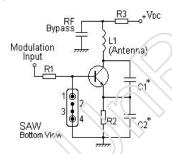
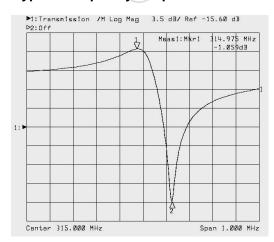

The HR315 is a true one- port , surface- acoustic- wave(SAW) resonator in a low- profile F-11 case. It provides reliable , fundamental- mode , quartz frequency stabilization of fixed- frequency transmitters operating at 315 MHz.

1.Package Dimension (F-11)

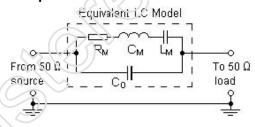

2.Marking

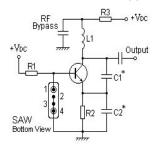
HR315


Color: Black or Blue

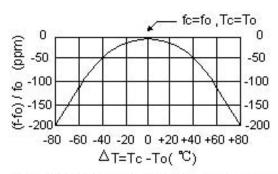
4.Typical Application Circuit

1) Typical Low-Power Transmitter Application


5. Typical Frequency Response


Pin	Connection			
1/4	Input / Output			
2/3	Case Ground			

Dimension	Data (unit: mm)			
А	11.0±0.3			
В	4.5±0.3			
С	3.2±0.3			
D	0.45±0.1			
Е	5.0±0.5			
F	2.54±0.2			


3. Equivalent LC Model and Test Circuit

2) Typical Local Oscillator Application

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

SHENZHEN ZHONGKEJING ELECTRONIC Co.,LTD

E-mail: <u>zkjdz12345@163.com</u> TEL: 0755-29666862 FAX: 0755-29666869

7.Performance

7-1.Maximum Rating

Rating	Value	Units
CW RF Power Dissipation	+10	dBm
DC Voltage Between Any Two Pins	$\pm 30 V$	VDC
Case Temperature	-40 to +85	${\mathbb C}$

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Units
Center Frequency (+25°C)	Absolute Frequency	f _C	314.925		315.075	MHz
	Tolerance from 315 MHz	Δ f _C		±75	±150	kHz
Insertion Loss		IL		1.5	2.0	dB
Quality Factor	Unloaded Q	Q_U		11,900		
	50 Ω Loaded Q	Q_L		1,900	,	
Temperature Stability	Turnover Temperature	T _o	25	40	55	$^{\circ}$
	Turnover Frequency	f _O		fc		kHz
	Frequency Temperature Coefficient	FTC		0.037		ppm/℃ ²
Frequency Aging Absolute Value during the First Year		f _A	? (VO)	≤10		ppm/yr
DC Insulation Resist	ance Between Any Two Pins		1.0			МΩ
RF Equivalent RLC Model	Motional Resistance	R _M		19	23	Ω
	Motional Inductance	L _M	7	114.2958		μH
	Motional Capacitance	См		2.2358		fF
	Pin 1 to Pin 2 Static Capacitance	/ C ₀	2.3	2.6	2.9	pF

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

NOTES:

- 1. Frequency aging is the charge in i_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The center frequency, f_C ,is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2 · 1. Typically, $f_{oscillator}$ or $f_{transmitter}$ is less than the resonator f_C .
- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4. Unless noted otherwise , case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 6 .Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_O .
- 7. Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O , The nominal center frequency at any case temperature, T_C , may be calculated from :f = f_O [1-FTC (T_O - T_C) 2]. Typically, oscillator T_O is 20°C less than the specified resonator T_O .
- 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only . The capacitance C_0 is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground .The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25 pF to C_0 .

SHENZHEN ZHONGKEJING ELECTRONIC Co.,LTD

E-mail: <u>zkjdz12345@163.com</u> TEL: 0755-29666862 FAX: 0755-29666869