

Mil Grade DC DC converters- HSA28 Series

1 FEATURES of Mil Grade DC DC converters-HSA28 Series

- 16 to 40 VDC input, typical 28V
- Model HSA15S5 10 to 20V DC output, typical 15V
- 5W output power
- -55° C to $+125^{\circ}$ C operation
- Fully isolated
- More than $100M\Omega(500V DC)$ isolation
- Inhibit function and indefinite short circuit protection
- 500kHz operating frequency
- Equivalent with Interpoint's MSA Series
- Hermetically sealed metal cases

2 DESCRIPTION of Mil Grade DC DC converters- HSA28 Series

The HSA28 Series of DC/DC converters offer up to 5 watts of output power with high reliability. The HSA28 series' small size, light weight, and hermetically sealed metal packages make them ideal for use in aviation, aerospace and other high reliability applications.

The HSA 28 series of converters use single ended forward or flyback pulse width modulated topology design. The operating principle is that the sampling signal of output

Size: (non-flanged) 27.31x27.31x 6.86 mm³ (flanged): 39.0 x 27.31 x 6.86 mm³

Weight: (non-flanged):18grams (flanged): 20grams

Figure 1 HSA28 Series DC/DC converters

Table 1 Product models

MODELS								
SINGLE	DUAL							
HSA28S5(F)	HSA28D5(F)							
HSA28S12(F)	HSA28D12(F)							
HSA28S15(F)	HSA28D15(F)							
HSA28S5R2(F)								
HSA28S60(F)								
HSA15S5(F)								
HSA28S28R5(F)								
HSA28S3R3(F)								
HSA28S2R5								
HSA28S2R5-A(F)								

voltage, coupled by the opto-coupler, works together with the sampling signal of input loop current to regulate the pulse width of the controller. The double close loop control can create constant voltage output and short circuit protection.

Thick film hybrid techniques provide the HSA28 Series of converters with reliability levels and optimum miniaturization. The design and manufacturing process of HSA28 Series of converters are in compliance with General Standards of Hybrid Integrated Circuits and detailed standards of manufacturing. Connected to a HFD-CE03 filter, the HSA28 Series of converters can achieve better electromagnetic compatibility (EMC) performance.

3 ELECTRICAL PERFORMANCE of Mil Grade DC DC converters-HSA28 Series

ABSOLUTE MAXIMUM RATINGS

• Input Voltage: 40V (20V for Model HSA15S5)

Power dissipation: 2.6WOutput power: 5.7W

Lead Soldering Temperature : 300°C (10 sec per lead)
Storage Temperature Range (Case): -55°C ~ +125°C

• Inhibit voltage: ≤0.2V

RECOMMENDED OPERATING CONDITIONS

• DC Input voltage range :16~ 40V

(10~20V for Model HSA15S5)

Case Operating Temperature (Tc): -55°C to +125°C

HSA28S5(F), HSA28S12(F), HSA28S15(F)

Table 2 Electrical Characteristics(TCASE = -55°C to +125°C, VIN = 28V ± 0.5V, Full Load5, Unless Otherwise Specified)

				HSA28S5(F)		HSA28S12(F)		HSA28S15(F)	
Parameter	Conditions M			Max	Min	Max	Min	Max	
Output Voltage	Io=full	Ambient temperature	4.95	5.05	11.88	12.12	14.85	15.15	
(V)	load	high and low temperature	4.80	5.20	11.52	12.48	14.40	15.60	
Output Current (A)	$V_{in} = 16 \text{ TO } 40 \text{ VDC}$		-	1	-	0.417	-	0.333	
Output Power (W)	-		-	5	-	5	-	5	
Output Ripple Voltage(mV)	$BW=10$ kHz to 2 MH $I_o=$ full load	Ambient temperature high and low temperature	- -	350 525	-	200 300	-	170 250	
Line Regulation (mV)	<i>VIN</i> = 16 TO 40 VD	C,Io=full load		50	-	50	-	50	
Load Regulation (mV)	Io=No load to full lo		-	50	-	50	-	50	
Input Ripple Current	BW=10kHz-2 MHz		-	100	-	100	-	100	
(mA)	I _o =full load	high and low temperature Ambient temperature	- 66	150	70	150	71	150	
Efficiency (%)	I _o =full load	high and low temperature	64	-	68	_	69	_	
Isolation (MΩ)		Input to output or any pin to case (except case ground pin) at 500 VDC, T _A = 25° C			100	-	100	-	
Inhibit Function	$T_A = 25^{\circ}$ C, Inhibit voltage, output disabled			ave	ha	ve	have		
Protection Function	T _A = 25° C			ave	have		have		
Start-up Overshoot (mV pk)	V _{in} =0 to 28V, I _o =full load		-	500	-	500	-	500	
Start-up Delay (ms)	V _{in} =0 to 28V, I _o =fu	ll load	-	75	-	30	-	30	
Capacitive Load(µF)	$T_A = 25^{\circ} \text{ C}$, No effe	ct on DC performance	-	300	-	500	-	500	
Switching Frequency (kHz)	I _o =full load		400	600	400	600	400	600	
Step Load Response	50% load full A	ambient temperature	-250	250	-375	375	-500	500	
Transient(mV pK)		igh and low temperature	-750	750	-1100	1100	-1500	1500	
Step Load Response	50% load full A	ambient temperature	-	250	-	500	-	500	
Recovery (μs)		igh and low temperature	-	1500	-	3000	-	3500	
Step Line Response Transient (mV pK)	V _{in} =16~40V, I _o =full load V _{in} =40~16V, I _o =full load		-500	500	-1000	800	-500	500	
Step Line Response Recovery (µs)	V _{in} =16~40V, I _o =full load		-	500	_	1300	-	1300	
Load Fault Short Circuit recovery (ms)	,	V_{in} =40~16V, I_o =full load I_o from short circuit to full load			-	30	-	30	

Notes to Specifications:

- 1) The step load transition time should be greater than or equal to 10µs.
- 2 The step line transition time should be greater than or equal to 10μs.
- $\ \ \,$ Recovery time is measured from application of the transient to point at which V_{OUT} is within 1% of V_{OUT} at final value.

HSA28S5R2(F), HSA28S60(F), HSA15S5(F)

Table 3 Electrical Characteristics: ($T_{CASE} = -55^{\circ}C$ to $+125^{\circ}C$, $V_{IN} = 28V \pm 0.5V$, Full Loads, Unless Otherwise Specified)

Single output models		HSA28	S5R2(F)	HSA28S60(F)		HSA15S5(F)		
Parameter	Conditions		Min	Max	Min	Max	Min	Max
Output Voltage	Io=full load	Ambient temperature	5.15	5.25	59.1	60.9	5.0	5.1
(V)		high and low temperature				64.0	4.9	5.2
Output Current(A)	$V_{IN} = 16 \text{ TO } 40 \text{ VD}$	$C(V_{IN}=10 \text{ TO } 20 \text{ VDC})$	-	0.962	-	0.020	-	0.8
Output Power(W)	-		-	5.2	-	5.2	-	5
Output Ripple	BW=10 kHz to 2	Ambient temperature	-	350				
Voltage (mV)	MHz (BW≤20MHz) I₀=full load	high and low temperature	-	525	-	300	-	50
Voltage Regulation (mV)		$C_{,(V_{IN} = 10 \text{ TO } 20 \text{ VDC})}$	-	50	-	300	-	50
Load Regulation(mV)	I _o =No load to load		-	50	-	300	-	50
-	BW=10kHz to 2MHz	_	-	100	-	90	-	-
Current(mA)	I _o =full load	high and low temperature	-	150	-	-	-	-
Efficiency	T C 11 1 1	Ambient temperature	66	-	70		72	
(%)	I _o =full load	high and low temperature	64	-	65] -	72	-
Isolation(M Ω)	Input to output or ar ground pin) at 500 V	100	-	100	-	100	-	
Inhibit Function	$T_A = 25^{\circ} \text{ C}$, Inhibit voltage, output disabled			have		have		L
Protection Function	T _A = 25° C			nave nave			have	
Start-up Overshoot (mV pk)	V _{in} =16 to 40V, I _o =full load		-	500	-	-	-	-
Start-up Delay (ms)	$V_{in} = 16 \text{ to } 40\text{V}, I_0 =$	full load	-	75	-	-	-	25
Capacitive Load (µF)	$T_A = 25^{\circ} \text{ C}$, No effe	ct on DC performance	-	300	-	-	-	-
Switching Frequency(kHz)	I _o =full load		400	600	400	600	-	-
Step Load Response	50% load full	Ambient temperature	-250	250				
Transient(mV pK)	load -50% load	high and low temperature	-750	750	-	-	-	-
Step Load Response	50% load full	Ambient temperature	-	250				
Recovery (µs)	load -50% load	high and low temperature	-	1500	-	-	-	-
Step Line Response Transient (mV pK)	V _{in} =16~40V, I _o =full load V _{in} =40~16V, I _o =full load			500	-	-	-	-
Step Line Response	V _{in} =16~40V, I ₀ =full load			500				
Recovery (µs)	very (μ s) V_{in} =40~16V, I_0 =full load		-	900	_	-	-	-
Load Fault Short Circuit recovery ms)	Io from short circuit	to full load	-	75	-	-	-	-

Notes to Specifications:

- ①The step load transition time should be greater than or equal to 10μs.
- 2 The step line transition time should be greater than or equal to 10μs.
- ③ Recovery time is measured from ap

plication of the transient to point at which

 $V_{\text{OUT}}\,\text{is}$ within 1% of $V_{\text{OUT}}\,\text{at}$ final value.

HSA28S28R5(F), HSA28S3R3(F)

Table 4 Electrical Characteristics: ($T_{CASE} = -55^{\circ}C$ to $+125^{\circ}C$, $V_{IN} = 28V \pm 0.5$ V, Full Loads, Unless Otherwise Specified)

				HSA28S28R5(F)		HSA28S3R3(F)		
Parameter	Conditions		Min	Max	Min	Max		
Output Voltage	Io=full	Ambient temperature	28.2	29	3.20	3.40		
(V)	load	high and low temperature	27.7	29.3	3.15	3.45		
Output Current (A)	$V_{IN} = 16 \text{ TO } 40 \text{ V}$	DC	-	0.2	0	1.2		
Output Power (W)	-		-	5.7	-	4.5		
Output Ripple Voltage (mV)	BW=10 kHz to 2	2 MHz	-	60	-	50		
Line Regulation	$V_{IN} = 16 \text{ TO } 40$ VDC,($V_{IN} = 10$	Ambient temperature			-	50		
(mV)	TO 20 VDC) I _o =full load	high and low temperature	-	28	-	100		
	I _o =No load to	Ambient temperature			-	50		
Load Regulation(mV)	load	high and low temperature	-	140	-	100		
Efficiency (%)	I _o =full load		75	-	70	-		
Isolation $(M\Omega)$	Input to output or ground pin) at 500 $T_A = 25^{\circ} C$	any pin to case (except case) VDC,	100	-	100	-		
Inhibit Function Protection Function	$T_A = 25^{\circ} \text{ C}$, Inhib $T_A = 25^{\circ} \text{ C}$	bit voltage, output disabled	have		have			
Start-up Overshoot (mV pk)	V _{in} =0 to 28V, I _o =full load		-		-			
Start-up Delay(ms)	V _{in} =0to 28V, I _o =f	-	5	-	5			
Capacitive Load(μF)	$T_A = 25^{\circ} \text{ C}$, No ef	fect on DC performance	-	-	-	-		
Switching Frequency (kHz)	I _o =full load		400	600	-	-		

HSA28S2R5, HSA28S2R5-A(F)

Table 5 Electrical Characteristics: ($T_{CASE} = -55^{\circ}C$ to $+125^{\circ}C$, $V_{IN} = 28V \pm 0.5V$, Full Loads, Unless Otherwise Specified)

Single output models				HSA28S2R5		HSA28S2R5-A(F)		
Parameter	Conditions		Min	Max	Min	Max		
Output Voltage	Io=full	Ambient temperature	2.40	2.60	2.40	2.60		
(V)	load	n and low temperature	2.35	2.65	2.35	2.65		
Output Current (A)	V _{IN} = 16 TO 40 V	DC	0	1	0	2		
Output Power (W)	-		-	3	-	5.5		
Output Ripple Voltage (mV)	BW=10 kHz to I _o =full load	BW=10 kHz to 2 MHz I _o =full load			-	35		
Line Regulation (mV)	$V_{IN} = 16 \text{ TO } 40$ VDC, $(V_{IN} = 10)$	Ambient temperature	-	50	-	10		
(IIIV)	TO 20 VDC) $I_0 = \text{full load}$	high and low temperature	-	100	-	20		
Load Regulation	I _o =No load to	Ambient temperature	-	50	-	50		
(mV)	load	high and low temperature	-	100	-	70		
Efficiency (%)	I _o =full load		60	-	68	-		
Isolation (M Ω)		any pin to case (except case) VDC, $T_A = 25^{\circ}$ C	100	-	100	-		
Inhibit Function Protection Function	$T_A = 25^{\circ} \text{ C}$, Inhi $T_A = 25^{\circ} \text{ C}$	bit voltage, output disabled	have		have			
Start-up Overshoot (mV pk)	V _{in} =0 to 28V, I _o =	V _{in} =0 to 28V, I _o =full load		-	-	-		
Start-up Delay (ms)	V _{in} =0to 28V, I _o =	V _{in} =0to 28V, I _o =full load			-	5		
Capacitive Load (μF)	$T_A = 25^{\circ} \text{ C, No ef}$	$T_A = 25^{\circ}$ C, No effect on DC performance			-	-		
Switching Frequency(kHz)	I _o =full load	I ₀ =full load			-	-		

Web: www.ecrimpower.com E-mail: sales@ecrim.cn Phone: +86 551-63667943 Fax: +86 551-65743191

- 5 -

HSA28D5(F), HSA28D12(F), HSA28D15(F)

Table 6 Electrical Characteristics: $(T_{CASE} = -55^{\circ}C \text{ to } +125^{\circ}C, V_{IN} = +28V \pm 0.5V, \text{ Full Loads, Unless})$

Otherwise Specified)

Dual output models	HSA28	HSA28D5(F) HSA2		SA28D12(F) HSA28D15		D15(F)			
Parameter	Conditions			Min	Max	Min	Max	Min	Max
		Ambient tempera	iture	4.95	5.05	11.88	12.12	14.85	15.15
Output Voltage	Io ₁ = Io ₂ = full	high and low tem	perature	4.80	5.20	11.52	12.48	14.40	15.60
(V)	load	Ambient tempera	iture	-5.10	-4.90	-12.24	-11.76	-15.30	-14.70
		high and low tem	perature	-5.25	-4.75	-12.96	-11.04	-16.20	-13.80
Output Current	$V_{IN} = 16 \text{ TO } 40 \text{ V}$	DC		-	0.5	-	0.208	-	0.167
(A)									
Output Power (W)	-			-	5.23	-	5.3	-	5.3
Output Ripple	BW=10 kHz	Ambient tempera	iture	-	150	-	140	-	150
Voltage (mV)	to 2 MHz(BW≤20M	high and low temperature		-	300	-	250	-	250
	Hz)	Ambient tempera	iture	-	150	-	140	-	150
	Io ₁ = Io ₂ = full load	high and low temperature		-	300	-	250	-	250
Line Regulation	V _{IN} = 16 TO 40 VI	DC,	+V _{out}	-	25	-	50	-	50
(mV)	$Io_1 = Io_2 = full load$		-V _{out}	_	75	_	180	-	180
Load Regulation			+V _{out}	-	50	_	50	-	50
(mV)	Io ₁ = Io ₂ =No load t	o full load	-V _{out}	-	200	_	200	-	200
Efficiency	Io ₁ = Io ₂ =full	Ambient tempera	ıture	68	-	69	-	70	-
(%)	load	high and low tem	perature	65	-	67	-	68	
Isolation $(M\Omega)$	1 1	Input to output or any pin to case (except case ground pin) at 500 VDC,			100	-	100	-	100
Inhibit Function	$T_A = 25^{\circ} \text{ C}$, Inhib	oit voltage, output	disabled	have		have		have	
Protection Function	T _A = 25° C			Have		nave		liave	
Start-up Overshoot		Ambient tempera	ature	-	500			-	500
(mV pk)	V _{in} =0 to 28V,	high and low ten	nperature	-	750	_	500	-	750
	Io ₁ =Io ₂ =full load	Ambient tempera	ature	-	500	_	300	-	500
	high and low temp		nperature	-	750			-	750
Start-up Delay (ms)	V _{in} =0 to28V, Io	₁ =Io ₂ =full load		-	25	-	30	-	25

Table 6 Electrical Characteristics (to be continued)

Capacitive Load (μF)	$T_A = 25^{\circ} \text{ C}$, No e	ffect on DC performance	-	10	-	100	-	10		
Switching Frequency(kHz)	I _o =full load		400	600	400	600	400	600		
	50% load to full load or full	Ambient temperature	-150	150	-450	450	-450	450		
Step Load Response	load to 50% load,	high and low temperature	-500	500	-1400	1400	-1400	1400		
Transient(mV pK)	Each Vout has	Ambient temperature	-150	150	-450	450	-450	450		
	balanced load	high and low temperature	-500	500	-1400	1400	-1400	1400		
Step Load Response Recovery (µs)	50% load to full load or full load to 50% load, Each V _{out} has	Ambient temperature	-	100	-	500	-	500		
Recovery (μs)		load to 50% load, Each V _{out} has	high and low temperature	-	1000	-	4500	-	4500	
			Each Vout has	Each Vout has	Each Vout has	Ambient temperature	-	100	-	500
	balanced load	high and low temperature	-	1000	-	4500	-	4500		
Step Line Response Transient (mV pK)	V16 40V L	- Io - full load	-750	750	-500	500	-1500	1500		
Transient (mv pk)	V _{in} -10~40 V, 10	$V_{in}=16\sim40V$, $Io_1=Io_2=$ full load		500		300	-1000	1000		
Step Line Response Recovery (µs)	V _{in} =16~40V, Io	-	1200	-	750	-	1200			
Load Fault Short Circuit recovery (ms)	Io ₁ = Io ₂ short	Io ₁ = Io ₂ short circuit to full load			-	2000				
			-	50	-	30	-	50		

Notes to Specifications:

- ①The step load transition time should be greater than or equal to $10\mu s$.
- ②The step line transition time should be greater than or equal to $10\mu s.$

4 TYPICAL PERFORMANCE CURVES of Mil Grade DC DC converters- HSA28 Series

(1) Single output model HSA28S5

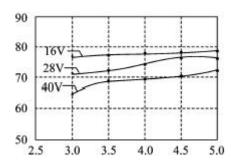


Figure 2 Efficiency (OUTPUT POWER)

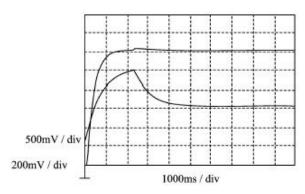


Figure 3 STEP LINE RESPONSE

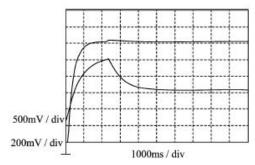


Figure 4 STEP LOAD RESPONSE

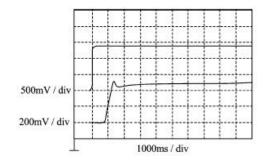


Figure 5 Start-up overshoot/ delay

(2) Dual output model HSA28D5

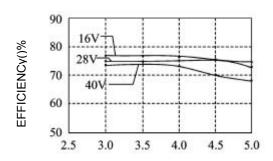


Figure 6 Efficiency (OUTPUT POWER)

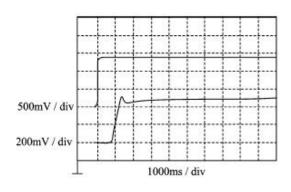


Figure 7 Input STEP LINE RESPONSE

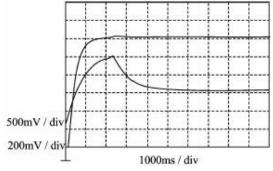


Figure 8 STEP LOAD RESPONSE

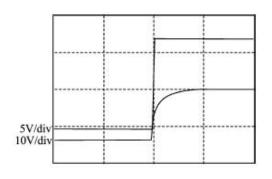


Figure 9 Start-up overshoot/delay

5 TYPICAL MTBF CURVES of Mil Grade DC DC converters- HSA28 Series

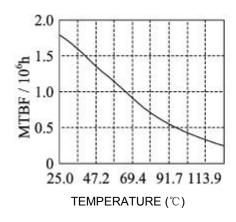


Figure 10 Model HSA 28 S15

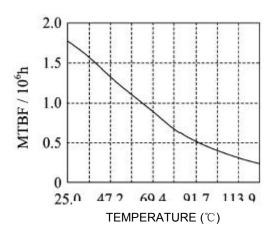


Figure 11 Model HSA28D15

6 TYPICAL CONNECTION DIAGRAM of Mil Grade DC DC converters- HSA28 Series

8 7 6

Figure 12 Application Connection

Diagram for Single output models

 R_L

0

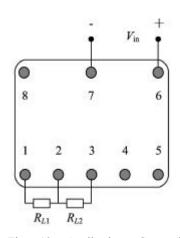


Figure 13 Application Connection Diagram for Dual output models

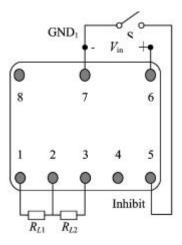


Figure 14 Inhibit Drive connection Diagram for Single Output Models

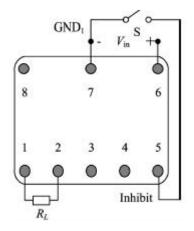


Figure 15 Inhibit Drive connection Diagram for Dual Output Models

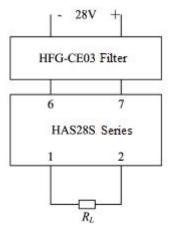


Figure 16 Single Output Converter with EMI Filter Connection Diagram

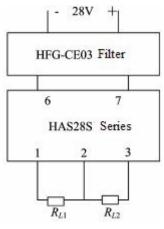
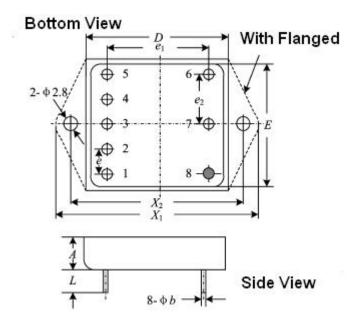



Figure17 Dual Output Converter with EMI Filter connection Diagram

- 9 -

7 PACKAGE SPECIFICATIONS of Mil Grade DC DC converters- HSA28 Series

Case	Units /mm					
Dimensions _	Min	Тур	Max			
A	_	1977	6.86			
Φb	0.51	0.64	0.77			
D/E		387	27.31			
e		5.08	-			
e_{-1}		20.32	-			
e_2	87	10.16	===			
L	4.95	5.27	5.59			
X_1			39.0			
X_2	8-	9 -2 1	33.60			

Figure 18 Package Outline

Notes:

- ① Character "A" is 8.6 mm for HSA15S5, HSA28S3R3 and HSA28S2R5.
- ② Character "A" is 10 mm for HSA28S5 and HSA28S2R5-A

Table 6 Case Materials

Case Model	Header	Header Plating	Cover	Cover Plating	Pin	Pin Plating	Sealing Style	Notes
UPP2727-08f	Cold Rolled Steel	Nickel/Gold	Iron/Nickel Alloy	Nickel/Gold	Copper Compound	Nickel/Gold	Compression Seal	Nickel plating is for pin8.

Notes:Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

8 PIN DESIGNATION of Mil Grade DC DC converters- HSA28 Series

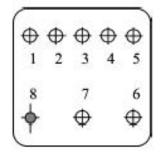


Figure 19 Pin Out Bottom View

Pin	Single Output	Dual Output		
1	Positive Output	Positive Output		
2	Output Common	Output Common		
3	No connection	Negative Output		
4	No connection	No connection		
5	Inhibit	Inhibit		
6	Positive Input	Positive Input		
7	Input Common	Input Common		
8	Case Ground	Case Ground		

9 ORDERING INFORMATION of Mil Grade DC DC converters- HSA28 Series

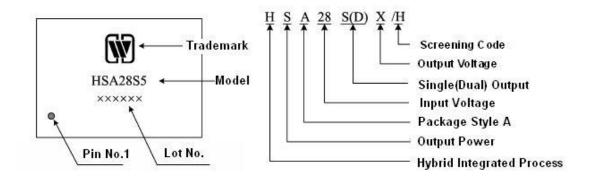


Figure 20 Part Numbering Key

Application Notes:

- The correct power supply is to be ensured that may not cause permanent damage to the device.
- ➤ When the electrical performance is tested, the testing position should be pin of the device.
- ➤ When the device is mounted, the bottom of the device should be closely attached to the circuit board. So as to avoid the damage of the pins, the shockproof should be increased when it is required
- The pin should not be bending to avoid the glass insulator breaking and case leakage.
- ➤ When the case temperature is at 105°C, it is suggested that thickness of the thermal sinking plate(copper material) is 3mm, the dimension is greater than 100mm×100mm.
- ➤ When the case temperature is at 125°C, it is suggested that thickness of the thermal sinking plate is 3mm, the dimension is greater than 120mm×80mm.

To request a quotation or place orders ,please contact our sales representative or the ECRIM Sales

Department at: Sales Phone: (086) 0551-3667943 Sales Fax: (086) 0551-3638101

E-mail: sales@ecrim.cn