

- SAW Frequency Stabilization
- Fundamental-Mode Oscillation at 1090.0 MHz
- Ideal for Air Traffic Control Applications

The frequency of this oscillator is stabilized by surface-acoustic-wave (SAW) technology. This results in excellent performance from a compact, rugged, oscillator operating at the fundamental frequency of 1090.0 MHz. The highly-reliable HO1079 is designed for use in air traffic control (ATC) radar transponders in commercial aviation. It is a commercial version of the HO1081 oscillator.

HO1079

1090.0 MHz SAW Oscillator

Dip 16-8 Case

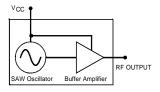
alasiieel40.00

Absolute Maximum Ratings

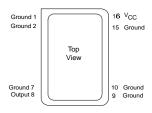
Rati	Value	Units	
DC Supply Voltage		0 to +13	VDC
Ambient Temperature	Powered	-40 to +85	°C
	Storage	-40 to -100	

Electrical Characteristics

	Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Operating Frequency	AbsoluteFrequency	f _O	1, 7	1089.750	1090	1090.250	MHz
	Tolerance from 310.0 MHz	Df _O] ','			±250	kHz
RF Output Power		Po	3, 6	+8	+10	+14	dBm
Discrete Spurious	Second Harmonics				-25	-20	
	Third and Higher Harmonics		2, 3, 4		-35	-30	dBc
	Nonharmonic				<-100	-80	
SSB Phase Noise	1 kHz Offset		2, 3, 4		-100	-90	dBc/Hz
	10 kHz Offset		2, 3, 4		-120	-110	UDC/11Z
RF Impedance	Nominal Impedance	Z _O	3		50		W
	Operating Load VSWR	G _L	3, 5			1.5:1	
DC Power Supply	Operating Voltage	V _{CC}	3, 6	11.75	12.0	12.25	VDC
	Operating Current	I _{CC}	3, 0		35	40	mA
Operating Ambient Temperature		T _A	3, 6	-40		+85	°C
Lid Symbolization (YY=Year, WW=Week)		RFM HO1079 YYWW					

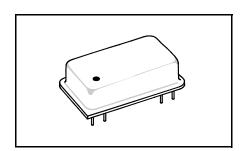

T

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling, COCOM CAUTION: Approval by the U.S. Department of Commerce is required prior to export of this device.


Notes:

- One or more of the following United States patents apply: 4,616,197; 4,610,681; and 4,761,616.
- Unless noted otherwise, all specifications are listed at T_A = +25°C ±2°C, V_{CC} = nominal voltage ±0.01 VDC, and load impedance = 50 Ω with VSWR ≤ 1.5:1.
- 3. The design, manufacturing process, and specifications of this device are subject to change without notice.
- Applies to oscillator only and not to sidebands caused by external electrical or mechanical sources. (Dedicated external voltage regulation with low-frequency filtering for the DC power supply and proper circuit board layout are recommended for optimum spectral purity.)
- For specified maximum operating load VSWR (any angle) at F_O. (No instability or damage will occur for any passive load impedance.)
- 6. For any combination of V_{CC} and T_A within the specified operating ranges.
- 7. Applies for any combination of Note 5 and 6 conditions.

BLOCK DIAGRAM



ELECTRICAL CONNECTIONS

DIP16-8 Metal Dual-Inline Package with 8 leads in a 16-lead DIP configuration

ww.DataSheet4U.com

Dimension	mm		Inches		
Dimension	MIN	MAX	MIN	MAX	
А	_	25.02	_	0.985	
В	_	12.83	_	0.505	
С	1	6.35	1	0.250	
D	0.40	0.51	0.016	0.020	
E	0.64 Nominal		0.025 Nominal		
F	7.62 Nominal		0.300 Nominal		
G	2.54 Nominal		0.100 Nominal		
Н	17.78 Nominal		0.700 Nominal		
К	3,39	6.73	0.130	0.265	
L	1.30		0.051	_	
М	1	11.18		0.440	
N	_	22.60		0.890	
R	1.75	2.26	0.069	0.089	

