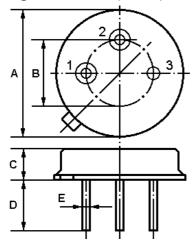


Approved by:
Checked by:
Issued by:

SPECIFICATION

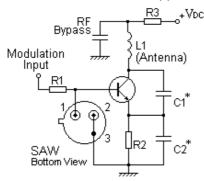

PRODUCT:	SAW RESONATOR			
MODEL:	HR868.3	TO-39		

www.DataSheet4U.com

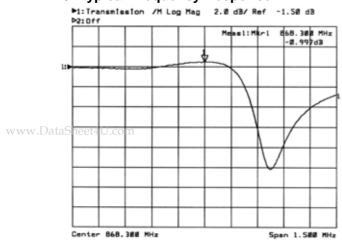
HOPE MICROELECTRONICS CO.,LIMITED

The HR868.3 is a true one-port, surface-acoustic-wave (**SAW**) resonator in a low-profile metal **TO-39** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **868.300** MHz.

1. Package Dimension (TO-39)

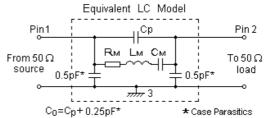

2. Marking

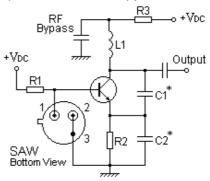
HR868.3


Color: Black or Blue

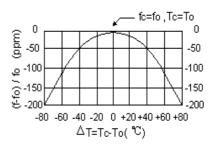
4. Typical Application Circuits

1) Low-Power Transmitter Application


5. Typical Frequency Response


Pin Configuration 1 Input / Output 2 Output / Input 3 Case Ground

Dimension	Data (unit: mm)			
А	9.30±0.20			
В	5.08±0.10			
С	3.40±0.20			
D	3±0.20 / 5±0.20			
E 0.45±0.20				


3. Equivalent LC Model and Test Circuit

2) Local Oscillator Application

6. Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1.Maximum Ratings

Rating		Value	Unit
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Any two Pins	$V_{ m DC}$	±30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	
Operating Temperature Range	T_{A}	-10 to +60	

7-2. Electronic Characteristics

Characteristic		Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25)	Absolute Frequency	f _C	868.150		868.450	MHz
	Tolerance from 868.300MHz	Δf_{C}		± 150		kHz
Insertion Loss		IL		1.2	1.8	dB
Quality Factor	Unloaded Q	Q_U		12,270		
	50 Ω Loaded Q	Q_L		1,600		
Temperature Stability	Turnover Temperature	T ₀	25		55	
	Turnover Frequency	f_0		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/ ²
Frequency Aging Absolute Value during the First Year		f _A		10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			ΜΩ
RF Equivalent RLC Model	Motional Resistance	R_{M}		15	23	Ω
	Motional Inductance	L _M		33.7434		μН
	Motional Capacitance	См		0.9967		fF
	Pin 1 to Pin 2 Static Capacitance	C ₀	2.20	2.45	2.70	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

C 2003. All Rights Reserved.

- 1. The center frequency, f_C, is measured at the minimum IL point with the resonator in the 50 test system.
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 FTC (T_0 T_C)^2]$.
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C www.DataSheversus T_C, and C₀.
 - 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
 - 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
 - 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
 - 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail sales@hoperf.com.