High-reliability hybrid integrated DC/DC converter (HSG28 series)

1. Features (see Fig. 1 for outside view, and Table 1 for 2. Scope of application models) Range of input DC voltage: 18~36V, nominal input DC voltage 28V Output power: 5W Operating temperature (T_c) : -55~+105 Input, output and case are isolated mutually Insulation resistance: $R \ge 100M\Omega$ (DC 500V) With the function of inhibit and short-circuit protection Power density: 28W/in³ Function of pins: same as that of like products of Interpoint Company

Totally sealed metal case

High-reliability electronic system for aviation and aerospace, etc.

Size: Style G: $34 \times 27.34 \times 9.00$ mm³ Style R: $53.08 \times 28.19 \times 10.00$ mm³(without fixed end) $73.80 \times 28.19 \times 10.00$ mm³ (with fixed end) Weight: Style G: 27g; Style R: 43g HSW28M15: 46g Fig. 1 Outside view of HSG28 series

single	style	dual	style	triple	style	multi-output	style
HSG28S12	G	HSG28D5N	G	HSG28T12	G	HSW28M15	W
HSG28S3R5	G	HSG28D12	G	HSG28T15	G		
HSG28S5	G	HSG28D15	G				
HSG28S18	G	HSG28D15N	G				
HSG28S20	G						
HSG28S55	G						
HSR28S5F-A	R						

Table 1 Product models

3. Description

HSG28 series high-reliability DC/DC converter can work at 28V input voltage, and the output power is 5W. The case of this series adopts totally sealed metal structure.

HSG28 series products adopt the push-pull topology and the full-wave rectification technology, the constant switching frequency is 200~300kHz.

Both the design and manufacture of HSG28 series products satisfy the requirements of GJB2438A-2002 "General specifications for hybrid integration circuit". Test method and procedure of electric circuit shall execute GJB548A-96 "Test method and procedure for microelectronic devices".

Electrical perior mance (Table 270)	
Table 2 Rated	l conditions and recommended operating conditions
	Input voltage: 18~36V
	Power dissipation: 5W
Absolute max. rated value	Lead soldering temperature: 300 /(10s)
	Storage temperature range: -55~125
	Logical low voltage: $\leq 0.2 V$
Recommended operating	Range of input DC voltage: 18~36V
conditions	Ambient temperature (T_A): - 55~ + 85

4. Electrical performance (Table 2~6)

	Conditions (unless otherwise specified) -	HSG28S5 HSG28S18				HSG28S55		HSG28S12	
Parameter	$V_{\rm in} = 28V \pm 5\%$,	•			e military stan Q/HW30275-99		80005-97	Q/HW20304-2001	
	$-55^{\circ}C \leqslant T_A \leqslant +85^{\circ}C$	min.	max	min.	max	min.	max	min.	max
input voltage/V	_	22	32	22	34	22	34	12	18
output voltage/V	—	4.8	5.2	17.7	18.3	54.0	56.0	11.75	12.25
output power/W	—	—	3.5	—	4	—	1.4	—	5
output current/A	—	0	0.7	0	0.2	0	0.03	0	0.4
output ripple voltage/mV	full load, 100MHz, $T_A = 25 ^{\circ} \text{C}$	—	80	—	80	—	80	—	30
efficiency/%	full load, $T_A = 25 ^{\circ}\mathrm{C}$	65	—	65	—	50	—	75	—
	o-load to full load, $T_A = 25^{\circ}C$	—	1	—	1	—	1	—	0.5
voltage regulation/%	full load, $T_A = 25^{\circ}C$	—	0.1	—	0.5	—	0.5	—	0.5
	A = 25°C , apply 500V DC between any two of input, output and cas		-	100	-	100	-	10	-
inhibit function	—	—	YES	—	YES	—	YES	—	—
protection function	—	—	YES	—	—	—	YES	YES	—

Table 3 Electrical characteristics (single-output)

Table 3 (continued)

	Conditions (unless otherwise specified)	HSG	28S20	HSR28	S5F-A	HSG2	28S3R5
Parameter	$V_{\rm in} = 28 \text{V} \pm 5\%$,	O/HW	enterp 30020-97		se military standard: Q/HW30326-2000 Q/HW		
	$-55^{\circ}C \leqslant T_A \leqslant +85^{\circ}C$	min.	max.	min.	max.	min.	0436-2003 max.
input voltage/V	_	22	34	18	40	23	33
output voltage/V	—	19.70	20.30	4.93	5.07	3.35	3.65
output power/W	-	—	2	—	5	—	3.5
output current/A	—	0	0.1	0	1	—	1
output ripple voltage/mV	full load, 100MHz, $T_A = 25^{\circ}C$	—	100	—	60	—	80
efficiency/%	full load, $T_A = 25 ^{\circ} \text{C}$	60	—	76	—	68	—
load regulation/% n	no-load to full load, $T_A = 25^{\circ}C$	—	1	—	50mV	-	100mV
voltage regulation/%	full load, $T_A = 25^{\circ}C$	—	0.5	-	50mV	-	50mV
insulating resistance/M Ω_{2}^{T}	$\Gamma_A = 25$ °C apply 500V DC betwee any two of input, output and case	n e 100	—	100	-	-	—
inhibit function	-	YES	-	-	-	-	YES
protection function	—	—	—	—	-	—	YES

Table 4 Electrical Characteristics (dual-output)

	conditions (unless otherwise specified)	HSG	28D12		28D15		28D15N		28D5N
Parameter	$V_{\rm in} = 28V \pm 5\%$,	Q/HW2		erprise Q/HW3	milit 0004-97	•	standa 20087—94		0266-99
	$-55^{\circ}C \leqslant T_A \leqslant +85^{\circ}C$	min.	max.	min.	max.	min.	max.	min.	max.
input voltage/V	_	22	32	18	40	22	32	20	36
outnut voltoco/N/	_	11.7	+12.3	+14.80)+15.20	+14.8	5+15.15	+4.75	+5.25
output voltage/V		-12.3	-11.7	-15.20	-14.80	-15.30	0 - 14.70	-5.25	-4.75
output power/W	-	—	4	—	4	—	4	—	4
output current/A		_	± 0.175	_	± 0.133		0.20	0	0.70
output current/A	_	_	± 0.175	, –	± 0.135		-0.08	-0.05	0
output ripple voltage/m	V full load, 100MHz, $T_A = 25^{\circ}C$	-	80	-	80	—	80	—	80
efficiency/%	full load, $T_A = 25 ^{\circ} \text{C}$	65	—	72	—	65	—	70	—
load regulation/%	no-load to full load, $T_A = 25^{\circ}C$	0.1	—	—	0.8	0.01	-	—	1.0
voltage regulation/%		0.1	-	-	0.2	0.01	—	-	0.5
insulating resistance/M Ω	$T_A = 25$ °C apply 500V DC between any two of input, output and case	1 100	-	100	-	100	-	100	-
inhibit function	—	YES	—	—	YES	—	YES	YES	-/
protection function	_	_	YES	_	_	—	_	_	-

	conditions (unless otherwise specifie	ed)	HSG	28T15	HSG	28T12
	$V_{\rm in} = 28V \pm 5\%$,			enterprise milit	tary standard:	
Parameter	$-55^{\circ}C \leqslant T_A \leqslant +85^{\circ}C$ (HS	G28T15)	Q/HW30	576-2004	Q/HW20504-2005	
	$-55^{\circ}C \leq T_c \leq +125^{\circ}C$ (HS	G28T12)				
		min.	max.	min.	max.	
input voltage/V	_		22	30	20	32
		V_{outl}	14.8	15. 2	11.8	12. 2
output voltage/V	_	V out2	14.8	15.2	11.8	12. 2
		V out3	14.8	15. 2	11.8	12. 2
output power/W	_		-	5	-	5
output current/A	-		_	0.08	-	0.1
output ripple voltage/mV	full load, 100MHz, $T_A = 2$	5°C	-	100	-	100
efficiency/%	full load, $T_A = 25^{\circ}C$		65	-	65	-
load regulation/mV	no-load to full load, $T_A = 25$	°C	-	100	-	50
voltage regulation/mV	full load, $T_A = 25^{\circ}C$		-	100	-	100
insulating resistance/M Ω	$T_A = 25^{\circ}$ C, apply 500VDC vo input and output or between		m 100	_	100	_
inhibit function/V T_A	(except pin 2) and case =25°C, in the range of inhibition the circuit output is s	t voltage, hut down	_	0.2	_	0.2
protection function	_			YES	_	YES

Table 5 Electrical characteristics (triple-output)

Table 6 Electrical characteristics (multi-output)

	conditions (unless otherwise specified)	HSW28M15			
Parameter	$V_{in}=28V\pm5\%$ e	nterprise military standard: Q	/HW30413-2004		
	$-55^{\circ}C \leqslant T_A \leqslant +85^{\circ}C$	min.	max.		
input voltage/V	-	24	32		
output voltage/V	-	14. 9	15.1		
output power/W	-	-	2.7		
output current/A	-	-	0.03		
output ripple voltage/mV	full load, 20MHz, $T_A = 25^{\circ}C$	-	50		
efficiency/%	full load, $T_A = 25^{\circ}C$	30	-		
load regulation/%	no-load to full load, $T_A = 25^{\circ}C$	-	0.2		
voltage regulation/%	full load, $T_A = 25^{\circ}C$	-	0.2		
insulating resistance/M Ω	$T_A = 25$ °C apply 500VDC voltage bet any two of input, output and case	100	-		

5 Circuit block diagram (Fig.2)

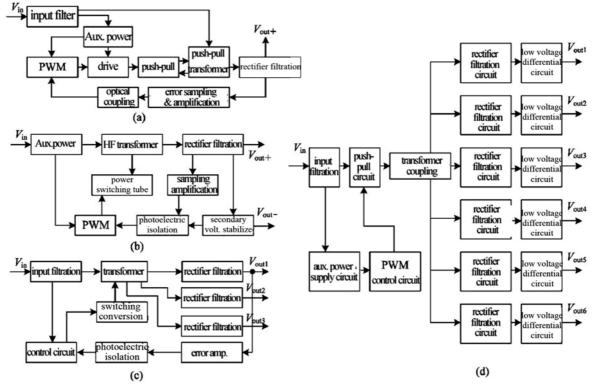


Fig. 2 Circuit block diagram for DC/DC converter (a) single-output (b) dual-output (c) triple-output (d) multi-output

6 MTBF Curve (Fig.3-1~4)

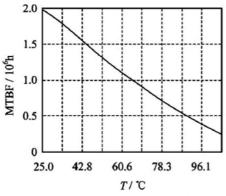
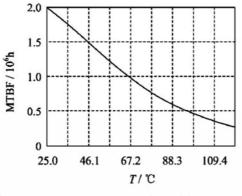
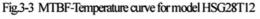




Fig.3-1 MTBF-Temperature curve for model HSG28S5

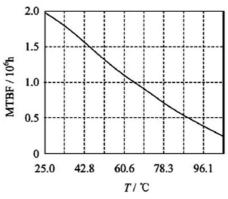
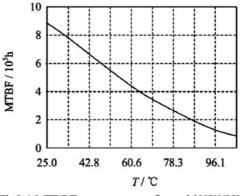
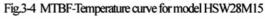




Fig.3-2 MTBF-Temperature curve for model HSG28D15

(as per GJB/Z299B-98, envisaged good ground condition)

7 Pin designation (Fig.4, Table 7~9)

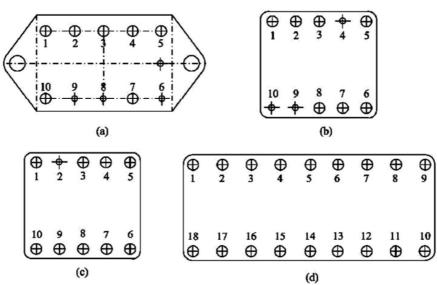


Fig. 4 Pin designation (bottom view) (a) Style R, (b) Style G, (c) Style G (HSG28T12, HSG28T15), (d) HSW28M15

Gundiana	Pinout number								
functions	HSG28S5	HSG28S18	HSG28S55	HSG15S12	HSG28S20	HSR28S5F-A	HSG28S3R5		
positive input	3	3	3	3	3	1	3		
positive output	6	6	6	5	6	5	5		
input ground	5	5	5	1	5	10	6		
output ground	7	7	8	4	8	4	7		
adjustment*	_	_	-	_	_	3	_		
inhibit	2	2	2	_	2	2	2		
case ground	4,9,10	4,9,10	4,9,10	_	4,9,10	6,7,8	4,9,10		
no connection	1,8	1,8	1,7	2,6,7,8	1,7	9	1,8		

Table 7 Pin designation

Note: *adjustment pinout adjusts the change of output voltage through external resistance between adjustment pin and output (positive and ground)

	Table 8 Pin designation	ation	
 functions		pinout number	
lunctions	HSG28D5N	HSG28D15	HSG28D15N
 positive input	3	3	3
input ground	5	5	5
positive output	6	6	6
negative output	8	8	8
output ground	7	7	7
inhibit	2	2	2
case ground	4,9,10	4,9,10	4,9,10
no connection	1	1	1

с. <i>с</i> .		pinout n	umber	
functions —	HSG28D12	HSG28T12	HSG28T15	HSW28M15
positive input	3	3	3	18
input ground	5	1	1	1
positve output	6	5(output 1), 6(output 2), 8(output 3)	5(output 1), 6(output 2), 8(output 3)	4,6,8,10,12,14
negative output	8	_	_	_
output ground	7	4(output 1), 7(output 2), 9(output 3)	4(output 1), 7(output 2), 9(output 3)	5,7,9,11,13,15
inhibit	2	10	10	_
case ground	4,9,10	2	2	_
no connection	1	Note: *adjustment pinout	_	2,3,16,17

Table 9 Pin designation

Note: *adjustment pinout adjusts the change of output voltage through external resistance between adjustment pin and output (positive and ground)

8 Connecting diagram for typical application (Fig.5~7)

(1) connecting diagram for operation

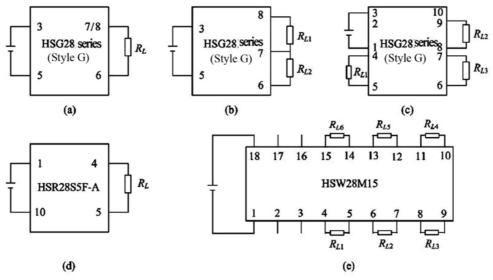


Fig. 5 Connecting diagram for operation (a) Single-output (b) Dual-output (c) Triple -output (d) Type R (e) HSW28M15

(2) connection diagram for inhibit terminal

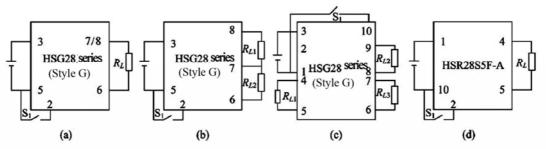
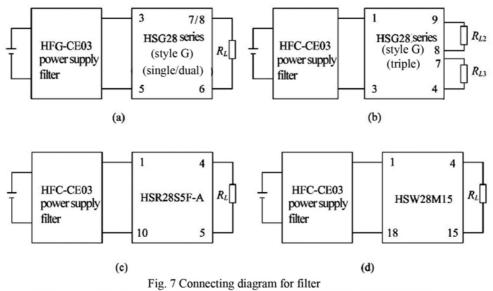



Fig. 6 Connection diagram for inhibit terminal (a) single-output (b) dual -output (c) triple -output (d) Style R

(3) Connecting diagram for EMI filter

(a) Single and dual output model (b) Triple output model (c) Style R (d) Model HSW28M15

9 Package specifications (unit: mm) (Fig.10~13, Table 10)

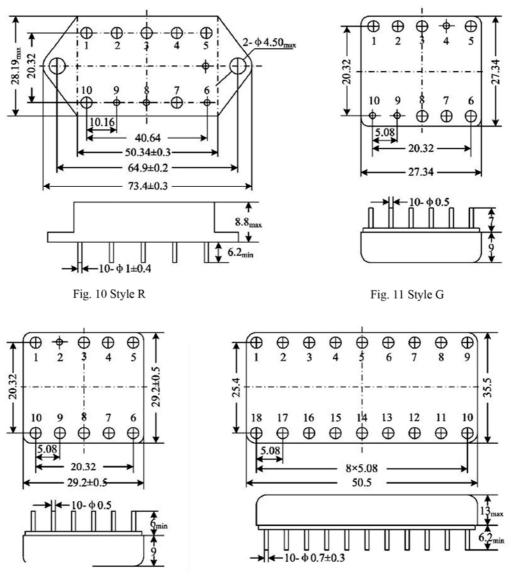


Fig. 12 Style G (HSG28T12/HSG28T15)

Fig. 13 Model SW28M15

			Table 10 Case 1	naterials	3			
case model	header	neader plating	cover	cover plating	pin material	pin plating	sealing style	notes
UPP2727-10 (style G)	cold rolled steel (10 #)	Ni	iron/nickel alloy (4J42)	Ni	iron/nickel allo (4J50)	^y Ni/Au	compression seal	Ĺ
UPP5328—10d (style R)	cold rolled steel (10#)	Ni	iron/nickel alloy (4J42)	Ni	copper compound	Ni/Au	compression seal	ground pin plating is Ni
PP4833-18 (HSW28M15)	cold rolled steel (08AL)	Ni/Au	cold rolled steel (08AL)	Ni/Sn	iron/nickel allo (4J50)	y Ni/Au	compression seal	1

Note: the temperature of solder pins within 10s shall not exceed 300°C

10 Part numbering key (Fig.14)

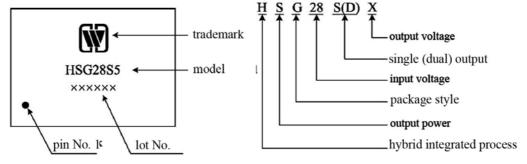


Fig. 14 Part numbering key

Application notes:

- Upon power-on, be sure to correctly connect the positive and negative pole of the power supply to ensure * correct power supply for fear of burning.
- When carrying out the electrical performance test, the test position shall be the pinouts of the product. ★
- Upon assembly, the bottom of the product shall fit to the circuit board closely so as to avoid damage of pins, * and shockproof provision shall be added, if necessary.
- Do not bend the pinouts to prevent the insulator from breaking, which affects the sealing property. ★
- ★ When the user places an order for the product, detailed electric performance indexes shall refer to the relevant enterprise standard.