HN27C101AG Series HN27C301AG Series

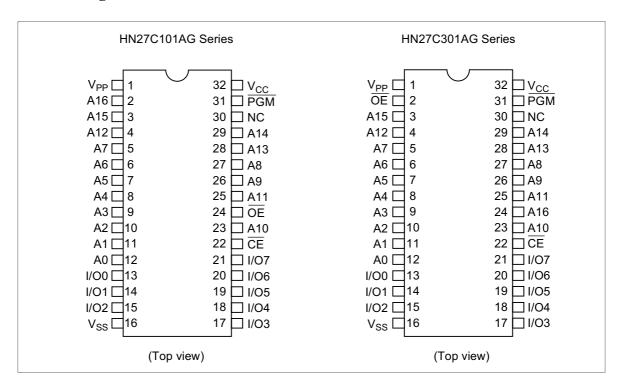
131072-word × 8-bit CMOS UV Erasable and Programmable ROM

HITACHI

ADE-203-Rev. 0.0 Dec. 1, 1995

Description

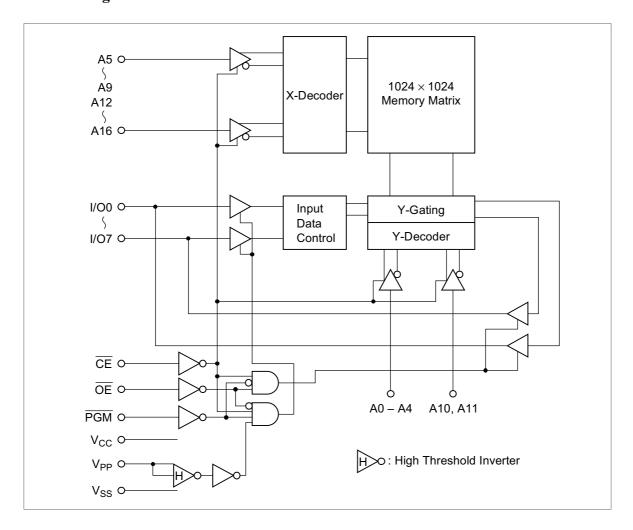
The Hitachi HN27C101AG/HN27C301AG is a 1-Mbit ultraviolet erasable and electrically programmable ROM. This device is packaged in a 32-pin dual-in-line package with transparent lid. The transparent lid allows the memory content to be erased with ultraviolet light, whereby a new pattern can then be written into the device.


Features

- Single power supply:
 - $+5 \text{ V} \pm 5\%$ (HN27C101AG-10/HN27C301AG-10)
 - $+5 \text{ V} \pm 10\% \text{ (HN27C101AG/HN27C301AG-12/15/17/20/25)}$
- · Fast high-reliability programming mode and fast high-reliability page programming mode
 - Programming voltage: +12.5 V DC
 - Fast high-reliability page programming: 14 sec typ
- High speed inputs and outputs TTL compatible during both read and program modes
- Low power dissipation: 50 mW/MHz typ (active)
 - 5 μW typ (standby)
- Pin arrangement: 32-pin JEDEC standard (HN27C101AG)
 - : replaceable 32 pin MASK ROM (HN27C301AG)
- Device identifier mode: manufacturer code and device code
- Fully compatible with HN27C101G/ HN27C301G series

Ordering Information

Type No.	Access Time	Package
HN27C101AG-10	100 ns	600-mil 32-pin cerdip (DG-32)
HN27C101AG-12	120 ns	
HN27C101AG-15	150 ns	
HN27C101AG-17	170 ns	
HN27C101AG-20	200 ns	
HN27C101AG-25	250 ns	
HN27C301AG-10	100 ns	
HN27C301AG-12	120 ns	
HN27C301AG-15	150 ns	
HN27C301AG-17	170 ns	
HN27C301AG-20	200 ns	
HN27C301AG-25	250 ns	


Pin Arrangement

Pin Description

Pin Name	Function
A0 – A16	Address
I/O0 – I/O7	Input/output
CE	Chip enable
ŌĒ	Output enable
V _{cc}	Power supply
V _{PP}	Programming power supply
V _{ss}	Ground
PGM	Programming enable
NC	No connection

Block Diagram

Mode Selection

Mode	CE	ŌĒ	PGM	A9	V_{PP}	V_{cc}	I/O
HN27C101AG	(22)	(24)	(31)	(26)	(1)	(32)	(13 – 15, 17 – 21)
HN27C301AG	(22)	(2)	(31)	(26)	(1)	(32)	(13 – 15, 17 – 21)
Read	V_{IL}	V_{IL}	V_{IH}	Х	V_{cc}	V_{cc}	Dout
Output disable	V_{IL}	V_{IH}	V_{IH}	Х	V_{cc}	V_{cc}	High-Z
Standby	V_{IH}	Х	Х	Х	V_{cc}	V_{cc}	High-Z
Program	V_{IL}	V_{IH}	V_{IL}	Х	V_{PP}	V_{cc}	Din
Program verify	V _{IL}	V _{IL}	V _{IH}	Х	V_{PP}	V _{cc}	Dout
Page data latch	V_{IH}	V_{IL}	V_{IH}	Х	V_{PP}	V_{cc}	Din
Page program	V_{IH}	V_{IH}	V_{IL}	Х	V_{PP}	V_{cc}	High-Z
Program inhibit	V _{IL}	V _{IL}	V _{IL}	Х	V_{PP}	V _{cc}	High-Z
	V_{IL}	V_{IH}	V_{IH}				
	V_{IH}	V_{IL}	V_{IL}				
	V _{IH}	V _{IH}	V_{IH}				
Identifier	V _{IL}	V _{IL}	V _{IH}	V _H	V _{cc}	V _{cc}	Code

Notes: 1. X: Don't care 2. V_H : 12.0 V \pm 0.5 V

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
All input and output voltages*1	Vin, Vout	-0.6*2 to +7.0	V
A9 input voltage*1	V _{ID}	-0.6* ² to +13.5	V
V _{PP} voltage*1	V_{PP}	-0.6 to +13.5	V
V _{cc} voltage*1	V _{cc}	-0.6 to +7.0	V
Operating temperature range	Topr	0 to +70	°C
Storage temperature range	Tstg	-65 to +125	°C
Storage temperature range under bias	Tbias	–10 to +80	°C

Notes: 1. Relative to V_{ss}

2. Vin, Vout and V_{ID} min = -1.0 V for pulse width ≤ 50 ns

Capacitance (Ta = 25°C, f = 1 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input capacitance	Cin	_	_	10	pF	Vin = 0 V
Output capacitance	Cout	_	_	15	pF	Vout = 0 V

Read Operation

 $\begin{aligned} \textbf{DC Characteristics} \ \ &(V_{CC} = 5 \ V \pm 5\%, \ V_{PP} = V_{CC}, \ Ta = 0 \ to + 70 ^{\circ}C) \ (HN27C101AG/HN27C301AG-10) \\ &(V_{CC} = 5 \ V \pm 10\%, \ V_{PP} = V_{CC}, \ Ta = 0 \ to + 70 ^{\circ}C) \\ &(HN27C101AG/HN27C301AG-12/15/17/20/25) \end{aligned}$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	I _{LI}	_	_	2	μΑ	Vin = 0 V to V _{cc}
Output leakage current	I _{LO}	_	_	2	μΑ	Vout = 0 V to V _{cc}
V _{PP} current	I _{PP1}	_	1	20	μΑ	V _{PP} = 5.5 V
Standby V _{cc} current	I _{SB1}	_	_	1	mA	CE = V _{IH}
	I _{SB2}	_	1	20	μΑ	$\overline{\text{CE}} = V_{\text{CC}} \pm 0.3 \text{ V}$
Operating V _{cc} current	I _{CC1}	_	_	30	mA	CE = V _{IL} , lout = 0 mA
	I _{CC2}	_	_	30	mA	f = 5 MHz, lout = 0 mA
		_	_	50	mA	f = 10 MHz, lout = 0 mA
Input low voltage	V _{IL}	-0.3* ¹	_	0.8	V	
Input high voltage	V _{IH}	2.2	_	V _{cc} + 1.0* ²	V	
Output low voltage	V _{OL}	_	_	0.45	V	I _{OL} = 2.1 mA
Output high voltage	V _{OH}	2.4	_	_	V	I _{OH} = -1 mA
		$V_{\text{CC}}-0.7$	_	_	V	I _{OH} = -0.1 mA

Notes: 1. V_{IL} min = -1.0 V for pulse width \leq 50 ns

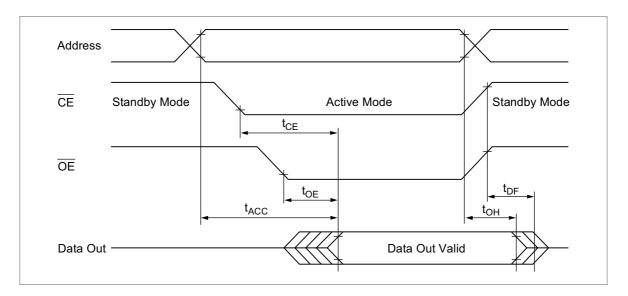
If $V_{\mbox{\tiny IH}}$ is over the specified maximum value, read operation cannot be guaranteed.

^{2.} V_{IH} max = V_{CC} +1.5 V for pulse width \leq 20 ns

 $\begin{aligned} \textbf{AC Characteristics} \ \ &(V_{CC} = 5 \ V \pm 5\%, V_{PP} = V_{CC}, Ta = 0 \ to + 70 ^{\circ}\text{C}) \ (HN27C101AG/HN27C301AG-10) \\ &(V_{CC} = 5 \ V \pm 10\%, V_{PP} = V_{CC}, Ta = 0 \ to + 70 ^{\circ}\text{C}) \\ &(HN27C101AG/HN27C301AG-12/15/17/20/25) \end{aligned}$

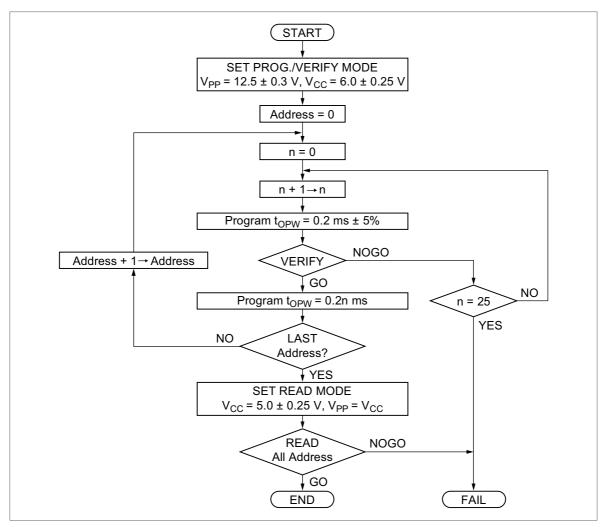
Test Conditions

Input pulse levels: 0.45 V to 2.4 V
Input rise and fall time: ≤ 20 ns


• Output load: 1 TTL gate +100 pF

• Reference levels for measuring timing: Inputs; $0.8~\mathrm{V}$ and $2.0~\mathrm{V}$ Outputs; $0.8~\mathrm{V}$ and $2.0~\mathrm{V}$

		HN2	N27C101AG/HN27C301AG												
		-10		-12		-15		-17		-20		-25			Test
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions
Address to output delay	t _{ACC}	_	100	_	120		150	_	170	_	200	_	250	ns	CE = OE = V _{IL}
CE to output delay	t _{CE}	_	100	_	120		150		170		200		250	ns	OE = V _{IL}
OE to output delay	t _{OE}		60		60		70		70		70		100	ns	CE = V _{IL}
OE high to output float	t _{DF}	0	50	0	50	0	50	0	50	0	50	0	60	ns	CE = V _{IL}
Address to output hold	t _{oH}	0	—	0		0	—	0		0		0	—	ns	CE = OE = V _{IL}


Note: t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.

Read Timing Waveform

Fast High-Reliability Programming

This device can be applied the programming algorithm shown in following flowchart. This algorithm allows to obtain faster programming time without any voltage stress to the device nor deterioration in reliability of programmed data.

Fast High-Reliability Programming Flowchart

DC Characteristics (Ta = 25 °C \pm 5 °C, V_{CC} = 6 V \pm 0.25 V, V_{PP} = 12.5 V \pm 0.3 V)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	ILI	_	_	2	μΑ	Vin = 0 V to V _{CC}
V _{PP} supply current	I _{PP}	_	_	40	mA	CE = PGM = V _{IL}
Operating V _{cc} current	I _{cc}	_	_	30	mA	
Input low level	V_{IL}	-0.1* ⁵	_	0.8	V	
Input high level	V_{IH}	2.2	_	$V_{CC} + 0.5^{*6}$	V	
Output low voltage during verify	V_{OL}	_	_	0.45	V	I _{OL} = 2.1 mA
Output high voltage during verify	V _{OH}	2.4	_	_	V	I _{OH} = -400 μA

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} .

- 2. V_{PP} must not exceed 13.5 V including overshoot.
- 3. An influence may be had upon device reliability if the device is installed or removed while $V_{pp} = 12.5 \text{ V}$.
- 4. Do not alter V_{PP} either V_{IL} to 12.5 V or 12.5 V to V_{IL} when \overline{CE} = Low.
- 5. V_{IL} min = -0.6 V for pulse width \leq 20 ns
- 6. If $V_{\mbox{\tiny IH}}$ is over the specified maximum value, programming operation cannot be guaranteed.

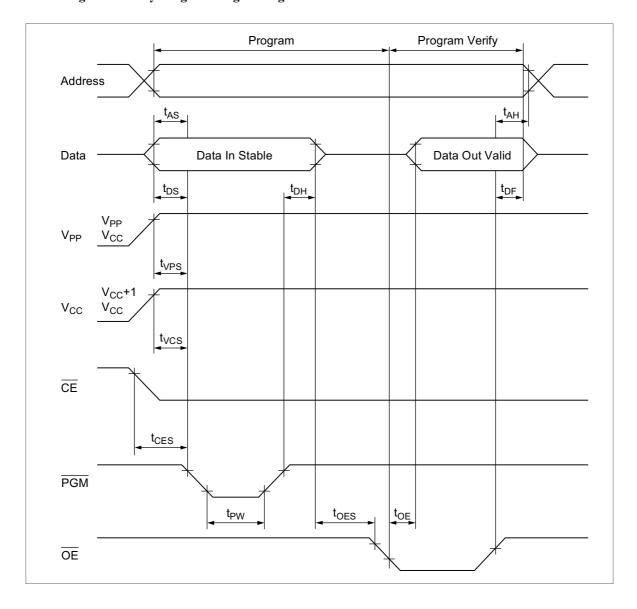
AC Characteristics (Ta = 25 °C \pm 5 °C, V_{CC} = 6 V \pm 0.25 V, V_{PP} = 12.5 V \pm 0.3 V)

Test Conditions

• Input pulse levels: 0.45 V to 2.4 V

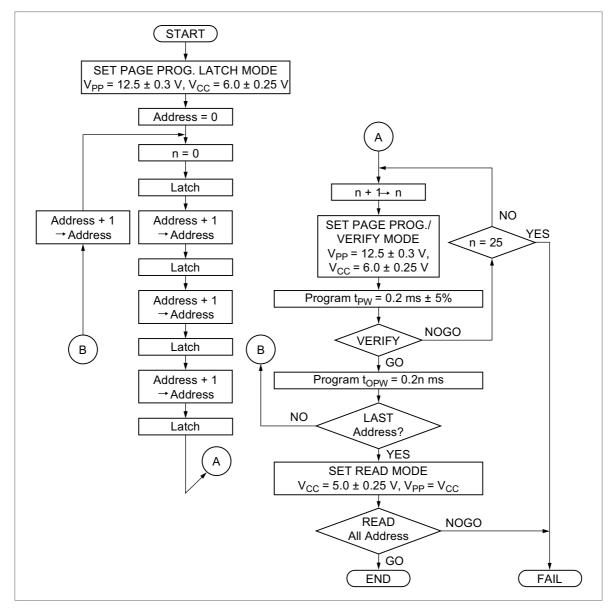
• Input rise and fall time: $\leq 20 \text{ ns}$

• Reference levels for measuring timing: Inputs; 0.8 V and 2.0 V


Outputs; $0.8\ V$ and $2.0\ V$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Address setup time	t _{AS}	2	_	_	μs	
OE setup time	t _{OES}	2	_	_	μs	
Data setup time	t _{DS}	2	_	_	μs	
Address hold time	t _{AH}	0	_	_	μs	
Data hold time	t _{DH}	2	_	_	μs	
OE to output float delay	t _{DF} *1	0	_	130	ns	
V _{PP} setup time	t _{VPS}	2	_	_	μs	
V _{cc} setup time	t _{vcs}	2	_	_	μs	
PGM initial programming pulse width	t _{PW}	0.19	0.2	0.21	ms	
PGM overprogramming pulse width	t _{OPW} *2	0.19	_	5.25	ms	
CE setup time	t _{CES}	2	_	_	μs	
Data valid from OE	t _{oe}	0	_	150	ns	

Notes: 1. t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.


2. Refer to the programming flowchart for $t_{\mbox{\scriptsize OPW}}$.

Fast High-Reliability Programming Timing Waveform

Fast High-Reliability Page Programming

This device can be applied the high performance page programming algorithm shown in following flowchart. This algorithm allows to obtain faster programming time without any voltage stress to the device nor deterioration in reliability of programmed data.

Fast High-Reliability Page Programming Flowchart

DC Characteristics (Ta = 25 °C \pm 5 °C, V_{CC} = 6 V \pm 0.25 V, V_{PP} = 12.5 V \pm 0.3 V)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	I _{LI}	_	_	2	μΑ	Vin = 0 V to V _{cc}
V _{PP} supply current	I _{PP}		_	50	mA	$\overline{\text{CE}} = \overline{\text{OE}} = V_{\text{IH}}, \overline{\text{PGM}} = V_{\text{IL}}$
Operating V _{cc} current	I _{cc}		—	30	mA	
Input low level	V _{IL}	-0.1* ⁵	_	0.8	V	
Input high level	V _{IH}	2.2	_	$V_{CC} + 0.5^{*6}$	V	
Output low voltage during verify	V _{OL}		_	0.45	V	I _{OL} = 2.1 mA
Output high voltage during verify	V _{OH}	2.4	_	_	V	I _{OH} = -400 μA

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} .

- 2. V_{PP} must not exceed 13.5 V including overshoot.
- 3. An influence may be had upon device reliability if the device is installed or removed while $V_{pp} = 12.5 \text{ V}$.
- 4. Do not alter V_{PP} either V_{IL} to 12.5 V or 12.5 V to V_{IL} when \overline{CE} = Low.
- 5. V_{IL} min = -0.6 V for pulse width \leq 20 ns
- 6. If $V_{\mbox{\tiny IH}}$ is over the specified maximum value, programming operation cannot be guaranteed.

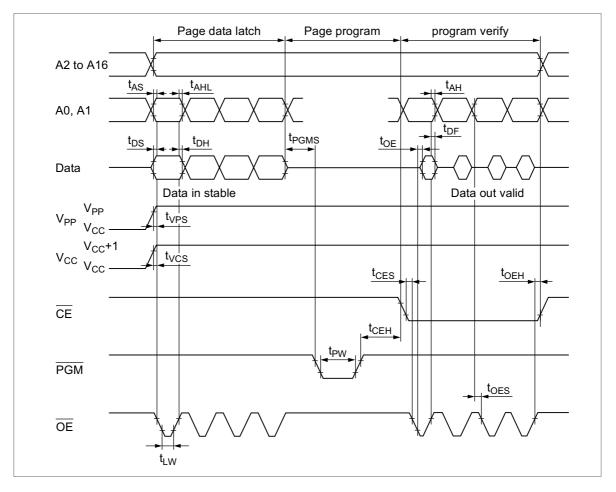
AC Characteristics (Ta = 25 °C \pm 5 °C, V_{CC} = 6 V \pm 0.25 V, V_{PP} = 12.5 V \pm 0.3 V)

Test conditions

• Input pulse levels: 0.45 V to 2.4 V

• Input rise and fall time: ≤ 20 ns

- Reference levels for measuring timing: Inputs; 0.8 V and 2.0 V $\,$


Outputs; 0.8 V and 2.0 V

Parameter	Symbol	Min	Тур	Max	Unit
Address setup time	t _{AS}	2	_	_	μs
OE setup time	t _{oes}	2	_	_	μs
Data setup time	t _{DS}	2	_	_	μs
Address hold time	t _{AH}	0		_	μs
	t _{AHL}	2	_	_	μs
Data hold time	t _{DH}	2			μs
OE to output float delay	t_{DF}^{*1}	0		130	ns
V _{PP} setup time	t _{VPS}	2	_	_	μs
V _{cc} setup time	t _{vcs}	2			μs
PGM initial programming pulse width	t _{PW}	0.19	0.2	0.21	ms
PGM overprogramming pulse width	t _{OPW} *2	0.19	_	5.25	ms
CE setup time	t _{CES}	2	_	_	μs
Data valid from OE	t _{oe}	0	_	150	ns
OE pulse width during data latch	t _{LW}	1	_	_	μs
PGM setup time	t _{PGMS}	2			μs
CE hold time	t _{CEH}	2	_	_	μs
OE hold time	t _{OEH}	2	_	_	μs

Notes: 1. t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.

2. Refer to the programming flowchart for $t_{\mbox{\tiny OPW}}.$

Fast High-Reliability Page Programming Timing Waveform

Erase

Erasure of this device is performed by exposure to ultraviolet light of 2537 Å and all the output data are changed to "1" after this erasure procedure. The minimum integrated dose (i.e. UV intensity \times exposure time) for erasure is 15 W. sec/cm².

Mode Description

Device Identifier Mode

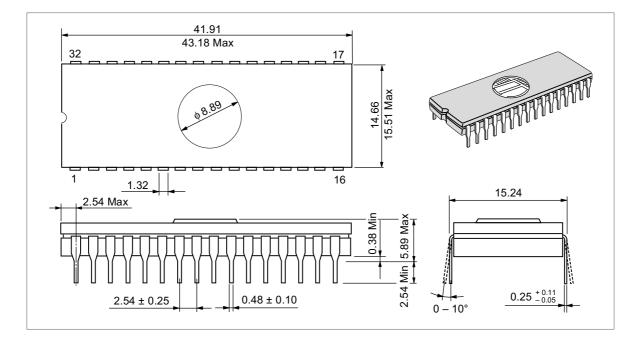
The device identifier mode allows the reading out of binary codes that identify manufacturer and type of device, from outputs of EPROM. By this mode, the device will be automatically matched its own corresponding programming algorithm, using programming equipment.

HN27C101AG Identifier Code

Identifier	A0 (12)	A9 (26)	I/O7 (21)	I/O6 (20)	I/O5 (19)	I/O4 (18)	I/O3 (17)	I/O2 (15)	I/O1 (14)	I/O0 (13)	Hex Data
Manufacturer code	V_{IL}	V_{H}	0	0	0	0	0	1	1	1	07
Device code	V_{IH}	V_{H}	0	0	1	1	1	0	0	0	38

HN27C301AG Identifier Code

ldentifier	A0 (12)	A9 (26)	I/O7 (21)	I/O6 (20)	I/O5 (19)	I/O4 (18)	I/O3 (17)	I/O2 (15)	I/O1 (14)	I/O0 (13)	Hex Data
Manufacturer code	V_{IL}	V_{H}	0	0	0	0	0	1	1	1	07
Device code	V_{IH}	V_{H}	1	0	1	1	1	0	0	1	В9


Notes: 1. $V_H = 12.0 \text{ V} \pm 0.5 \text{ V}$

2. A1–A8, A10–A16, \overline{CE} , \overline{OE} = V_{IL} , \overline{PGM} = V_{IH}

Package Dimensions

HN27C101AG/HN27C301AG Series (DG-32)

Unit: mm

