HMS39C7092

32-bit Embedded Flash MCU

On-Chip Flash Memory Programming Guide

On-chip Flash Memory

Released : March 2005

ARM[®] is trademark of Advanced RISC Machine Ltd. ARM7TDMI is designed by ARM Ltd.

The information contained herein is subject to change without notice.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by Magnachip for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Magnachip or others.

These Magnachip products are intended for usage in general electronic equipment (office equipment, communication equipment, measuring equipment, domestic electrification, etc.).

Please make sure that you consult with us before you use these Magnachip products in equipment which require high quality and / or reliability, and in equipment which could have major impact to the welfare of human life (atomic energy control, airplane, spaceship, traffic signal, combustion control, all types of safety devices, etc.). Magnachip cannot accept liability to any damage which may occur in case these Magnachip products were used in the mentioned equipment without prior consultation with Magnachip.

Copyright 2005 Magnachip Semiconductor, Inc. All Rights Reserved

Contents

Chapter 1	7
Algorithms for On-chip Flash Memory	7
1.1 Programming and Erasing Internal Flash Memory	8
1.1.1 Program and Program-Verify Mode	8
1.1.2 Preprogram and Preprogram-Verify Mode	10
1.1.3 Erase and Erase-Verify Mode	12
Chapter 2	15
PROM Mode Interface	15
2.1 Flash Memory PROM Mode	16
2.1.1 PROM Mode Setting	16
2.1.2 Memory Map	17
2.1.3 PROM Mode Operation	17
2.1.4 Timing Diagram and AC/DC Characteristics	
Chapter 3	
Electrical Characteristics and Operational Parameters	

Figures

Figure 1.1	Flash Program & Program Verify Sequence	9
Figure 1.2	Flash Pre-program & Pre-program Verify Sequence	11
Figure 1.3	Flash Erase Algorithm	12
Figure 1.4	Flash Erase and Erase-Verify Sequence	13
Figure 2.1	Timing Diagram of Read	18
Figure 2.2	Timing Diagram of Pre-Program/Program	19
Figure 2.3	Timing Diagram of Erase	19
Figure 2.4	Timing Diagram of Pre-Program/Program Verify	20
Figure 2.5	Timing Diagram of Erase Verify	20
-		

Tables

Table 2.1	FR_SEL Value for access to internal Register	16
Table 2.2	Setting for Register read/write	16
Table 2.3	Erase Sector Register	17
Table 2.4	Setting for Flash PROM read/write	18
Table 3.1	DC Characteristics	24
Table 3.2	AC Characteristics	24
Table 3.3	Programing Parameters	25

On-chip Flash Memory

Chapter 1 Algorithms for On-chip Flash Memory

1.1 Programming and Erasing Internal Flash Memory

A software method, using the CPU, is employed to program and erase flash memory in the on-board programming modes. There are five flash memory operation modes: normal read mode, pre-program/program mode, erase mode, pre-program/programverify mode, and erase verify mode. The transitions to these modes are made by setting FMCR register.

The flash memory cannot be read while being programmed or erased. Therefore, the program (user program) that controls flash memory program/erase should be located and executed in on-chip RAM or external memory.

1.1.1 Program and Program-Verify Mode

When writing data or programs to flash memory, the program flowchart shown in *Figure 1.1* should be followed. Flash Memory of HMS39C7092 can be programmed 16 bits at one time. In Program Verify, the data written in program mode is read to check whether it has been correctly written in the flash memory. If result of verify read at a certain address is not same as the programmed data of this address, program must be retried to the time when Verify read result and the programmed data are matched.

However, if the program/program verify sequence is repeated N_PGM^{\dagger} times and verify read result is not same as programmed data, it is program fail.

†Refer to the Table 3.3 On-chip Flash programming parameters

Algorithms for On-chip Flash Memory

Figure 1.1 Flash Program & Program Verify Sequence

1.1.2 Preprogram and Preprogram-Verify Mode

This is the first step of flash memory erase algorithm. Pre-program & Pre-program Verify must be done before block erase.

The difference between Program and Pre-program is that the purpose of Preprogram is programming not-programmed cell in a certain block that will be erased. Due to Pre-programming before block erase, every cell in the block that will be erased goes to program state, so it is possible to prevent cell from being over-erased after block erase.

When Pre-program mode, program address must start at first address of block to be erased, and increase by 2 to the last address of that block.

The relation between each erase sector and corresponding flash memory address is shown at the *Table 2.3* of chapter 2.1.2.

Pre-program needs to do pre-program verify read to ensure that every cell in the block are programmed successfully.

The FMCR setting are the same as program & program verify mode.

The Flow of pre-program and pre-program verify is shown at *Figure 1.2*

Algorithms for On-chip Flash Memory

Figure 1.2 Flash Pre-program & Pre-program Verify Sequence

1.1.3 Erase and Erase-Verify Mode

Flash memory erase operation are performed block by block. To erase flash memory, make a setting for the flash memory area to be erased in erase sector register(FESR). If multiple bits of FESR register are set, multiple sectors are erased at one time. The Maximum number of blocks that can be erased at one time is four. After Erase, it is necessary to do Erase verify read to ensure that every cell in the block are erased successively. When Erase verify read mode, verify address must start at first address of block to be erased, and increase by 2 to the last address of that block. The relation between each erase sector and corresponding flash memory address is shown at the **Table 2.3** of chapter 2.1.2.

If the result of verify read at a certain address is not 0xFFFF, erase must be retried until the result of Verify read is 0xFFFF. However, if the erase/erase verify sequence is repeated **N_ERASE**[†] times and the result of verify read is not 0xFFFF, device is erase fail.

The Flow of erase and erase verify is shown at Figure 1.3.

Figure 1.3 Flash Erase Algorithm

†Refer to the Table 3.3 On-chip Flash programming parameters

Figure 1.4 Flash Erase and Erase-Verify Sequence

Algorithms for On-chip Flash Memory

PROM Mode Interface

Chapter 2 PROM Mode Interface

2.1 Flash Memory PROM Mode

The HMS39C7092 has a PROM mode as well as the on-board programming modes for programming and erase flash memory. In PROM mode, the on-chip flash memory can be programmed using a 7092 PROM writer.

2.1.1 PROM Mode Setting

Setting MD[2:0] to Mode 1 (001) make HMS39C7092 work as PROM. When PROM mode, Every pins of HMS39C7092 are assigned as PROM mode pins

By setting FR_SEL signal, internal register of flash memory are directly write or read through FD[15:0] as **Table 2.1**. When value of FR_SEL[2:0] is set and FWEB = rising-edge, FD[15:0] signals are passed into the register that FR_SEL select. When value of FR_SEL[2:0] is set and FOEB is low, the register's value is read through the FD[15:0].

Table 2.2 shows how the different external pins are set to write and read internal register.

FR_SEL[2:0]	Read	Write
000	Sense Data	reserved
001	FMAR	FMAR & FMDR
010	FMDR	reserved
011	FMCR	FMCR
100	FESR	FESR
101	FMPR	FMPR

 Table 2.1
 FR_SEL Value for access to internal Register

Table 2.2 S	Setting for	Register	read/write
-------------	-------------	----------	------------

Register Pin Name						
Mode	FRSTB	FCEB	FWEB	FOEB	FD	FA
Read	Н	L	Н	L	Read Data	Address
Write	Н	L	†	Н	Write Data	Address

2.1.2 Memory Map

The memory map of PROM mode are shown at *Table 2.3*

At PROM mode, on-chip flash is 96K x 16 memory. Therefore, In order to access very next 16bit data to the currently accessed address, address should be changed by '1'(not by '2'), Erase operation is performed by sector, and corresponding address of each sector are shown.

Table 2.3	Erase Sector	Register
-----------	--------------	----------

Sector No.	Sector Size	FA [17:1]	Internal Address
0	8KB (4K-word)	0x00000 ~ 0x00FFF	0x0800_0000
1	8KB (4K- word)	0x01000 ~ 0x01FFF	0x0800_2000
2	24KB (12K- word)	0x02000 ~ 0x04FFF	0x0800_4000
3	24KB (12K- word)	0x05000 ~ 0x07FFF	0x0800_A000
4	32KB (16K- word)	0x08000 ~ 0x0BFFF	0x0801_0000
5	32KB (16K- word)	0x0C000 ~ 0x0FFFF	0x0801_8000
6	32KB (16K- word)	0x10000 ~ 0x13FFF	0x0802_0000
7	32KB (16K- word)	0x14000 ~ 0x17FFF	0x0802_8000

2.1.3 PROM Mode Operation

Each flash memory operation, such as program, erase, read are made by writing and reading the flash memory internal register. **Table 2.4** shows different flash memory operation and register read/write sequence of each operation. Every operation except for memory normal read and erase, the 1'st and 2'nd cycles are deciding which operation will be performed, and 4'th cycle is setting flash memory address to be programmed and verified. Therefore, only 3'th cycle need to be repeated if another flash memory address is programmed or verified repeatedly after first address. At Erase operation, 3'rd and 4'th cycle have to be repeated.

At Verify read operation (Pre-Program/program Verify and erase verify), In order to get the result of verify read, it is necessary to execute memory normal read operation after 4'th cycle.

PROM Mode Interface

Flash MCU(HMS39C7092)

Table 2.4 Setting for Thash FHOM Tead/write												
	1st Cycle			2nd Cycle		3rd Cycle			4th Cycle			
Operation	FR_	D:	Addr	FR_	D:	Addr	FR_	D:	Addr	FR_	D:	Addr
operation	SEL	Dir	Data	SEL	DIr	Data	SEL	Dir	Data	SEL	DIr	Data
Normal Road	000	D	RA									
Normai neau	000	n	Din									
Program/	101	\ M /	Х	011	\٨/	Х	011	\M/	-	001	\٨/	WA
Pre-program	101	I VV	02	011	JII VV	01	011	vv	05	001	vv	Dout
Eraco	101	۱۸/	Х	011	۱۸/	Х	100	۱۸/	Х	011	۱۸/	Х
LIASE	101	101 W	12	011	•••	02	100	vv	SN	UII	vv	0A
Pre-program	101	۱۸/	Х	011	۱۸/	Х			-	001	۱۸/	RA
Verify	101	vv	02	011	vv	vv 10		-	-		vv	Din
Erase Verify	101	۱۸/	Х	011	۱۸/	Х			-	011	۱۸/	RA
Read	101	vv	00	011 W	vv	20	-	-	-	011	vv	Din
*RA: X: do	WA: Write R: Read	e addres	ss Din W:	: Read dat Write	a Do SN	ut: Prog I: Erase	ram data Sector Nu	Imber(se	ee Tabl	e 2.3)		

Table 2.4 Setting for Flash PROM read/write

2.1.4 Timing Diagram and AC/DC Characteristics (preliminary)

This timing diagram follows the sequence that is shown on Table 3.2.

Figure 2.1 Timing Diagram of Read

PROM Mode Interface

Figure 2.2 Timing Diagram of Pre-Program/Program

Figure 2.3 Timing Diagram of Erase

PROM Mode Interface

Flash MCU(HMS39C7092)

Figure 2.4 Timing Diagram of Pre-Program/Program Verify

Figure 2.5 Timing Diagram of Erase Verify

Chapter 3 Electrical Characteristics and Operational Parameters

Electrical Characteristics and Operational Parameters

Flash MCU(HMS39C7092)

Table 3.1 DC Characteristics 231247 - 31247 = 25 °C

$(V_{DD} = 3.3V, Vss = 0V, FTVPPD = 5V, Ta = 25 °C)$								
Items		Symbols	Min	Тур	Max	Units	Conditions	
Input hi	gh voltage	Vih	$0.7 x V_{DD}$	-	V _{DD} +0.5	V		
Input lo	w voltage	Vil	-0.5	-	$0.3x V_{\text{DD}}$	V		
Output high voltage		Voh	2.4	-	-	V	loh=0.8mA	
Output low voltage		Vol	-	-	0.4	V	lol=0.8mA	
Vcc	Read	ldd	-	20	40	mA		
current	Program	ldd	-	40	80	mA		
	Erase	ldd	-	25	50	mA		
FXTVPPD Current	Program	lppd	-	10	20	mA		

Table 3.2 AC Characteristics

 $(V_{DD} = 3.3V, Vss = 0V, FTVPPD = 5V, Ta = 25 \%)$

Items	Symbols	Min	Тур	Max	Units
CEB output delay time	TCEB	-	90	130	ns
OEB output delay time	TOEB	-	5	10	ns
Output disable delay time	TOEBH	1	2	-	ns
R_SEL output delay time	TR_SEL	-	1	2	ns
Access time	TACC	-	90	130	ns
Reset Pulse Width	Trst	300	500	-	US
Power up time	Tpup	8	10	-	us
Discharge time(program,verify)	Todw	1	10		US
Discharge time(erase)	Tpuw	10	20	-	us
Program time	Tpgm	20	30	-	us
CEB Setup time	Tces	100	200	-	us
WEB Pulse Width	Twep	100	200	-	ns
WEB rise time	Tr	-	20	30	ns
WEB fall time	Tf	-	20	30	ns
Data Setup time	Tds	50	150	-	ns
Data Hold time	Tdh	50	80	-	ns
Erase time	Tera	100	500	10000	us
Verify Setup time	Tvfy	5	10	-	us
Verify Data out time	Tdout	90	-	-	ns

Flash MCU(HMS39C7092) Electrical Characteristics and Operational Parameters

Table 3.3 Programing Parameters

$(V_{DD} = 3.3V, Vss = 0V, FXTVPPD = 5V, Ta = 25 °C)$									
Items	Symbols	Min	Тур	Мах	Units				
program iteration	N_PGM	-	-	50	count				
erase iteration	N_ERASE	-	-	50	count				
program time	T_PGM	10	-	-	us				
program retry time	T_PGMR	0	-	-	us				
erase time	T_ERASE	100	-	10000	us				
erase retry time	T_ERASER	100	-	1000	us				
verify time	T_VFY	5	10	-	us				

Electrical Characteristics and Operational Parameters

