
v01.0414

Typical Applications

The HMC905LP3E is ideal for:

- LO Generation with Low Noise Floor
- Software Defined Radios
- Clock Generators
- Fast Switching Synthesizers
- Military Applications
- Test Equipment
- Sensors

Functional Diagram

6 GHz LOW NOISE PROGRAMMABLE DIVIDER (N = 1 to 4)

Features

Low Noise Floor: -164 dBc/Hz at 10 MHz Offset for N = 4 Programmable Frequency Divider, N = 1, 2, 3 or 4 400 MHz to 6 GHz Input Frequency Range Up to +6 dBm Output Power Sleep Mode: Consumes <1 µA 16 Lead 3X3 mm SMT Package: 9mm²

General Description

The HMC905LP3E is a SiGe BiCMOS low noise programmable frequency divider in a 3x3 mm leadless surface mount package. The circuit can be programmed to divide from N = 1 to N = 4 in the 400 MHz to 6 GHz input frequency range. The high level output power (up to 6 dBm single ended) with a very low SSB phase noise and 50% duty cycle makes this device ideal for low noise clock generation, LO generation and LO drive applications. Configurable bias and output power controls allow current consumption and output power control. The device incorporates a power down feature, good input to output isolation and fast start up time. The HMC905LP3E can be included into fast switching "ping-pong" applications.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc = +3.3V, $Z_O = 50\Omega$

Parameter	Conditions		Тур.	Max.	Units	
RF Input Characteristics						
RF Input Frequency	Single-ended input	400		6000 ^[1]	MHz	
RF Input Power	Single-ended input	0	6	10	dBm	
Divider Output Characteristics						
Output Power (Single-ended Out)	-Typically, 50 ohms load resistors connected to Vcc - 1 bit programmable (CTRL digital signal) ^[2]	-2	3	6	dBm	
SSB Phase Noise @ 10 kHz Offset			-150		dBc/Hz	
SSB Phase Noise @ 100 kHz Offset	+6 dBm Input Power, 6 GHz input, Single-Ended Input and Output, Divide-by-4 [3]		-158		dBc/Hz	
SSB Phase Noise @ 10 MHz Offset			-164		dBc/Hz	
Start Up Time	EN bit from OFF to ON State (0V to Vcc)		200		ns	
Power Down Time	EN bit from ON to OFF State (Vcc to 0V)		20		ns	
Setting Time at Division Ratio Change	Delay from divide ratio change to output frequency change		25		ns	

[1] Maximum 5500 MHz in Divide by 2.

[2] See typical supply currents vs. BIAS0, BIAS1, CTRL bits table [3] See Residual Phase Noise plot

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

4

HMC905* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

HMC905LP3E Evaluation Board

DOCUMENTATION

Data Sheet

HMC905 Data Sheet

REFERENCE MATERIALS

Quality Documentation

- Package/Assembly Qualification Test Report: 16L 3x3mm QFN Package (QTR: 11003 REV: 02)
- Package/Assembly Qualification Test Report: LP2, LP2C, LP3, LP3B, LP3C, LP3D, LP3F, LP3G (QTR: 2014-0364)
- Semiconductor Qualification Test Report: BiCMOS-C (QTR: 2013-00241)

DESIGN RESOURCES

- HMC905 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC905 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

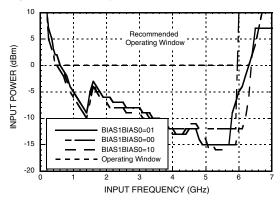
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

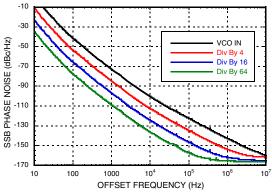
Submit feedback for this data sheet.

6 GHz LOW NOISE PROGRAMMABLE DIVIDER (N = 1 to 4)

Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc = +3.3V, $Z_O = 50\Omega$ (Continued)

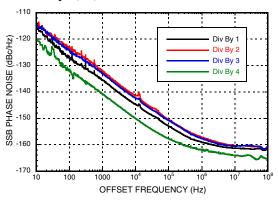

v01.0414

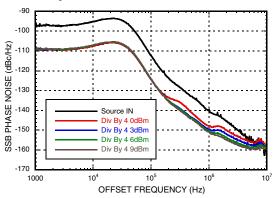
Parameter	Conditions	Min.	Тур.	Max.	Units
Isolation SE Input to SE Output	EN bit OFF	-80		-30	dBc
Duty Cycle for Differential Mode			50		%
Logic Inputs					
VIH Input High Voltage		1.5		3.3	V
VIL Input Low Voltage		0		0.8	V
Power Supplies					
Vcc	Analog Supply (Low Noise LDO for good phase noise - HMC860LP3E)	3.15	3.3	3.45	V
Current Consumption	Total current vs. BIAS and CTRL bits [1]	82	100	125	mA
Sleep Current	EN = 0V		1		μA


[1] The bias bits combination BIAS1 BIAS0 = 1 1 is not recommended

All data plots taken on Evaluation Board (schematic on page 10) single-ended with the unused output port 50 ohms terminated, Vcc = +3.3V, Ta=+25 °C, except stated otherwise

Input Sensitivity Window

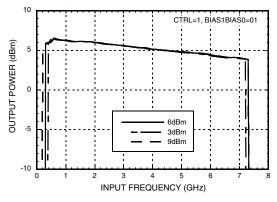

Phase Noise for 3 Cascaded HMC905LP3E from 6 GHz VCO


[2] Fin = 6 GHz, Pin = 6 dBm, CTRL = 1, BIAS1 BIAS0 = 01

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

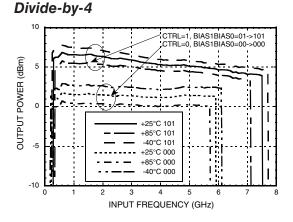
Residual Phase Noise Divide by 1, 2, 3 & 4 ^[2]

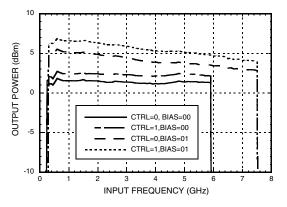
Output Phase Noise vs. Input Power Divide-by-4



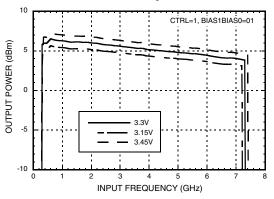
Pout vs. Division Ratio

v01.0414


Output Power vs. Input Power Level Divide-by-4


DIVIDER (N = 1 to 4)

Output Power vs. Temperature

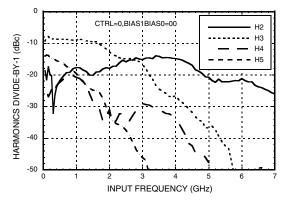

6 GHz LOW NOISE PROGRAMMABLE

Pout Divide-by-4 vs. CTRL & BIAS

Output Power vs. Voltage Supply Divide-by-4

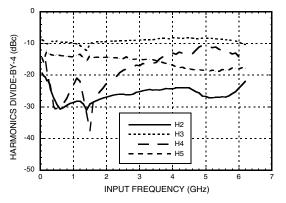
[1] CTRL = 0, BIAS1, BIAS1 BIAS0 = 00, Pin = 6 dBm

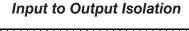
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

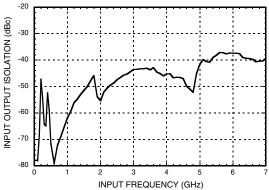


DIVIDER (N = 1 to 4)

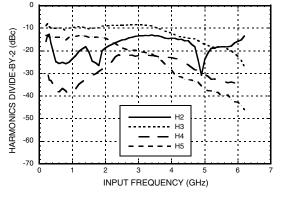
H2, H3, H4, H5 Harmonics, Divide-by-1 [1]


v01.0414




H2, H3, H4, H5 Harmonics, Divide-by-3 [1]

H2, H3, H4, H5 Harmonics, Divide-by-4^[1]


[1] CTRL = 0, BIAS1, BIAS1 BIAS0 = 00, Pin = 6 dBm

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

4

H2, H3, H4, H5 Harmonics, Divide-by-2^[1]

6 GHz LOW NOISE PROGRAMMABLE

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v01.0414

6 GHz LOW NOISE PROGRAMMABLE DIVIDER (N = 1 to 4)

Absolute Maximum Ratings

RF Input Power	12 dBm
Supply Voltage (Vcc)	3.6V
Control Inputs (B0, B1, CTRL, Bias0, EN)	3.6V
Junction Temperature	125 °C
Continuous Pdiss (T = 85 °C) (derate 33 mW/ °C above 85 °C)	1.3 W
Thermal Resistance (Junction to ground paddle)	30 °C/W
Storage Temperature	-65 to +125 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Programming Truth Table for Frequency Division Ratios

	<i>y 2</i>	
B1	B0	Divide-by
0	0	1
0	1	2
1	0	3
1	1	4
0 = Logic Low 1 = Logic High		

Digital Control Input Voltages

State	B0, B1, CTRL, BIAS1, BIAS0, EN	
Low	0 to 0.8V	
High	1.5V to 3.3V	

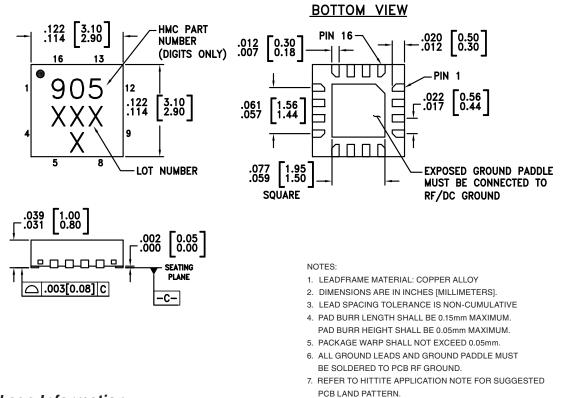
ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Typical Supply Current vs. EN, BIAS0, BIAS1 & CTRL Bits

EN	CTRL	BIAS1	BIAS0	3.3V Supply Typ. Current (mA)	Pout Typ. (dBm)	Noise Floor
1	0	0	0	84	1.5	Low
1	0	0	1	105	4.8	
1	0	1	0	98	3.9	
1	1	0	0	100	2.4	Better
1	1	0	1	120	6.3	Best
1	1	1	0	113	5.3	
0	х	х	x	0.001	-55	

Note: Currents for the divide-by-4 option, 2 GHz and 6 dBm input and 3.3V; for Vcc voltage supply from 3.15V to 3.45V, the HMC905LP3E total current is varying with a maximum of ~8% around typical values. With temperature, the total current is changing from +25°C to -40°C/+85°C with about \pm 3%.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


4

6 GHz LOW NOISE PROGRAMMABLE DIVIDER (N = 1 to 4)

Outline Drawing

v01.0414

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[1]
HMC905LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	905 XXX

[1] 4-Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C

v01.0414

HMC905LP3E

ROHS V

6 GHz LOW NOISE PROGRAMMABLE DIVIDER (N = 1 to 4)

Pin Description

Pin Number	Function	Description	Interface Schematic
1	Vcc	+3.3V Voltage Supply	
2	RFINP	RF Positive Input. Input is DC coupled, external DC blocks required.	
3	RFINN	RF Negative Input. Input is DC coupled, external DC blocks required.	
4	GND	This pin must be connected to RF/DC ground.	
5	B0	Division ratio (LSB) See programming truth table.	VCC VCC
6	B1	Division ratio (MSB) See programming truth table.	
7	CTRL	Divider Output Buffer Power Control	DIGITAL 140 Ohms
13	BIAS1	Divider Core Bias Control	
14	BIAS0	Divider Core Bias Control	
15	EN	Chip Enable	
8, 9, 12, 16	N/C	No connection required. This pin may be connected to ground, without affecting performance.	

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

4 - 7

4

6 GHz LOW NOISE PROGRAMMABLE DIVIDER (N = 1 to 4)

Pin Description (Continued)

Pin Number	Function	Description	Interface Schematic
10	IOUTN	Divider Negative Output, Open Drain. Typically 50 Ohms connected to Vcc.	VCC ESD ESD ESD ESD ESD ESD ESD ESD ESD ESD
11	IOUTP	Divider Positive Output, Open Drain. Typically 50 Ohms connected to Vcc.	

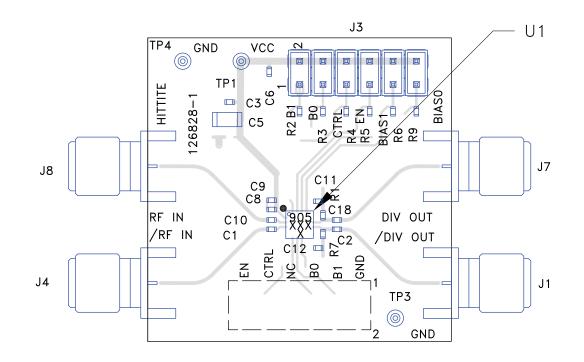
v01.0414

Application Note:

The HMC905LP3E is a high performance RF divider. Such dividers are high gain devices with internal feedback. The device will oscillate if used with AC coupled RF inputs and if no RF input is applied. Normally, if the RF input signal is removed the device should be disabled, or it should be placed in divide by 1 mode. The device is stable in divide by one mode with no RF input. The device will oscillate in divide 2, 3, or 4 modes with no RF input. In general, very small RF input levels will stop all oscillations. At the minimum rated RF input sensitivity level or higher, no oscillations or spurious signals exist and excellent low noise performance is achieved. For input frequency lower than 400 MHz, square wave input signal is recommended.

For single ended applications, apply the signal on the positive input RFinp and terminate the unused output with 50 ohms.

HMC905LP3E


v01.0414

4

6 GHz LOW NOISE PROGRAMMABLE DIVIDER (N = 1 to 4)

Evaluation PCB

List of Materials for Evaluation PCB 126830^[1]

Item	Description
J3	DC Connector
J1, J4, J7, J8	SMA SRI Connector
C1, C2, C10 - C12, C18	1nF Capacitor, 0402 Pkg
C3, C6, C9	100nF Capacitor, 0402 Pkg
C5	10uF Capacitor, 1206 Pkg
C8	10pF Capacitor, 0402 Pkg
R1, R7	51 Ohms, Resistor, 0402 Pkg
R2 - R6, R9	100 kOhms, Resistor, 0402 Pkg
TP1, TP3, TP4	PC Compact SMT
U1	HMC905LP3E Programmable Divider
PCB [2]	126828 Eval Board

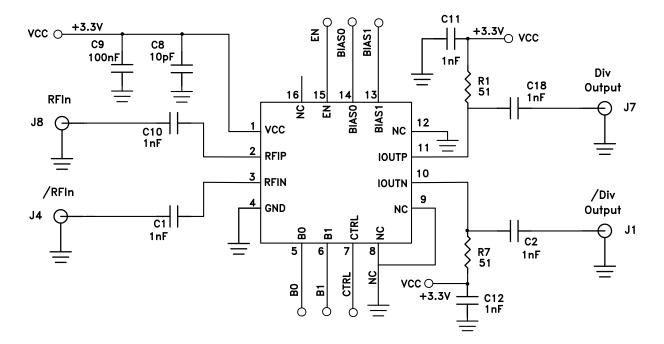
[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350 or Arlon 25FR

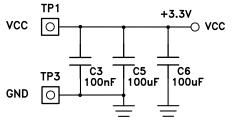
The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and backside ground paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

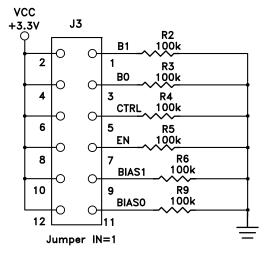
FREQUENCY DIVIDERS & DETECTORS - SMT

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



ROHS V


6 GHz LOW NOISE PROGRAMMABLE DIVIDER (N = 1 to 4)


Evaluation PCB Schematic

v01.0414

FREQUENCY DIVIDERS & DETECTORS - SMT

4