal for:

- Long Haul Radio Platforms
- Microwave Radio
- VSAT

Features

Conversion Loss: 8 dB LO/RF Isolation: 40 dB LO/IF Isolation: 37 dB Input IP3: +24 dBm No External Components MSOP8G SMT Package

Functional Diagram

General Description

The HMC410AMS8G(E) is a passive double-balanced high IP3 mixer that operates between 9 and 15 GHz. The HMC410AMS8G(E) operates with LO drive levels between +13 dBm and +19 dBm, and provides 8 dB conversion loss across the entire specified frequency band. These mixers require no external components or bias.

Electrical Specifications, $T_A = +25^{\circ}$ C

Parameter	IF = 1.45 GHz LO = +17 dBm			Units
	Min.	Тур.	Max.	
Frequency Range, RF & LO	9 - 15		GHz	
Frequency Range, IF	DC - 2.5			GHz
Conversion Loss		8	11	dB
Noise Figure (SSB)		8	11	dB
LO to RF Isolation	30	40 - 45		dB
LO to IF Isolation	30	37		dB
RF to IF Isolation	8	17		dB
IP3 (Input)	20	24		dBm
1 dB Compression (Input)	11	14		dBm

* Unless otherwise noted, all measurements performed as downconverter, IF= 1.45 GHz.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

10

HMC410A* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

HMC410AMS8G Evaluation Board

DOCUMENTATION

Data Sheet

HMC410a Data Sheet

TOOLS AND SIMULATIONS \square

• HMC410A S-Parameter

REFERENCE MATERIALS

Quality Documentation

- Package/Assembly Qualification Test Report: MS8G (QTR: 2014-00393)
- Semiconductor Qualification Test Report: MESFET-F (QTR: 2013-00247)

DESIGN RESOURCES

- HMC410A Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC410A EngineerZone Discussions.

SAMPLE AND BUY

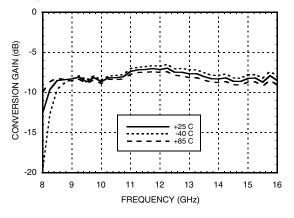
Visit the product page to see pricing options.

TECHNICAL SUPPORT

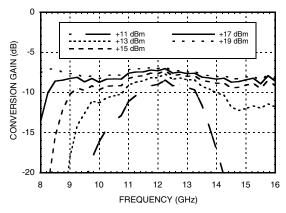
Submit a technical question or find your regional support number.

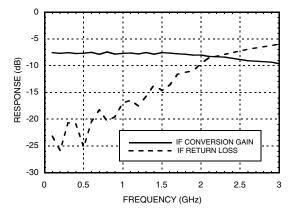
DOCUMENT FEEDBACK

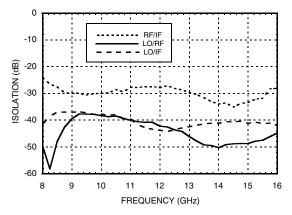
Submit feedback for this data sheet.

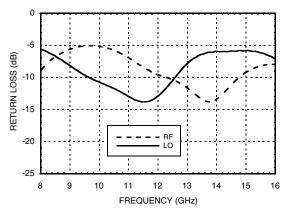

GaAs MMIC DOUBLE-BALANCED

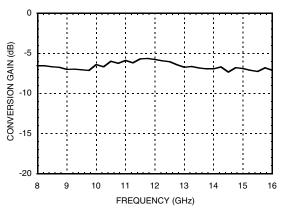
HIGH IP3 MIXER, 9 - 15 GHz


v00.0410


Conversion Gain vs. Temperature @ LO = +17 dBm


Conversion Gain vs. LO Drive


IF Bandwidth @ LO = +17 dBm


Isolation @ LO = +17 dBm

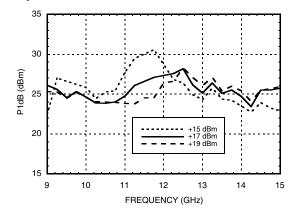
Return Loss @ LO = +17 dBm

Upconverter Performance Conversion Gain @ LO = +17 dBm

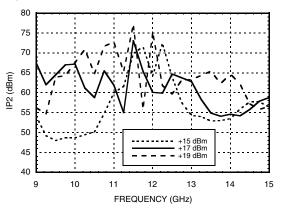
MIXERS - SINGLE & DOUBLE BALANCED - SM⁻

10

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

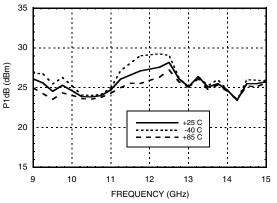

GaAs MMIC DOUBLE-BALANCED

HIGH IP3 MIXER, 9 - 15 GHz

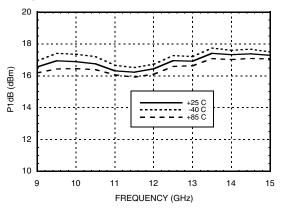

v00.0410

Input IP3 vs. LO Drive*

Input IP2 vs. LO Drive *


MxN Spurious @ IF Port

	nLO				
mRF	0	1	2	3	4
0	XX	4	28	23	N/A
1	15	0	40	62	46
2	85	70	67	78	83
3	>90	>90	>90	79	>90
4 N/A >90 >90 >90 >90					>90
RF = 14.45 GHz @ -10 dBm LO = 13 GHz @ +17 dBm					


All values in dBc relative to the IF power level.

Measured as downconverter.

Input IP3 vs. Temperature @ LO = +17 dBm*

Input P1dB vs. Temperature @ LO = +17 dBm

Harmonics of LO

	nLO Spur @ RF Port			
LO Freq. (GHz)	1	2	3	4
9	34	28	46	60
10.5	37	37	50	69
12	44	45	46	60
13.5	47	46	62	N/A
15	40	56	58	N/A
16.5	34	47	51	N/A
LO = +17 dBm All values in dBc below input LO level @ RF port.				

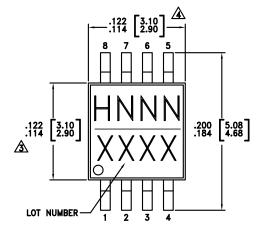
* Two-tone input power = 0 dBm each tone, 1 MHz spacing.

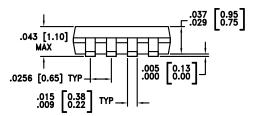
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

GaAs MMIC DOUBLE-BALANCED

v00.0410

HIGH IP3 MIXER, 9 - 15 GHz


Absolute Maximum Ratings


RF / IF Input	+20 dBm	
LO Drive	+27 dBm	
IF DC Current	±4 mA	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 1A	

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

.009 0.22

.031 0.80 .016 0.40

> .070 [1.78] MAX

1. LEADFRAME MATERIAL: COPPER ALLOY

2. DIMENSIONS ARE IN INCHES [MILLIMETERS]

3 DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.

DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO

.095 [2.41 MAX EXPOSED GROUND PADDLE MUST BE CONNECTED TO RF/DC GROUND.

5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SC PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC410AMS8G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	H410A XXXX
HMC410AMS8GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	H410A XXXX

[1] Max peak reflow temperature of 235 °C

[2] Max peak reflow temperature of 260 $^\circ\text{C}$

[3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v00.0410

GaAs MMIC DOUBLE-BALANCED HIGH IP3 MIXER, 9 - 15 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 8	GND	Pins and exposed ground slug must be connected to RF ground.	
2	LO	This pin is AC coupled and matched to 50 Ohms.	
3, 4, 6	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
5	IF	This pin is DC coupled. For applications not requiring opera- tion to DC this port should be DC blocked externally using a series capacitor whose value has been chosen to pass the necessary IF frequency range. For operation to DC, this pin must not source/sink more than 4mA of current or die non- function and possible die failure will result.	
7	RF	This pin is DC coupled and matched to 50 Ohms.	RFO

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Evaluation PCB

HMC410AMS8G / 410AMS8GE

v00.0410

GaAs MMIC DOUBLE-BALANCED HIGH IP3 MIXER, 9 - 15 GHz

List of Materials for Evaluation PCB 103350 [1]

Item	Description
J1 - J2	PCB Mount SMA RF Connector, SRI
J3	PCB Mount SMA Connector, Johnson
U1	HMC410AMS8G(E) Mixer
PCB [2]	101650 Evaluation Board

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.