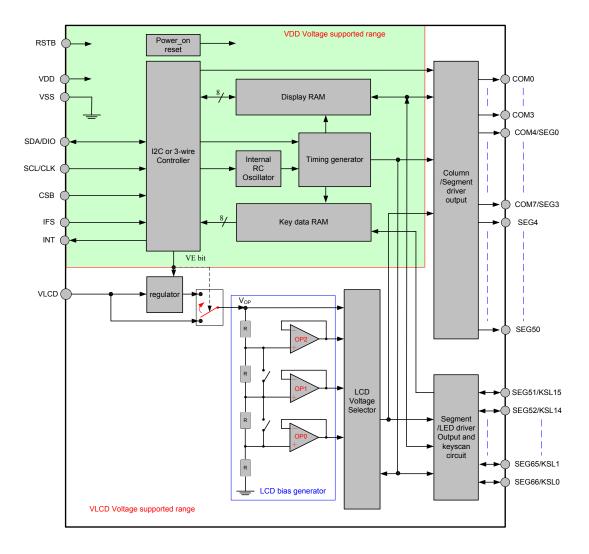


# HT16LK24 RAM Mapping 67×4/63×8 LCD Driver with Key Scan

## Feature

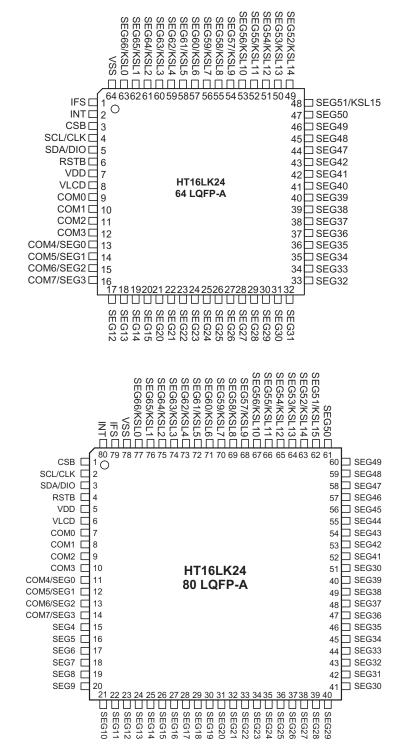
- Logic Operating Voltage:  $1.8V \sim 5.5V$
- LCD Operating Voltage ( $V_{LCD}$ ):2.4V ~ 6.0V
- Internal 32kHz RC oscillator
- Duty:1/1 (static), 1/2, 1/3, 1/4 or 1/8; Bias: 1/1 (static), 1/2, 1/3 or 1/4
- Internal LCD bias generation with voltage-follower buffers
- External  $V_{LCD}$  pin to supply LCD operating voltage
- Integrated regulator to adjust LCD operating voltage: 3.0V, 3.2V, 3.3V, 3.4V, 4.4V, 4.5V, 4.6V, 5.0V
- Four Selectable LCD frame frequencies: 64Hz, 85.3Hz, 128Hz or 170.6Hz
- Integrated LED driver up to 12 channels
- Support key scan function with up to 4×12 key matrix
- Support up to 128 levels PWM luminance control
- Support I<sup>2</sup>C-bus or SPI 3-wire serial interface
- Up to 63×8 bits RAM for display data storage
- Display patterns:
  - 1/1 duty: up to 67×1 patterns
  - -1/2 duty: up to 67×2 patterns
  - -1/3 duty: up to 67×3 patterns
  - 1/4 duty: up to 67×4 patterns
  - 1/8 duty: up to 63×8 patterns
- Support three driver output modes: Segment/COM, LED or Key Scan
- Versatile blinking modes: off, 0.5Hz, 1Hz, 2Hz
- R/W address auto increment
- Support Power Save Mode for low power consumption
- · Manufactured in silicon gate CMOS process
- Package Type: 64LQFP and 80LQFP packages

# Applications


- Leisure products
- Games
- Telephone display
- · Audio Combo display
- Video Player display
- Kitchen Appliance display
- Measurement equipment display
- · Household appliance
- · Consumer electronics

# **General Description**

The HT16LK24 device is a memory mapping and multi-function LCD controller driver. The Display segments of the device may be 67 patterns for 1/1 duty display, 134 patterns for 1/2 duty display, 201 patterns for 1/3 duty display, 268 patterns for 1/4 duty display or 504 patterns for 1/8 duty display. It can also support LED drive outputs on certain Segment pins with up to 128 levels luminance PWM control. The key scan circuitry which can be organized into a  $4 \times 12$ matrix is also integrated in this device. The software configuration feature of the HT16LK24 device makes it suitable for multiple LCD applications including LCD modules and display subsystems. The HT16LK24 device communicates with most microprocessors/ microcontrollers via a two-wire bidirectional I<sup>2</sup>C-bus or a three-wire SPI interface.



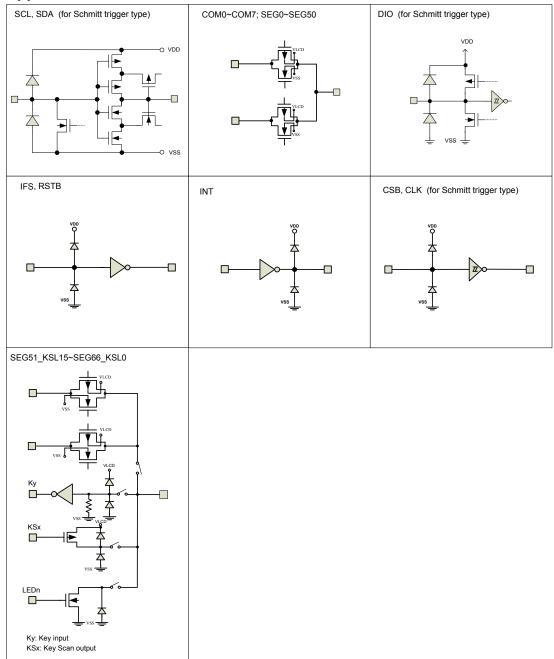

# **Block Diagram**





# **Pin Assignment**






# **Pin Description**

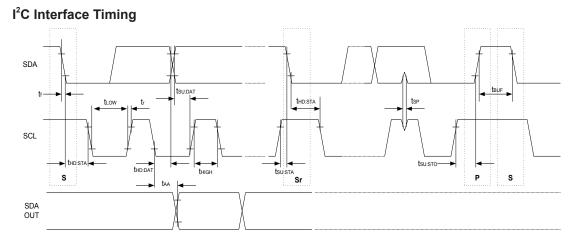
| Pin Name                   | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDA/DIO                    | I/O  | Serial Data Input/Output pin<br>Serial Data (SDA) Input/Output for 2-wire I <sup>2</sup> C interface is an NMOS open drain<br>structure.<br>Serial Data (DIO) Input/Output for 3-wire SPI interface is a CMOS input/output<br>structure.                                                                                                                                                                                                                                                                                                        |
| SCL/CLK                    | I    | Serial Clock Input pin<br>Serial Clock (SCL) for 2-wire I <sup>2</sup> C interface.<br>Serial Clock (CLK) for 3-wire SPI interface                                                                                                                                                                                                                                                                                                                                                                                                              |
| CSB                        | I    | SPI Chip Select pin<br>This pin is active low and only available for 3-wire SPI interface. When the $I^2C$<br>interface is used, this pin is not used and must be connected to VDD.                                                                                                                                                                                                                                                                                                                                                             |
| IFS                        | I    | Communication interface select pin<br>This pin is used to select the communication interface. When this pin is<br>connected to VDD, the device communicates with MCU or microprocessors<br>via a 2-wire I <sup>2</sup> C interface. When this pin is connected to VSS, the device<br>communicates with MCU or microprocessors using a 3-wire SPI interface.                                                                                                                                                                                     |
| INT                        | 0    | Interrupt signal output pin<br>After a power-on or reset condition occurs, the INT pin is in a high level. The INT<br>output polarity can be changed by configuring the POL bit in the key scan control<br>command via the I <sup>2</sup> C or SPI interface.                                                                                                                                                                                                                                                                                   |
| COM0~COM3                  | 0    | LCD Common outputs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| COM4/SEG0~<br>COM7/SEG3    | 0    | LCD Common/Segment multiplexed driver outputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SEG4~SEG50                 | 0    | LCD Segment outputs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SEG51/KSL15~<br>SEG66/KSL0 | 0    | LCD Segment / Key input / Key Scan output / LED output pins<br>These pins are LCD segment pins after a power on or reset condition. When<br>the KSLn pins are configured as other shared functional pins except segment<br>outputs, the LED outputs has higher priority than the Key Scan outputs followed<br>by the Key inputs. After the KSLn pin-shared functions are determined by<br>configuring the corresponding L, KX and KY fields in the shared-pin configuration<br>command, the rest pins then are used as the LCD segment outputs. |
| RSTB                       | I    | Reset input pin<br>This pin is active low and used to initialize all the internal registers and the<br>commands pin.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| VDD                        |      | Positive power supply.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VSS                        | —    | Negative power supply, ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VLCD                       | _    | LCD power supply pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

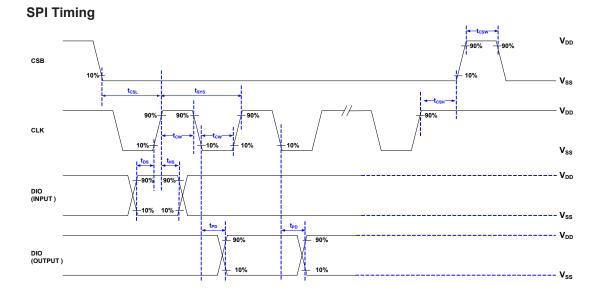


# **Approximate Internal Connections**



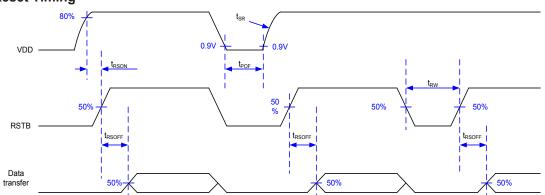



# **Absolute Maximum Ratings**


| Supply Voltage                | $V_{ss}$ -0.3V to $V_{ss}$ +6.6V   |
|-------------------------------|------------------------------------|
| Input Voltage                 | . $V_{SS}$ -0.3V to $V_{DD}$ +0.3V |
| Total LED Driver Output Curre | ent (Ta=25°C)132mA                 |

| Storage Temperature55°C to 150°C  | 2 |
|-----------------------------------|---|
| Operating Temperature40°C to 85°C | 2 |

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.


# **Timing Diagrams**







#### **Reset Timing**



- Note: 1. If the conditions of Reset timing are not satisfied in power ON/OFF sequence, the internal Power on Reset (POR) circuit will not operate normally.
  - 2. If the  $V_{DD}$  drops lower than the minimum operating voltage during operating, the conditions of Power on Reset timing must also be satisfied. That is the  $V_{DD}$  drop to 0.9V and keep at 0.9V for 10ms (min.) before rising to the normal operating voltage.
  - 3. Data transfers on the I<sup>2</sup>C-bus or SPI 3-wire serial bus should at least be delayed for 1ms after the poweron sequence to ensure that the reset operation is complete.

## **D.C. Characteristics**

 $V_{ss}$ = 0V,  $V_{DD}$ = 1.8V to 5.5V, Ta= -40°C to +85°C

| Symphol           | Parameter                    |                 | Test Condition                                                                                                                                                                                                           | Min.        | Turn | Max.               | Unit |
|-------------------|------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|--------------------|------|
| Symbol            | Parameter                    | V <sub>DD</sub> | Condition                                                                                                                                                                                                                | wiin.       | Тур. | max.               | Unit |
| V <sub>DD</sub>   | Operating Voltage            |                 | —                                                                                                                                                                                                                        | 1.8         | —    | 5.5                | V    |
| V <sub>LCD</sub>  | LCD Operating Voltage        |                 | —                                                                                                                                                                                                                        | 2.4         | —    | 6                  | V    |
| V <sub>IH</sub>   | Input High Voltage           |                 | CSB, CLK, DIO, RSTB                                                                                                                                                                                                      | $0.7V_{DD}$ | —    | V <sub>DD</sub>    | V    |
| V <sub>IL</sub>   | Input Low Voltage            |                 | CSB, CLK, DIO, RSTB                                                                                                                                                                                                      | 0           | —    | $0.3V_{\text{DD}}$ | V    |
| I <sub>IL</sub>   | Input Leakage Current        |                 | $V_{IN}=V_{SS}$ or $V_{DD}$                                                                                                                                                                                              | -1          | —    | 1                  | μA   |
|                   |                              | 2.0V            |                                                                                                                                                                                                                          | -2          | —    | _                  | mA   |
| I <sub>OH</sub>   | OH High Level Output Current | 3.3V            | $V_{OH}$ =0.9 $V_{DD}$ for DIO pin                                                                                                                                                                                       | -6          | _    | —                  | mA   |
|                   | 5.0V                         |                 | -12                                                                                                                                                                                                                      | _           | _    | mA                 |      |
|                   |                              |                 |                                                                                                                                                                                                                          | 3           | _    | _                  | mA   |
| I <sub>OL</sub>   | Low Level Output Current     | 3.3V            | $V_{OL}$ =0.4V for SDA/DIO pin                                                                                                                                                                                           | 6           | —    | _                  | mA   |
|                   |                              | 5.0V            |                                                                                                                                                                                                                          | 9           | —    | _                  | mA   |
|                   |                              | 2.0V            | No load, f <sub>LCD</sub> =64Hz, 1/3bias,<br>LCD display on, Internal system                                                                                                                                             | _           | 1    | 3                  | μA   |
| I <sub>DD</sub>   | Operating Current            | 3.3V            | oscillator on, VLCD pin input voltage =5V,                                                                                                                                                                               | _           | 2    | 6                  | μA   |
|                   |                              | 5.0V            | Disable integrated regulator,<br>LED and Key scan                                                                                                                                                                        | _           | 4    | 12                 | μA   |
| I <sub>LCD1</sub> | Operating Current            |                 | No load, f <sub>LCD</sub> =64Hz, 1/3bias,<br>LCD display on, Internal system<br>oscillator on, current mode is set to low<br>current 2, VLCD pin input voltage =5V.<br>Disable integrated regulator,<br>LED and Key scan |             | 10   | 20                 | μA   |



| Sumhal                            | Symbol Baramotor         |                                                                               | Test Condition                                                                                                                                                                                                              | Min  | Turn | Max  | Unit |
|-----------------------------------|--------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| Symbol                            | Parameter                | V <sub>DD</sub>                                                               | Condition                                                                                                                                                                                                                   | Min. | Тур. | Max. | Unit |
| I <sub>LCD2</sub>                 | Operating Current        | _                                                                             | No load, $f_{LCD}$ =64Hz, 1/3bias,<br>LCD display on, Internal system<br>oscillator on, current mode is set to low<br>current 2, VLCD pin input voltage =5.5V,<br>Regulator output is set to 5V, disable<br>keyscan and LED | _    | 25   | 40   | μA   |
| I <sub>STB1</sub>                 | Standby Current for VDD  | 3.3V                                                                          | No load, 1/3bias, LCD display off,<br>Internal system oscillator off, VLCD pin                                                                                                                                              |      |      | 1    | μA   |
| -3161                             |                          | 5.0V                                                                          | input voltage =5V, Disable integrated regulator, LED and Key scan                                                                                                                                                           | _    | _    | 2    | μA   |
| I <sub>STB2</sub>                 | Standby Current for VLCD | 3.3V                                                                          | No load, 1/3bias, LCD display off,<br>Internal system oscillator off, VLCD pin                                                                                                                                              |      | _    | 1    | μA   |
| ISTB2                             |                          | 5.0V                                                                          | input voltage =5V, Disable integrated regulator, LED and Key scan                                                                                                                                                           | _    | _    | 2    | μA   |
| V                                 |                          |                                                                               | VLCD pin input voltage =5.5V,<br>Regulator output is set to 4.5V,<br>Ta =-40~85°C                                                                                                                                           | 4.35 | 4.5  | 4.65 | V    |
| V <sub>reg</sub> Regulator Output | _                        | VLCD pin input voltage =5.5V,<br>Regulator output is set to 4.5V,<br>Ta =25°C | 4.42                                                                                                                                                                                                                        | 4.5  | 4.58 | v    |      |
|                                   | LCD Common Sink          |                                                                               | V <sub>LCD</sub> =3.3V, V <sub>OL</sub> =0.33V,<br>Disable integrated regulator                                                                                                                                             | 250  | 400  |      | μA   |
| I <sub>OL1</sub>                  | Current                  |                                                                               | $V_{LCD}$ =5V, $V_{OL}$ =0.5V<br>Disable integrated regulator                                                                                                                                                               | 500  | 800  | _    | μA   |
|                                   | LCD Common Source        |                                                                               | V <sub>LCD</sub> =3.3V, V <sub>OH</sub> =2.97V,<br>Disable integrated regulator                                                                                                                                             | -140 | -230 | _    | μA   |
| I <sub>OH1</sub>                  | Current                  | _                                                                             | $V_{LCD}$ =5V, $V_{OH}$ =4.5V,<br>Disable integrated regulator                                                                                                                                                              | -300 | -500 |      | μA   |
|                                   | LCD Segment Sink         |                                                                               | V <sub>LCD</sub> =3.3V, V <sub>OL</sub> =0.33V,<br>Disable integrated regulator                                                                                                                                             | 250  | 400  | _    | μA   |
| I <sub>OL2</sub>                  | Current                  | _                                                                             | $V_{LCD}$ =5V, $V_{OL}$ =0.5V,<br>Disable integrated regulator                                                                                                                                                              | 500  | 800  | _    | μA   |
|                                   | LCD Segment Source       |                                                                               | $V_{LCD}$ =3.3V, $V_{OH}$ =2.97V,<br>Disable integrated regulator                                                                                                                                                           | -140 | -230 | _    | μA   |
| I <sub>OH2</sub>                  | Current                  | —                                                                             | $V_{LCD}$ =5V, $V_{OH}$ =4.5V,<br>Disable integrated regulator                                                                                                                                                              | -300 | -500 | _    | μA   |
|                                   |                          |                                                                               | V <sub>LCD</sub> =3.3V, V <sub>OL</sub> = 1V,                                                                                                                                                                               | 10   | _    | _    | mA   |
| I <sub>OL3</sub>                  | LED Sink Current         |                                                                               | V <sub>LCD</sub> =5.0V, V <sub>OL</sub> = 2V,                                                                                                                                                                               | 20   | _    | _    | mA   |
| I <sub>OH3</sub>                  | Key Scan Output Source   | _                                                                             | V <sub>LCD</sub> =3.3V, V <sub>OL</sub> = 1V,                                                                                                                                                                               | -2.5 |      |      | mA   |
| ·OH3                              | Current                  |                                                                               | V <sub>LCD</sub> =5.0V, V <sub>OL</sub> = 2V,                                                                                                                                                                               | -5   |      |      | mA   |
| R <sub>PL</sub>                   | Input Pull-low Resistor  | —                                                                             | Key0~Key15 are pressed, Disable<br>regulator                                                                                                                                                                                | 220  | _    | _    | ΚΩ   |

Note: 1. Please use the integrated regulator when the Regulator output voltage is less than  $(V_{LCD} - 0.5V)$ .

2. If the 12 LED outputs are all turned on at the same time, the total current consumption of the LED drivers can not be greater than 120mA.



# A.C. Characteristics

Ta= -40°C to +85°C

| Symbol                       | Parameter            |                 | Test Condition            |                            | Min.  | Тур.  | Max.  | Unit |  |
|------------------------------|----------------------|-----------------|---------------------------|----------------------------|-------|-------|-------|------|--|
| Symbol                       | Parameter            | $V_{\text{DD}}$ |                           | Condition                  | win.  | тур.  | wax.  | Unit |  |
|                              |                      |                 |                           | Frame frequency = 68.3Hz   | 61    | 68.3  | 75.1  |      |  |
| £                            | LCD Frame Frequency  | 3.3V            | Ta=25°C                   | Frame frequency = 91Hz     | 81.5  | 91    | 100.2 | Hz   |  |
| f <sub>LCD1</sub>            | (1/3 duty)           | 3.3V            | 14-25 0                   | Frame frequency = 136.5Hz  | 122.5 | 136.5 | 150.2 | пг   |  |
|                              |                      |                 |                           | Frame frequency = 182Hz    | 164   | 182   | 200.3 |      |  |
|                              |                      |                 |                           | Frame frequency = 68.3Hz   | 54.5  | 68.3  | 88.6  |      |  |
| £                            | LCD Frame Frequency  | 2.5V~           | Ta=-40°C                  | Frame frequency = 91Hz     | 72.0  | 91    | 118.5 | 11-  |  |
| f <sub>LCD2</sub> (1/3 duty) | 5.5V                 | ~ 85°C          | Frame frequency = 136.5Hz | 109.2                      | 136.5 | 177.1 | Hz    |      |  |
|                              |                      |                 |                           | Frame frequency = 182Hz    | 145   | 182   | 237   |      |  |
|                              |                      |                 |                           | Frame frequency = 68.3Hz   | 48    | _     | 68.3  |      |  |
| £                            | LCD Frame Frequency  | 1.8V~           | Ta=-40°C                  | Frame frequency = 91Hz     | 62.5  | _     | 91    |      |  |
| f <sub>LCD3</sub>            | (1/3 duty)           | 2.5V            | ~ 85°C                    | Frame frequency = 136.5Hz  | 95.5  | _     | 136.5 | Hz   |  |
|                              |                      |                 |                           | Frame frequency = 182Hz    | 125.5 | _     | 182   |      |  |
|                              |                      |                 |                           | Frame frequency = 64Hz     | 57.6  | 64    | 70.4  |      |  |
| e.                           | LCD Frame Frequency  | 0.01/           | T- 05%0                   | Frame frequency = 85.3Hz   | 76    | 85.3  | 94    |      |  |
|                              | (1/4 duty)           | 3.3V            | Ta=25°C                   | Frame frequency = 128Hz    | 115.2 | 128   | 140.8 | Hz   |  |
|                              |                      |                 |                           | Frame frequency = 170.6Hz  | 152   | 170.6 | 188   |      |  |
|                              |                      |                 |                           | Frame frequency = 64Hz     | 51.2  | 64    | 83    | Hz   |  |
| $f_{LCD5}$                   | LCD Frame Frequency  | 2.5V~           | Ta=-40°C                  | Frame frequency = 85.3Hz   | 68    | 85.3  | 111   |      |  |
|                              | (1/4 duty)           | 5.5V            | ~ 85°C                    | Frame frequency = 128Hz    | 102.4 | 128   | 166   |      |  |
|                              |                      |                 |                           | Frame frequency = 170.6Hz  | 136   | 170.6 | 222   |      |  |
|                              |                      |                 | - Ta=-40°C                | Frame frequency = 64Hz     | 45    | _     | 64    | Hz   |  |
|                              | LCD Frame Frequency  | 1.8V~           |                           | Frame frequency = 85.3Hz   | 59    | _     | 85.3  |      |  |
| $f_{LCD6}$                   | (1/4 duty)           | 2.5V            | ~ 85°C                    | Frame frequency = 128Hz    | 90    | _     | 128   |      |  |
|                              |                      |                 |                           | Frame frequency = 170.6Hz  | 118   | _     | 170.6 |      |  |
|                              |                      |                 |                           | PWM frequency = 85.3Hz     | 76    | 85.3  | 94    |      |  |
|                              | LED Output PWM       |                 |                           | PWM frequency = 128Hz      | 115.2 | 128   | 140.8 | Hz   |  |
| f <sub>PWM1</sub>            | Frequency (1/4 duty) | 3.3V            | Ta=25°C                   | PWM frequency = 170.6Hz    | 152   | 170.6 | 188   |      |  |
|                              |                      |                 |                           | PWM frequency = 256Hz      | 230.4 | 256   | 281.6 |      |  |
|                              |                      |                 |                           | PWM frequency = 85.3Hz     | 68    | 85.3  | 111   |      |  |
|                              | LED Output PWM       | 2.5V~           | Ta=-40°C                  | PWM frequency = 128Hz      | 102.4 | 128   | 166   |      |  |
| f <sub>PWM2</sub>            | Frequency (1/4 duty) | 5.5V            | ~ 85°C                    | PWM frequency = 170.6Hz    | 136   | 170.6 | 222   | Hz   |  |
|                              |                      |                 |                           | PWM frequency = 256Hz      | 204.8 | 256   | 332   |      |  |
|                              |                      |                 |                           | PWM frequency = 85.3Hz     | 59    | _     | 85.3  |      |  |
| _                            | LED Output PWM       | 1.8V~           | Ta=-40°C                  | PWM frequency = 128Hz      | 90    | _     | 128   |      |  |
| f <sub>PWM3</sub>            | Frequency (1/4 duty) | 2.5V            | ~ 85°C                    | PWM frequency = 170.6Hz    | 118   | _     | 170.6 | Hz   |  |
|                              |                      |                 |                           | PWM frequency = 256Hz      | 180   | _     | 256   |      |  |
|                              |                      | 3.3V            | Ta=25°C.                  | Key scan pulse width = 2ms | 6.8   | 8     | 9.2   |      |  |
| t <sub>ĸcτ</sub>             | Key Scan Cycle Time  | 2.5V~<br>5.5V   | Ta=-40°C                  |                            | 5.6   | 8     | 10.4  | ms   |  |
| NO1                          | , , <u>,</u>         | 1.8V~<br>2.5V   | Ta=-40°C                  |                            | 7.2   |       | 12    |      |  |



| Symbol             | Parameter                       |                 | Test Condition                                                    | Min.    | True | Max. | Unit |
|--------------------|---------------------------------|-----------------|-------------------------------------------------------------------|---------|------|------|------|
| Symbol             | Fardifieter                     | $V_{\text{DD}}$ | Condition                                                         | IVIIII. | Тур. | Wax. | Unit |
|                    |                                 | 3.3V            | Ta=25°C, Key scan pulse width = 2ms                               | 1.7     | 2    | 2.3  |      |
| t <sub>KPW</sub>   | Key Scan Pulse Width            | 2.5V~<br>5.5V   | Ta=-40°C~85°C,<br>Key scan pulse width = 2ms                      | 1.4     | 2    | 2.6  | ms   |
|                    |                                 | 1.8V~<br>2.5V   | Ta=-40°C~85°C,<br>Key scan pulse width = 2ms                      | 1.8     | _    | 3.0  |      |
| t <sub>sR</sub>    | V <sub>DD</sub> Slew Rate       | —               |                                                                   |         | —    | —    | V/ms |
| t <sub>POF</sub>   | V <sub>DD</sub> OFF Times       | _               | — V <sub>DD</sub> drop down to 0.9V                               |         | _    | _    | ms   |
|                    |                                 | _               | When RSTB signal is externally input from a microcontroller, etc. | 250     | _    | _    | ns   |
| t <sub>rson</sub>  | RSTB Input Time                 |                 | R=100KΩ and C=0.1μF<br>(see application circuit)                  | _       | 100  | _    | ms   |
| t <sub>RW</sub>    | RSTB Pulse Width                | _               | When RSTB signal is externally input from a microcontroller etc.  |         | _    | _    | ns   |
| t <sub>rsoff</sub> | Wait Time for Data<br>Transfers | _               | – 2-wire I <sup>2</sup> C-bus or 3-wire SPI bus                   |         | _    | _    | ms   |

# I<sup>2</sup>C Interface Characteristics

|                      |                                                  |                                                                        | , V <sub>DD</sub> =1. | Unless otherwise specified, $V_{ss}$ =0 V, $V_{DD}$ =1.8V to 5.5V, Ta= -40°C to +85°C |      |                                  |     |  |  |  |  |
|----------------------|--------------------------------------------------|------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------|------|----------------------------------|-----|--|--|--|--|
| Symbol               | Parameter                                        | Parameter Condition                                                    |                       |                                                                                       |      | V <sub>DD</sub> =3.0V to<br>5.5V |     |  |  |  |  |
|                      |                                                  |                                                                        | Min. Max.             |                                                                                       | Min. | Min. Max.                        |     |  |  |  |  |
| f <sub>scl</sub>     | Clock Frequency                                  | —                                                                      | _                     | 100                                                                                   | _    | 400                              | kHz |  |  |  |  |
| t <sub>BUF</sub>     | Bus Free Time                                    | Time in which the bus must be free before a new transmission can start | 4.7                   | _                                                                                     | 1.3  | _                                | μs  |  |  |  |  |
| t <sub>hd: sta</sub> | Start Condition Hold Time                        | After this period, the first clock pulse is generated                  | 4                     | _                                                                                     | 0.6  | _                                | μs  |  |  |  |  |
| t <sub>LOW</sub>     | SCL Low Time                                     | —                                                                      | 4.7                   | —                                                                                     | 1.3  | _                                | μs  |  |  |  |  |
| t <sub>HIGH</sub>    | SCL High Time                                    | —                                                                      | 4                     | _                                                                                     | 0.6  | _                                | μs  |  |  |  |  |
| t <sub>su: sta</sub> | Start Condition Setup Time                       | Only relevant for repeated START condition.                            | 4.7                   | _                                                                                     | 0.6  |                                  | μs  |  |  |  |  |
| t <sub>hd: dat</sub> | Data Hold Time                                   | —                                                                      | 0                     | _                                                                                     | 0    | _                                | ns  |  |  |  |  |
| t <sub>su: dat</sub> | Data Setup Time                                  | —                                                                      | 250                   | _                                                                                     | 100  | _                                | ns  |  |  |  |  |
| t <sub>R</sub>       | SDA and SCL Rise Time                            | Note                                                                   | _                     | 1                                                                                     | _    | 0.3                              | μs  |  |  |  |  |
| t <sub>F</sub>       | SDA and SCL Fall Time                            | Note                                                                   | _                     | 0.3                                                                                   | _    | 0.3                              | μs  |  |  |  |  |
| t <sub>su: sto</sub> | Stop Condition Set-up Time                       | _                                                                      | 4                     | _                                                                                     | 0.6  | _                                | μs  |  |  |  |  |
| t <sub>AA</sub>      | Output Valid from Clock                          | —                                                                      | _                     | 3.5                                                                                   | _    | 0.9                              | μs  |  |  |  |  |
| t <sub>sP</sub>      | Input Filter Time Constant<br>(SDA and SCL Pins) | Noise suppression time                                                 |                       | 20                                                                                    |      | 20                               | ns  |  |  |  |  |

Note: These parameters are periodically sampled but not 100% tested.



# A.C. Characteristics – SPI Interface

Unless otherwise specified, V\_{SS}=0V, V\_{DD}=1.8V to 5.5V, Ta= -40  $^\circ C$  to +85  $^\circ C$ 

| Symbol             | Parameter                                       |                 | Test Cor             | ndition                     | Min.    | Tun  | Max.   | Unit |
|--------------------|-------------------------------------------------|-----------------|----------------------|-----------------------------|---------|------|--------|------|
| Symbol             | Farameter                                       | $V_{\text{DD}}$ | Condition            |                             | IVIIII. | Тур. | IVIAX. | Unit |
| +                  | Clock quale time                                |                 | For write dat        | а                           | 250     | —    | —      | ns   |
| t <sub>sys</sub> C | Clock cycle time                                | _               | For read data        | a                           | 1000    | _    | _      | ns   |
|                    | Cleak Dulas Width                               | _               | For write dat        | а                           | 50      | _    | _      | ns   |
| t <sub>cw</sub>    | Clock Pulse Width                               |                 | For read data        |                             | 400     | _    | _      | ns   |
| t <sub>DS</sub>    | Data Setup Time                                 | _               | For write data       |                             | 50      | _    | _      | ns   |
| t <sub>DH</sub>    | Data Hold Time                                  | _               | For write data       |                             | 50      | _    | _      | ns   |
| t <sub>csw</sub>   | "H" CSB Pulse Width                             | _               |                      | _                           | 50      | _    | _      | ns   |
|                    |                                                 |                 | For write data       |                             | 50      | _    | _      | ns   |
| t <sub>CSL</sub>   | CSB Setup Time (CSB↓ — CLK↑)                    | _               | For read data        |                             | 400     | _    | _      | ns   |
| t <sub>сsн</sub>   | CS Hold Time (CLK $\uparrow$ — CSB $\uparrow$ ) | _               |                      |                             | 2       | _    | _      | μs   |
|                    | DATA Output Delay Time                          |                 | 0 -1505              | $t_{PD}$ =10% to 90%        |         | _    | 350    |      |
| t <sub>PD</sub>    | (CLK — DIO)                                     |                 | C <sub>o</sub> =15pF | t <sub>PD</sub> =90% to 10% | _       |      |        | ns   |

Note:  $f_{LCD} = 1/t_{LCD}$ 



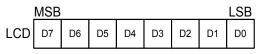
# **Functional Description**

### **Power-On Reset**

When the power is applied, the device is initialized by an internal power-on reset circuit. The status of the internal circuits after initialization is as follows:

- All common outputs are set to  $V_{LCD}$
- All segment outputs are set to  $V_{LCD}$ .
- The drive mode 1/4 duty output and 1/3 bias is selected.
- The System Oscillator and the LCD bias generator are off state.
- LCD Display is off state.
- · Integrated regulator is disabled.
- Key scan pulse width is set to 2 ms and INT output is set to a high level.
- The Segment/Key scan/LED shared pin is set as the Segment pin.
- The LCD driving mode is set to the normal current mode.
- Frame Frequency is set to 64Hz.
- · Blinking function is switched off.

### **Reset Function**


When the RSTB pin is pulled to a low level, a reset operation is executed and it will initialize all functions. The status of the internal circuits after initialization is as follows:

- All common outputs are set to V<sub>LCD</sub>
- All segment outputs are set to V<sub>LCD</sub>.
- The drive mode 1/4 duty output and 1/3 bias is selected.
- The System Oscillator and the LCD bias generator are off state.
- LCD Display is off state.
- Integrated regulator is disabled.
- The Segment/Key scan/LED shared pin is set as the Segment pin.
- The LCD driving mode is set to the normal current mode.
- Frame Frequency is set to 64Hz.
- Blinking function is switched off

### **Display Memory – RAM Structure**

The display RAM is static 63 x 8-bits RAM which stores the LCD data. Logic "1" in the RAM bit-map indicates the "on" state of the corresponding LCD segment; similarly, logic 0 indicates the 'off' state.

The contents of the RAM data are directly mapped to the LCD data. The first RAM column corresponds to the segments operated with respect to COM0. In multiplexed LCD applications the segment data of the second, third and fourth column of the display RAM are time-multiplexed with COM1, COM2 and COM3 respectively. The LCD display duty can be 1/4 or 1/8 determined by a Duty bit contained in the Drive Mode Command. The following diagram is a data transfer format for I<sup>2</sup>C or SPI interface.



#### LCD Display data transfer format for I<sup>2</sup>C or SPI bus

#### **Display Mode**

• 1/1, 1/2, 1/3, 1/4 duty

When the Duty2 bit is set to 0, the drive mode can be selected as 1/1, 1/2, 1/3 or 1/4 duty using the Duty1 and Duty0 bits and the LCD RAM map is implemented as the following table shown. This default display mode is 1/4 duty after a reset.

• 1/8 duty

When the Duty2 bit is set to 1, the drive mode is selected as 63 segments by 8 commons and the LCD RAM map is implemented as the following table shown.

### **System Oscillator**

The timing for the internal logic and the LCD drive signals are generated by an internal oscillator. The System Clock frequency ( $f_{SYS}$ ) determines the LCD frame frequency. During initial system power on the System Oscillator will be in the stop state.

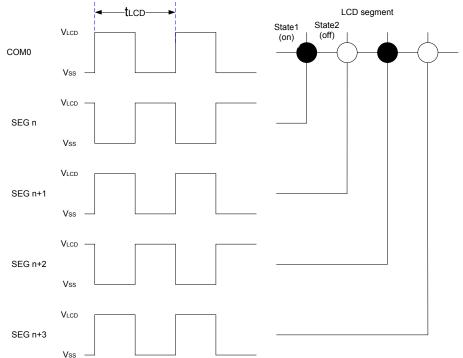
### **LCD Bias Generator**

The LCD supply power can come from the external VLCD pin or the internal regulator output voltage determined using the Internal Voltage Adjustment (IVA) setting command. The device provides an external VLCD pin and also integrates an internal regulator. The LCD voltage may be temperature compensated externally through the Voltage supply to the V<sub>LCD</sub> pin. The internal regulator can also provide the LCD operating voltage. Therefore, the full-scale LCD voltage (V<sub>oP</sub>) is obtained from (V<sub>LCD</sub> – V<sub>SS</sub>) or (V<sub>reg</sub> – V<sub>SS</sub>).

Fractional LCD biasing voltages, known as 1/1, 1/2, 1/3 or 1/4 bias voltage, are obtained from an internal voltage divider of four series resistors connected between  $V_{OP}$  and  $V_{SS}$ . The resistors can be switched out of circuits to provide a 1/2, 1/3 or 1/4 bias voltage level configuration.



| Output | COM3 | COM2 | COM1 | COM0 | Output | COM3 | COM2 | COM1 | COM0 | Address |
|--------|------|------|------|------|--------|------|------|------|------|---------|
| SEG1   |      |      |      |      | SEG0   |      |      |      |      | 00H     |
| SEG3   |      |      |      |      | SEG2   |      |      |      |      | 01H     |
| SEG5   |      |      |      |      | SEG4   |      |      |      |      | 02H     |
| Ļ      | ↓    | Ļ    | Ļ    | Ļ    | Ļ      | Ļ    | Ļ    | Ļ    | Ļ    | Ļ       |
| SEG65  |      |      |      |      | SEG64  |      |      |      |      | 20H     |
|        |      |      |      |      | SEG66  |      |      |      |      | 21H     |
|        | D7   | D6   | D5   | D4   |        | D3   | D2   | D1   | D0   | Data    |


#### RAM mapping of 67x4 display mode – 1/1, 1/2, 1/3 and 1/4 duty

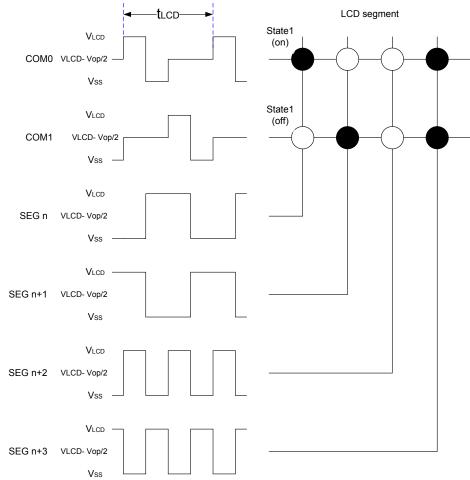
| Output | COM7 | COM6 | COM5 | COM4 | COM3 | COM2 | COM1 | COM0 | Address |
|--------|------|------|------|------|------|------|------|------|---------|
| SEG4   |      |      |      |      |      |      |      |      | 00H     |
| SEG5   |      |      |      |      |      |      |      |      | 01H     |
| SEG6   |      |      |      |      |      |      |      |      | 02H     |
| Ļ      | Ļ    | Ļ    | Ļ    | Ļ    | Ļ    | Ļ    | Ļ    | Ļ    | Ļ       |
| SEG66  |      |      |      |      |      |      |      |      | 3EH     |
|        | D7   | D6   | D5   | D4   | D3   | D2   | D1   | D0   | Data    |

RAM mapping of 63x8 display mode – 1/8 duty

### LCD Drive Mode Waveforms

• When the LCD drive mode is selected as 1/1 duty and 1/1 bias (static), the waveform and LCD display is shown as follows:





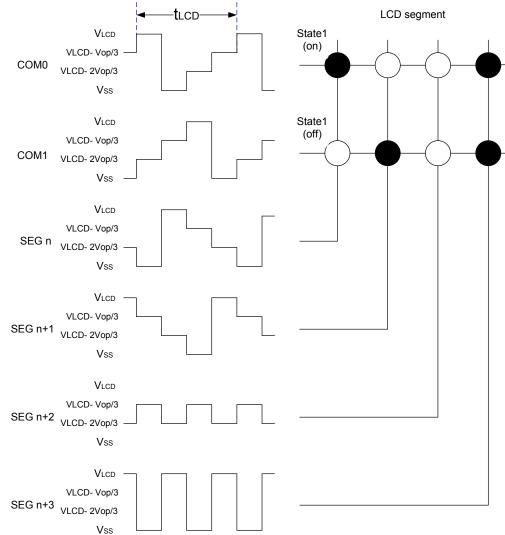

Note: 1.  $t_{LCD}=1/f_{LCD}$ 

2. The unused COM1~3 outputs must be left open-circuit and the outputs are pulled to a high level ( $V_{LCD}$ ).



• When the LCD drive mode is selected as 1/2 duty and 1/2 bias, the waveform and LCD display is shown as follows:




Waveforms for 1/2 duty drive mode with 1/2 bias (V\_{\tiny OP}=V\_{\tiny LCD}-V\_{\tiny SS})

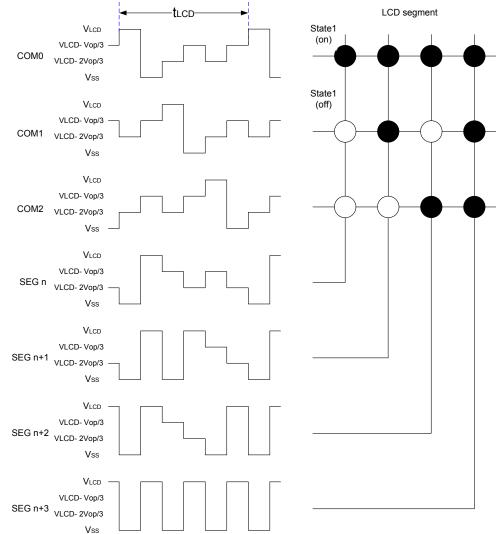
Note: 1.  $t_{LCD}=1/f_{LCD}$ 

2. The unused COM2~3 outputs must be left open-circuit and the outputs are pulled to a high level ( $V_{LCD}$ ).



• When the LCD drive mode is selected as 1/2 duty and 1/3 bias, the waveform and LCD display is shown as follows:




Waveforms for 1/2 duty drive mode with 1/3 bias ( $V_{\text{OP}}=V_{\text{LCD}}-V_{\text{SS}}$ )

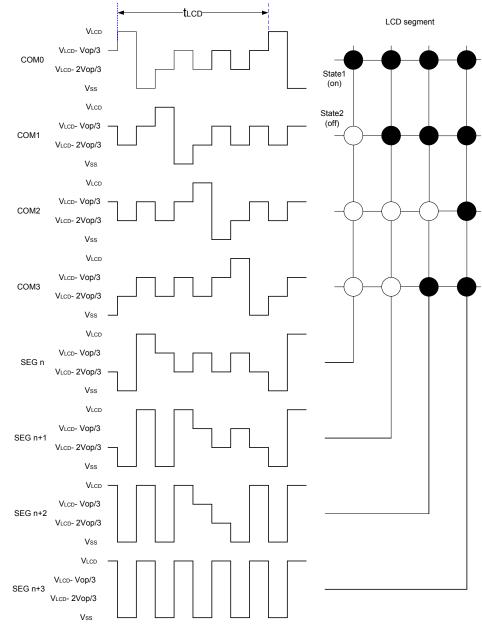
### Note: 1. $t_{LCD}$ =1/ $f_{LCD}$

2. The unused COM2~3 outputs must be left open-circuit and the outputs are pulled to a high level ( $V_{LCD}$ ).



• When the LCD drive mode is selected as 1/3 duty and 1/3 bias, the waveform and LCD display is shown as follows:



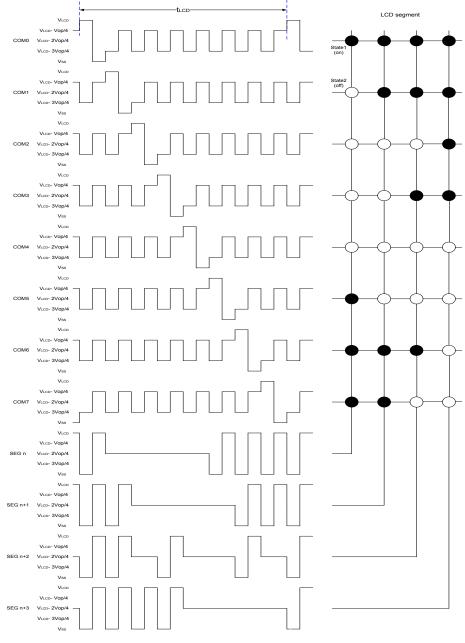

Waveforms for 1/3 duty drive mode with 1/3 bias ( $V_{\text{OP}}=V_{\text{LCD}}-V_{\text{SS}}$ )

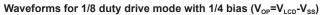
Note: 1.  $t_{LCD}$ =1/  $f_{LCD}$ 

2. The unused COM3 output must be left open-circuit and the output is pulled to a high level ( $V_{LCD}$ ).



• When the LCD drive mode is selected as 1/4 duty and 1/3 bias, the waveform and LCD display is shown as follows:




Note:  $t_{LCD}=1/f_{LCD}$ 



• When the LCD drive mode is selected as 1/8 duty and 1/4 bias, the waveform and LCD display is shown as follows:





Note:  $t_{LCD}=1/f_{LCD}$ 



#### **Segment Driver Outputs**

The LCD drive section includes up to 67 segment outputs which should be connected directly to the LCD panel. The segment output signals are generated in accordance with the multiplexed column signals and with the data resident in the display latch. The unused segment outputs should be left open-circuit.

### **Column Driver Outputs**

The LCD drive section includes 4 column outputs COM0~COM3 or 8 column outputs COM0~COM7 which should be connected directly to the LCD panel. The column output signals are generated in accordance with the selected LCD drive mode. The unused column outputs should be left open-circuit if less than 4 or 8 column outputs are required.

#### **Address Pointer**

The addressing mechanism for the display RAM is implemented using the address pointer. This allows the loading of an individual display data byte, or a series of display data bytes, into any location of the display RAM. The sequence commences with the initialization of the address pointer by the Display Data Input command.

### **Blinking Function**

The device contains versatile blinking capabilities. The whole display can be blinked at frequencies selected by the Blinking Frequency command. The blinking frequency is a subdivided ratio of the system frequency. The ratio between the system oscillator and blinking frequencies depends on the blinking mode in which the device is operating, as shown in the following table:

| Blinking Mode | Blinking frequency (Hz) |
|---------------|-------------------------|
| 0             | Blink off               |
| 1             | 2                       |
| 2             | 1                       |
| 3             | 0.5                     |

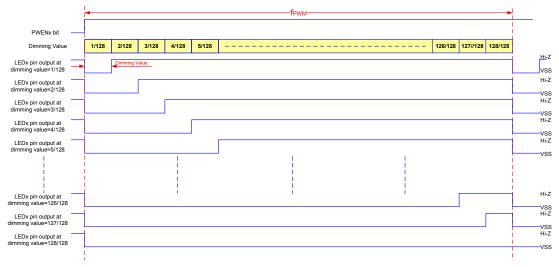
### **Frame Frequency**

The HT16LK24 device provides four frame frequencies selected with Frame Frequency command known as 64Hz, 85.3Hz, 128Hz and 170.6Hz respectively.

### **LED** Function

The device provides up to 12 LED output driving pins with 128-level PWM luminance control. The LED pins are NMOS-structured output pins. The Data for the LED output is contained in the LED output control command, starting from the most significant bit. When a written data bit for a LED pin is set to 1, the corresponding driving LED lights up while the LED is switched off when the written data bit is 0. The LED data is transferred from the MSB first via I<sup>2</sup>C or SPI interface.

|                     | MSB  |      |      | _    |       |       |      | LSB  |
|---------------------|------|------|------|------|-------|-------|------|------|
| LED output1 command | LED7 | LED6 | LED5 | LED4 | LED3  | LED2  | LED1 | LED0 |
| LED output2 command | x    | x    | x    | x    | LED11 | LED10 | LED9 | LED8 |


LED Display data transfer format for I<sup>2</sup>C or SPI bus

The luminance of each lighted LED output pin can be programmable individually using the LED PWM luminance control command after the relevant LED PWM function is enabled. When the PWM function enable bit, PWENx, is set to 1, the corresponding PWM function will be enabled. Otherwise, the LED PWM luminance function will be disabled if the PWENx bit is cleared to 0.

The dimming values contained in the LED PWM luminance control command is used to determine the low pulse on the corresponding LED output pin as the diagram shown.

The LED pins are pin-shared with the LCD segment together with key scan matrix pins and can be configured using the KX, KY and L fields in the SEG/ KSL shared pin configuration command. The LED output function has the priority than the key scan matrix and LCD segment output and the LED output number is determined by configuring the "L" field in the shared pin configuration command.

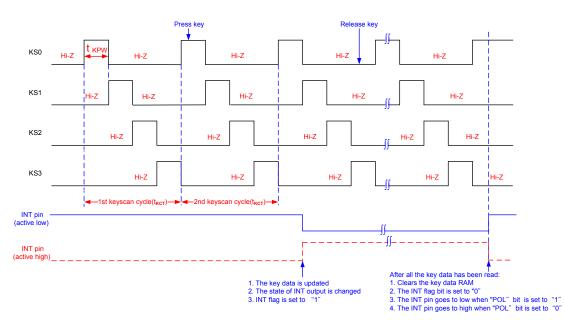




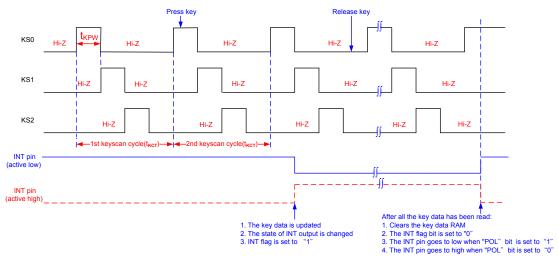
#### LED output with PWM luminance control

Note: 1. The LEDx pin data stored in the LED output control command is set to 1.

2. The notation "Hi-Z" in the diagram means that the LEDx pin is in an open-drain status.

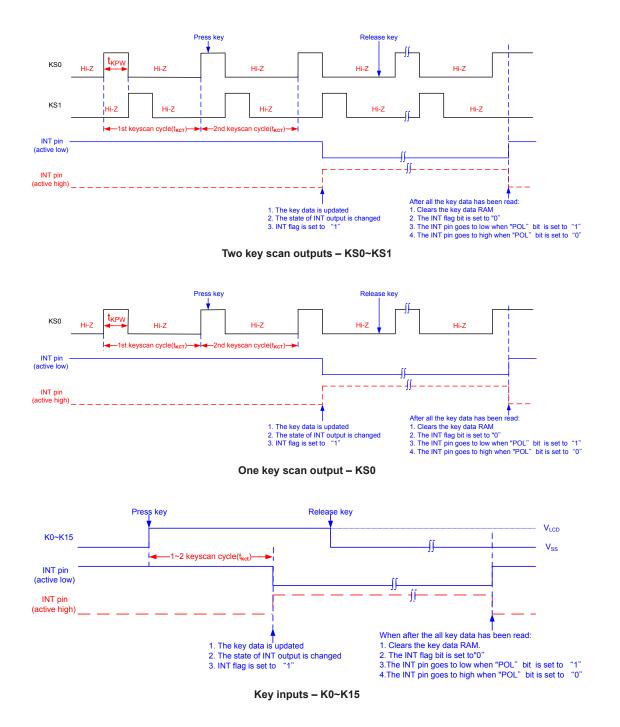

|    | ED c |    |    |                 |                 |                 | -               |                 |                 | Segmen         | t/key sca      | n/LED Sł       | ared pin       |                |                | -              |                |                |                |
|----|------|----|----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| L3 | L2   | L1 | L0 | Seg51/<br>KSL15 | Seg52/<br>KSL14 | Seg53/<br>KSL13 | Seg54/<br>KSL12 | Seg55/<br>KSL11 | Seg56/<br>KSL10 | Seg57/<br>KSL9 | Seg58/<br>KSL8 | Seg59/<br>KSL7 | Seg60/<br>KSL6 | Seg61/<br>KSL5 | Seg62/<br>KSL4 | Seg63/<br>KSL3 | Seg64/<br>KSL2 | Seg65/<br>KSL1 | Seg66/<br>KSL0 |
| 0  | 0    | 0  | 0  | Seg51           | Seg52           | Seg53           | Seg54           | Seg55           | Seg56           | Seg57          | Seg58          | Seg59          | Seg60          | Seg61          | Seg62          | Seg63          | Seg64          | Seg65          | Seg66          |
| 0  | 0    | 0  | 1  | Seg51           | Seg52           | Seg53           | Seg54           | Seg55           | Seg56           | Seg57          | Seg58          | Seg59          | Seg60          | Seg61          | Seg62          | Seg63          | Seg64          | Seg65          | LED0           |
| 0  | 0    | 1  | 0  | Seg51           | Seg52           | Seg53           | Seg54           | Seg55           | Seg56           | Seg57          | Seg58          | Seg59          | Seg60          | Seg61          | Seg62          | Seg63          | Seg64          | LED1           | LED0           |
| 0  | 0    | 1  | 1  | Seg51           | Seg52           | Seg53           | Seg54           | Seg55           | Seg56           | Seg57          | Seg58          | Seg59          | Seg60          | Seg61          | Seg62          | Seg63          | LED2           | LED1           | LED0           |
| 0  | 1    | 0  | 0  | Seg51           | Seg52           | Seg53           | Seg54           | Seg55           | Seg56           | Seg57          | Seg58          | Seg59          | Seg60          | Seg61          | Seg62          | LED3           | LED2           | LED1           | LED0           |
| 0  | 1    | 0  | 1  | Seg51           | Seg52           | Seg53           | Seg54           | Seg55           | Seg56           | Seg57          | Seg58          | Seg59          | Seg60          | Seg61          | LED4           | LED3           | LED2           | LED1           | LED0           |
| 0  | 1    | 1  | 0  | Seg51           | Seg52           | Seg53           | Seg54           | Seg55           | Seg56           | Seg57          | Seg58          | Seg59          | Seg60          | LED5           | LED4           | LED3           | LED2           | LED1           | LED0           |
| 0  | 1    | 1  | 1  | Seg51           | Seg52           | Seg53           | Seg54           | Seg55           | Seg56           | Seg57          | Seg58          | Seg59          | LED6           | LED5           | LED4           | LED3           | LED2           | LED1           | LED0           |
| 1  | 0    | 0  | 0  | Seg51           | Seg52           | Seg53           | Seg54           | Seg55           | Seg56           | Seg57          | Seg58          | LED7           | LED6           | LED5           | LED4           | LED3           | LED2           | LED1           | LED0           |
| 1  | 0    | 0  | 1  | Seg51           | Seg52           | Seg53           | Seg54           | Seg55           | Seg56           | Seg57          | LED8           | LED7           | LED6           | LED5           | LED4           | LED3           | LED2           | LED1           | LED0           |
| 1  | 0    | 1  | 0  | Seg51           | Seg52           | Seg53           | Seg54           | Seg55           | Seg56           | LED9           | LED8           | LED7           | LED6           | LED5           | LED4           | LED3           | LED2           | LED1           | LED0           |
| 1  | 0    | 1  | 1  | Seg51           | Seg52           | Seg53           | Seg54           | Seg55           | LED10           | LED9           | LED8           | LED7           | LED6           | LED5           | LED4           | LED3           | LED2           | LED1           | LED0           |
| 1  | 1    | 0  | 0  | Seg51           | Seg52           | Seg53           | Seg54           | LED11           | LED10           | LED9           | LED8           | LED7           | LED6           | LED5           | LED4           | LED3           | LED2           | LED1           | LED0           |




#### **Key Scan Function**

The device provides 16 keys which can be used to construct the key matrix for key scan function. These keys can be configured as key inputs or key scan outputs using the KX and KY fields in the shared pins configuration command. For example, if there are four keys, KS3~KS0, set as key scan outputs, the maximum key matrix will contain 12x4 keys. The maximum key matrix can be 12x4, 13x3, 14x2 or 15x1 keys with different key scan output number. However, if there is no key configured as key scan outputs, there are up to 16 key inputs which are externally connected to  $V_{LCD}$  voltage.

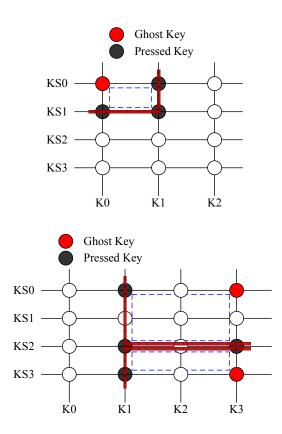
The key scan circuitry sequentially outputs a high pulse on the key scan output pins, KS0~KS3. The key scan output pulse width,  $t_{KPW}$ , can be programmable by configuring the KF field in the key scan control command. The key scan circuitry detects the key press at the tail of the key scan output pulse. The key press de-bounce time is 1~2 key scan cycles. That means that the available key press time duration must be equal to or greater than the key debounce time. Therefore, the valid key will be detected twice consecutively.




Four key scan outputs - KS0~KS3



Three key scan outputs - KS0~KS2







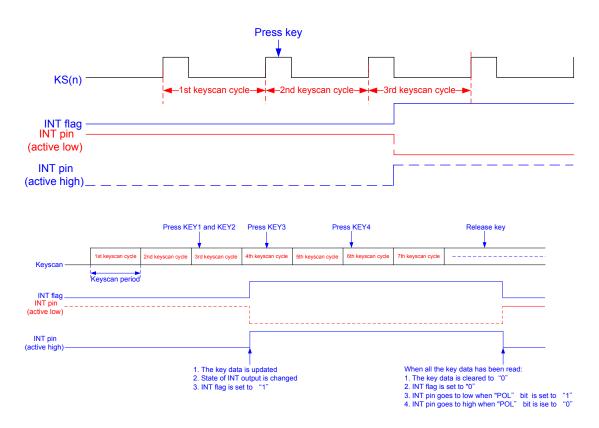

#### **Ghost Key for Key Matrix**

The Key scan circuitry can detect multiple pressed keys. However, the ghost keys may be generated when multiple keys are pressed. If three or more than three keys are pressed and the pressed keys are lined in an "L" shape, the ghost keys will be generated. As the accompanying diagram shows, the key on the 4<sup>th</sup> corner which forms a rectangle together with other three pressed keys will be the ghost key and be recognized as a pressed key no matter the relevant external key is pressed or not. Attentions must be paid to avoid from ghost keys in multiple key press applications.





#### **Key Scan Interrupt Function**


The device provides two ways to indicate the interrupt occurrence for key scan function.

• Hardware signal

When the valid key press is detected, the interrupt will be generated and the INT pin will change state from its inactive state to active state. The polarity of the INT output pin can be changed by configuring the POL bit in the Key scan control command via the  $I^2C$  or SPI interface. When the POL bit is set to 1, the INT pin is active high while the INT pin is active low if the POL bit is cleared to 0. After the key data has been read, all the key data will be cleared to 0 and the INT pin returns to an inactive state.

Software indicator

When the valid key press is detected, the interrupt flag will be set to 1 and can be read using the  $I^2C$  or SPI interface. After the key data has been read, all the key data will be cleared to 0 and the interrupt flag will also be cleared to 0. The INT interrupt flag is stored in the register bit 0 and is set and cleared by hardware.





#### **Key Data Memory Structure**

- The Key data RAM is a read-only memory and is organized into 16x4 bits which stores the key data detected by the key scan circuitry. Each key data corresponds to one key in the key matrix.
- The key data byte in the corresponding address will be cleared after the data byte is read and therefore, the successive key press can be identified again. If the key data byte is not read, the pressed key data will be successively recorded when other keys are pressed.
- The key data RAM address will be incremented automatically when the key data is read continuously. The address will be wrapped around to the start address 0x00H when the key data RAM read operation is executed successively and the RAM address is greater than the maximum available address 0x07H. It is strongly recommended to read the whole key data from the start address 0x00H sequentially via the I<sup>2</sup>C or 3-wiredSPI interface.

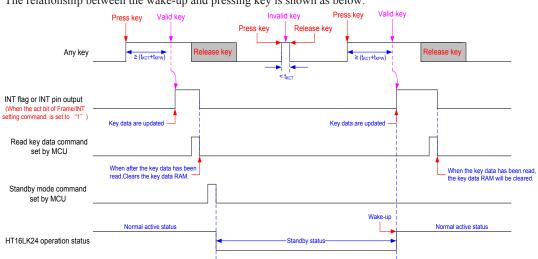
| Output | K15 | K14 | K13 | K12 | K11 | K10 | K9 | K8 | Addr. | <b>K</b> 7 | K6 | K5 | K4 | K3 | K2 | K1 | K0 | Addr. |
|--------|-----|-----|-----|-----|-----|-----|----|----|-------|------------|----|----|----|----|----|----|----|-------|
| KS0    |     |     |     |     |     |     |    |    | 01H   |            |    |    |    |    |    |    |    | 00H   |
| KS1    |     |     |     |     |     |     |    |    | 03H   |            |    |    |    |    |    |    |    | 02H   |
| KS2    |     |     |     |     |     |     |    |    | 05H   |            |    |    |    |    |    |    |    | 04H   |
| KS3    |     |     |     |     |     |     |    |    | 07H   |            |    |    |    |    |    |    |    | 06H   |
|        | D7  | D6  | D5  | D4  | D3  | D2  | D1 | D0 | Data  | D7         | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Data  |

#### **Standby Mode**

The standby mode is selected by setting the "S" bit in the system mode setting command to "0". It is strongly recommended that the LCD display is first switched off before the standby mode command is setup. Otherwise, the LCD display will be turned on automatically when the device standby mode is released.

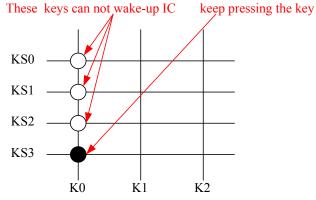
When the device enters the standby mode by setting "S" bit in the system mode setting command to "0", the status in standby mode is shown as below:

- System Oscillator LCD display and key scan will be in the off state.
- All key data RAM and INT flag are cleared to "0" until the standby mode is released.
- The INT pin output is set to high when the 'POL' bit in the Key scan control command is set to '0'.
- The INT pin output is set to low when the 'POL' bit in the Key scan control command is set to '1'.
- If the PWENx bit in the LED output control command is set to "0", the status of the corresponding LEDx output pin will not be changed after entering standby mode where "x" means 0~11.
- If the PWENx bit in the LED output control command is set to "1", the status of the corresponding LEDx output pin will be turned off after entering standby mode where "x" means 0~11.
- The K0~K15 pin are set as inputs.
- The KS0~KS3 pins are set to high.
- All common outputs and segment outputs are set to a high level of a  $V_{LCD}$  voltage.




#### Wake-up Function

The device can be woken up by a valid key press or setting the "S" bit in the system mode setting command to"1". When the device is woken up from the standby mode, the status after wakeup is shown as below:


- The System Oscillator restarts.
- The key scan will be performed.
- The LED PWM function will be performed and the LEDx output will be lighted up after wakeup if the PWENx bit is set to 1 and the LEDx data value is set to 1 before entering the standby mode. Otherwise, the LEDx output is always turned off where "x" means 0~11. The relationship between the LED output status and LED PWM function at different modes is shown as below:

| PWM function | System OSC | LED output status                                      | LED PWM function                                       |
|--------------|------------|--------------------------------------------------------|--------------------------------------------------------|
| PWEN bit     | S bit      | Normal mode→Standby mode→<br>Wake up mode/ Normal mode | Normal mode→Standby mode→<br>Wake up mode/ Normal mode |
| 0            | 1→0→1      | off→off→off                                            | off→off                                                |
| 0            | I→U→I      | on→on→on                                               | OII→OII→OII                                            |
| 1            | 1→0→1      | off→off→off                                            | on→off→on                                              |
|              | I→U→I      | on→off→on                                              |                                                        |

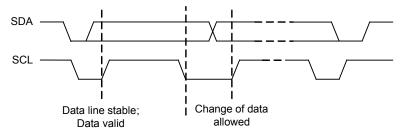


• The relationship between the wake-up and pressing key is shown as below:

• As the following diagram shown, if the KS3-K0 key is kept in a pressed state before entering the standby mode, the device can not be woken up by the KS0-K0, KS1-K0 and KS2-K0 key presses.

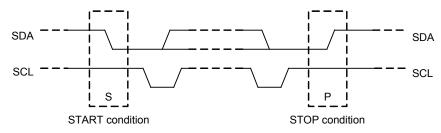





# I<sup>2</sup>C Serial Interface

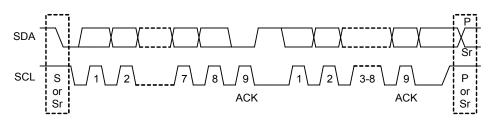
### I<sup>2</sup>C Operation

The device supports  $I^2C$  serial interface. The  $I^2C$  bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line, SDA, and a serial clock line, SCL. Both lines are connected to the positive supply via pull-up resistors with a typical value of 4.7K $\Omega$ . When the bus is free, both lines are high. Devices connected to the bus must have open-drain or open-collector outputs to implement a wired-or function. Data transfer is initiated only when the bus is not busy.


#### **Data Validity**

The data on the SDA line must be stable during the high period of the serial clock. The high or low state of the data line can only change when the clock signal on the SCL line is Low as shown in the diagram.

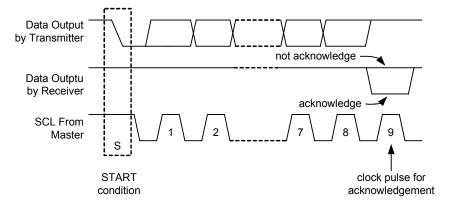



#### START and STOP Conditions

- A high to low transition on the SDA line while SCL is high defines a START condition.
- A low to high transition on the SDA line while SCL is high defines a STOP condition.
- START and STOP conditions are always generated by the master. The bus is considered to be busy after the START condition. The bus is considered to be free again a certain time after the STOP condition.
- The bus stays busy if a repeated START (Sr) is generated instead of a STOP condition. In some respects, the START(S) and repeated START (Sr) conditions are functionally identical.



#### Byte Format


Every byte put on the SDA line must be 8-bit long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit, MSB, first.





#### Acknowledge

- Each bytes of eight bits is followed by one acknowledge bit. This Acknowledge bit is a low level placed on the bus by the receiver. The master generates an extra acknowledge related clock pulse.
- · A slave receiver which is addressed must generate an Acknowledge, ACK, after the reception of each byte.
- The device that acknowledges must pull down the SDA line during the acknowledge clock pulse so that it remains stable low during the high period of this clock pulse.
- A master receiver must signal an end of data to the slave by generating a not-acknowledge, NACK, bit on the last byte that has been clocked out of the slave. In this case, the master receiver must leave the data line high during the 9<sup>th</sup> pulse to not acknowledge. The master will generate a STOP or repeated START condition.



#### **Slave Addressing**

- The slave address byte is the first byte received following the START condition form the master device. The first seven bits of the first byte make up the slave address. The eighth bit defines a read or write operation to be performed. When the  $R/\overline{W}$  bit is "1", then a read operation is selected. A "0" selects a write operation.
- TheHT16LK24 address bits are "0111101". When an address byte is sent, the device compares the first seven bits after the START condition. If they match, the device outputs an Acknowledge on the SDA line.

|     |   |   | Slave | Address |   |   |     |
|-----|---|---|-------|---------|---|---|-----|
| MSB |   |   |       |         |   |   | LSB |
| 0   | 1 | 1 | 1     | 1       | 0 | 1 | R/W |




### I<sup>2</sup>C Interface Write Operation

#### **Byte Write Operation**

• Single Command Type

A Single Command write operation requires a START condition, a slave address with an  $R/\overline{W}$  bit, a command byte and a STOP condition for a single command write operation.



I<sup>2</sup>C Single Command Type Write Operation

• Compound Command Type

A Compound Command write operation requires a START condition, a slave address with an  $R/\overline{W}$  bit, a command byte, up to two command setting bytes and a STOP condition for a compound command write operation.



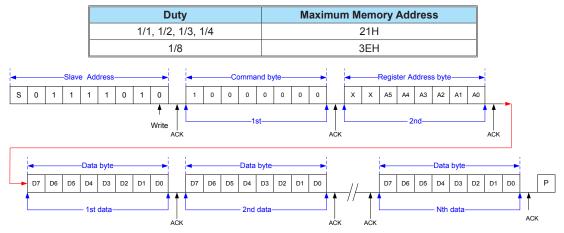
I<sup>2</sup>C Compound Command Type Write Operation – One Command Setting Byte

|   | _ |   |   | -Slav | ve Ad | dres | ss— |   |   | -                 |       | -    |      | C    | omm  | and b | yte  |      | -    |     | -    |      | -Corr | mano       | d setti | ng 1- |      |      |     | -    |      | -Con | nman | nd sett | ing 2 |      |        |     |   |
|---|---|---|---|-------|-------|------|-----|---|---|-------------------|-------|------|------|------|------|-------|------|------|------|-----|------|------|-------|------------|---------|-------|------|------|-----|------|------|------|------|---------|-------|------|--------|-----|---|
|   | s | 0 | 1 | 1     | 1     | 1    |     | 0 | 1 | 0                 |       | BIT7 | BIT6 | BIT5 | BIT4 | вітз  | BIT2 | BIT1 | BITO |     | BIT7 | BIT6 | BIT5  | BIT4       | BIT3    | BIT2  | BIT1 | BITO |     | BIT7 | BIT6 | BIT5 | BIT4 | BIT3    | BIT2  | BIT1 | 1 BITO |     | Ρ |
| _ |   |   |   |       |       |      |     |   |   | <b>♦</b><br>Write | r ACK |      |      |      |      | 1st—  |      |      |      | ACK | 1    |      |       | <u>2</u> r | nd      |       |      |      | ACK |      |      |      |      | 3rd—    |       |      |        | АСК |   |

I<sup>2</sup>C Compound Command Type Write Operation – Two Command Setting Bytes

• Single Display RAM Data Byte

A single display RAM data byte write operation requires a START condition, a slave address with an  $R/\overline{W}$  bit, a display data input command byte, a valid Register Address byte, a Data byte and a STOP condition.


|   | - |   |   | -Slav | ve Ad | Idress |   |   | •     |       | - |   | Co | omma | ind b | yte— |   | • |     | - |   | Regis | ter A | ddres | s byte |    | •  |     | -  |    |    | -Data | i byte |    |    | -  |     |   |
|---|---|---|---|-------|-------|--------|---|---|-------|-------|---|---|----|------|-------|------|---|---|-----|---|---|-------|-------|-------|--------|----|----|-----|----|----|----|-------|--------|----|----|----|-----|---|
| Γ | s | 0 | 1 | 1     | 1     | 1      | 0 | 1 | 0     |       | 1 | 0 | 0  | 0    | 0     | 0    | 0 | 0 |     | х | х | A5    | A4    | A3    | A2     | A1 | A0 |     | D7 | D6 | D5 | D4    | D3     | D2 | D1 | D0 |     | Р |
|   |   |   |   |       |       |        |   |   | Write | e ACK |   |   |    | . 1  | et    |      |   |   | ACK |   |   |       | 2     | ad a  |        |    |    | ACK |    |    |    |       |        |    |    |    | ACK |   |

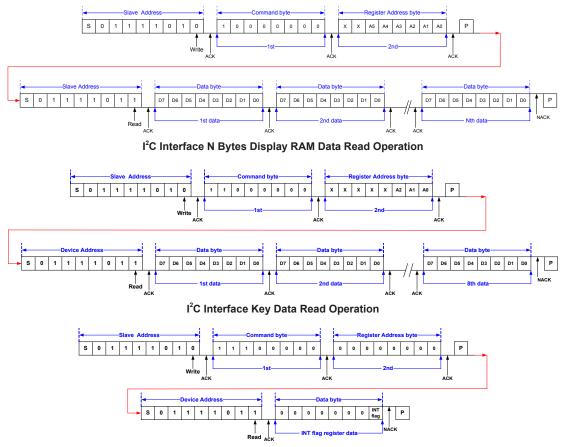
I<sup>2</sup>C Display RAM Single Data Byte Write Operation



#### **Display RAM Page Write Operation**

After a START condition the slave address with the  $R/\overline{W}$  bit is placed on the bus followed with a display data input command byte and the specified display RAM Register Address of which the contents are written to the internal address pointer. The data to be written to the memory will be transmitted next and then the internal address pointer will be incremented by 1 to indicate the next memory address location after the reception of an acknowledge clock pulse. After the internal address pointer will be reset to 00H.




I<sup>2</sup>C Interface N Bytes Display RAM Data Write Operation



### I<sup>2</sup>C Interface Read Operation – Display RAM, Key Data and INT flag

In this mode, the master reads the device data after setting the slave address. Following the  $R/\overline{W}$  bit (="0") is an acknowledge bit, a command byte and the register address byte which is written to the internal address pointer. After the start address of the Read Operation has been configured, another START condition and the slave address transferred on the bus followed by the  $R/\overline{W}$  bit (="1"). Then the MSB of the data which was addressed is transmitted first on the I<sup>2</sup>C bus. The address pointer is only incremented by 1 after the reception of an acknowledge clock. That means that if the device is configured to transmit the data at the address of  $A_{N+1}$ , the master will read and acknowledge the transferred new data byte and the address pointer is incremented to  $A_{N+2}$ . After the internal address pointer will be reset to 00H.

This cycle of reading consecutive addresses will continue until the master sends a STOP condition.

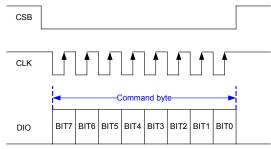


I<sup>2</sup>C Interface INT Flag Read Operation



# **SPI Serial Interface**

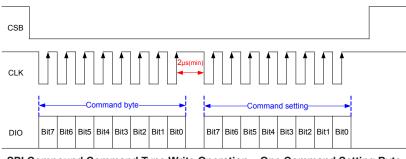
### **SPI Operation**


The device also includes a 3-wire SPI serial interface. The SPI operations are described as follows:

- The CSB pin is used to activate the data transfer. When the CSB pin is at a high level, the SPI operation will be reset and stopped. If the CSB pin changes state from high to low, data transmission will start.
- The data is transferred from the MSB of each byte and is shifted into the shift register during each CLK rising edge.
- The input data is automatically latched into the internal register for each 8-bit input data after the CSB signal goes low.
- For read operations, the MCU should assert a high pulse on the CSB pin to change the data transfer direction from input mode to output mode on the DIO pin after sending the command byte and the setting values. If the MCU sets the CSB signal to a high level again after receiving the output data, the data direction on the DIO pin will be changed into input mode and the read operation will end.
- For a read operation, the data is output on the DIO pin at the CLK falling edge.
- For display RAM data read/write operations using the SPI interface, the read/write control bit is contained in the Display Data Input Command. Refer to the Display Data Input Command description for more details.

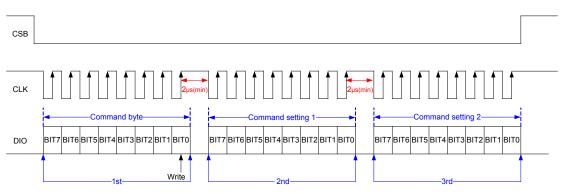
### **SPI Interface Write Operation**

#### Byte Write Operation


- Single Command Type
- A Single Command write operation is activated by the CSB signal going low. The 8-bit command byte is shifted from the MSB into the shift register at each CLK rising edge.



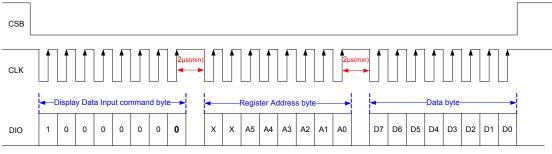
SPI Single Command Type Write Operation


• Compound Command Type

For a compound command, an 8-bit command byte is first shifted into the shift register followed by an 8-bit command setting. Note that the CLK high pulse width, after the command byte has been shifted in, must remain at this level for at least 2µs after which the command setting data can be consecutively shifted in.



SPI Compound Command Type Write Operation – One Command Setting Byte

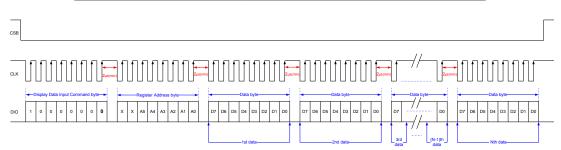





SPI Compound Command Type Write Operation – Two Command Setting Bytes

• Single Display RAM Data Byte

The single display RAM data write operation consists of a display data input (write) command, a register address and a write data byte.



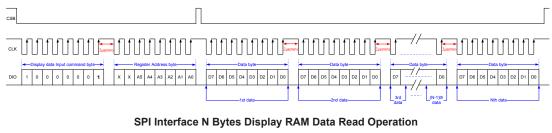

SPI Single Display RAM Data Byte Write Operation

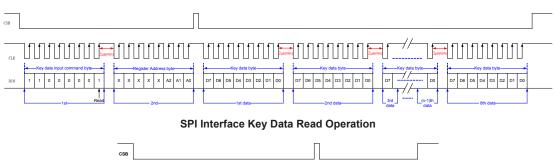
#### Display RAM Page Write Operation

The display RAM Page write operation consists of a display data write command, a register address of which the contents are written to the internal address pointer followed by N bytes of written data. The data to be written to the memory will be transmitted next and then the internal address pointer will be automatically incremented by 1 to indicate the next memory address location. After the internal address point reaches the maximum memory address, the address pointer will be reset to 00H.

| Duty               | Maximum Memory Address |
|--------------------|------------------------|
| 1/1, 1/2, 1/3, 1/4 | 21H                    |
| 1/8                | 3EH                    |




SPI Interface N Bytes Display RAM Data Write Operation




### SPI Interface Read Operation – Display RAM, Key Data and INT Flag

In this mode, the master reads the HT16LK24 data after sending the Display Data Input command when the CSB pin changes state from high to low. Following the read/write control bit, which is contained in the Display Data Input command, is the register address byte which is written to the internal address pointer. After the start address of the Read Operation has been configured, another CSB high pulse is placed on the bus and then the MSB of the data which was addressed is transmitted first on the SPI bus. The address pointer is only incremented by 1 after the reception of each data byte. That means that if the device is configured to transmit the data at the address of  $A_{N+1}$ , the master will read the transferred data byte and the address pointer is incremented to  $A_{N+2}$ . After the internal address pointer reaches the maximum memory address, the address pointer will be reset to 00H.

This cycle of reading consecutive addresses will continue until the master pulls the CSB line to a high level to terminate the data transfer.







SPI Interface INT Flag Read Operation



# **Command Summary**

### **Software Reset Command**

This command is used to initialize the device.

| Function           | Byte | (MSB)<br>Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | (LSB)<br>Bit0 | Note | R/W | Def |
|--------------------|------|---------------|------|------|------|------|------|------|---------------|------|-----|-----|
| Soft Reset Command | 1st  | 1             | 0    | 1    | 0    | 1    | 0    | 1    | 0             | _    | W   | _   |
| Note:              |      |               |      |      |      |      |      |      |               |      |     |     |

- Note:
- When this software reset command is executed, all the command registers are initialized to the default values.
- After the reset command is executed, the device will experience an internal initialization for 1ms.
- Normal operation can be executed after the device initialization is complete.
- During the initialization period, no commands can be executed.
- If the programmed command is not defined, the function will not be affected.

The status of the internal circuits after initialization is as follows:

- All segment/common outputs are set to V<sub>LCD</sub>.
- The drive mode 1/4 duty output and 1/3 bias is selected.
- The System Oscillator and the LCD bias generator are in an off state.
- The LCD Display is in an off state and the integrated regulator is disabled.
- The key scan function is disabled.
- The INT pin is set to a high level.
- The operation mode is set to normal mode.
- The Segment/KEY/LED shared pin is setup as a Segment pin.
- The Frame Frequency is set to 64Hz.
- The blinking function is switched off



### **Display Data Input Command**

This command is used to access the display data by the MCU to the memory MAP of the device.

| Function                                                      | Byte | (MSB)<br>Bit7 | Bit6  | Bit5  | Bit4    | Bit3    | Bit2  | Bit1   | (LSB)<br>Bit0 | Note                                               | R/W | Def |
|---------------------------------------------------------------|------|---------------|-------|-------|---------|---------|-------|--------|---------------|----------------------------------------------------|-----|-----|
| Display Data Input/                                           |      | 1             | 0     | 0     | 0       | 0       | 0     | 0      | 0             | Write operation                                    | W   | -   |
| output Command                                                | 1st  | 1             | 0     | 0     | 0       | 0       | 0     | 0      | 1             | Read operation for 3-wire SPI interface used only. | R   | _   |
| Address pointer                                               | 2nd  | Х             | х     | A5    | A4      | A3      | A2    | A1     | A0            | Display data start address of memory map           | W   | 00H |
| Note:                                                         |      |               |       |       |         |         |       |        |               |                                                    |     |     |
| Duty                                                          |      | Max           | cimun | n Men | nory    | Addre   | ess   |        |               |                                                    |     |     |
| 1/1, 1/2, 1/3,                                                | 1/4  |               |       | 21    | Н       |         |       |        |               |                                                    |     |     |
| 1/8                                                           |      |               |       | 3E    | Н       |         |       |        |               |                                                    |     |     |
| <ul><li> Power on status:</li><li> If the programme</li></ul> |      |               |       |       | , the f | functio | on wi | ll not | be affec      | sted.                                              |     |     |

### Key Data Input Command

This command is used to access the key data by the MCU to the memory MAP of the device.

| Function          | Byte    | (MSB)<br>Bit7 | Bit6    | Bit5    | Bit4    | Bit3   | Bit2   | Bit1    | (LSB)<br>Bit0 | Note                                               | R/W | Def |
|-------------------|---------|---------------|---------|---------|---------|--------|--------|---------|---------------|----------------------------------------------------|-----|-----|
| Key Data          |         | 1             | 1       | 0       | 0       | 0      | 0      | 0       | 0             | Write operation                                    | w   | _   |
| access<br>Command | 1st     | 1             | 1       | 0       | 0       | 0      | 0      | 0       | 1             | Read operation for 3-wire SPI interface used only. | R   | _   |
| Address pointer   | 2nd     | x             | х       | х       | х       | х      | A2     | A1      | A0            | Key data start address of memory map               | W   | 00H |
| Note:             |         | 1             |         |         |         |        |        |         | 1             | I                                                  |     |     |
| Power on statu    | is: the | address       | is set  | to 00I  | ł       |        |        |         |               |                                                    |     |     |
| • If the program  | med co  | ommanc        | l is no | t defir | ned, th | e func | tion v | vill no | t be affe     | ected.                                             |     |     |

### **INT Flag Access Command**

This command is used to access the INT flag by the MCU to the memory MAP of the device.

| Function        | Byte | (MSB)<br>Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | (LSB)<br>Bit0 | Note                                               | R/W | Def |
|-----------------|------|---------------|------|------|------|------|------|------|---------------|----------------------------------------------------|-----|-----|
| INT flag        |      | 1             | 1    | 1    | 0    | 0    | 0    | 0    | 0             | Write operation                                    | W   | _   |
| access Command  | 1st  | 1             | 1    | 1    | 0    | 0    | 0    | 0    | 1             | Read operation for 3-wire SPI interface used only. | R   | _   |
| Address pointer | 2nd  | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0             | INT flag register address, read only.              | W   | 00H |
| Note:           |      |               |      |      |      |      |      |      |               |                                                    |     |     |

• Power on status: the address is set to 00H

• If the programmed command is not defined, the function will not be affected.



### Drive Mode Command

| Functio                       | on     | Byte | (MSB)<br>Bit7 | Bit6     | Bit5   | Bit4   | Bit3    | Bit2  | Bit1  | (LSB)<br>Bit0 | Note | R/W | Def |
|-------------------------------|--------|------|---------------|----------|--------|--------|---------|-------|-------|---------------|------|-----|-----|
| Drive mode s<br>command       | etting | 1st  | 1             | 0        | 0      | 0      | 0       | 0     | 1     | 0             | _    | W   | _   |
| Duty, Bias an<br>pin-shared s |        | 2nd  | x             | Duty2    | Duty1  | Duty0  | x       | x     | Bias1 | Bias0         | _    | w   | 32⊢ |
| Note:                         |        | L    | 1             | I        | I      | 1      |         | 1     | 1     | 1             |      |     | 1   |
| Bias1                         | Bias   | 0    | L             | CD Bia   | S      |        |         |       |       |               |      |     |     |
| 0                             | 0      |      |               | 1/1 bias | ;      |        |         |       |       |               |      |     |     |
| 0                             | 1      |      |               | 1/2 bias | 3      |        |         |       |       |               |      |     |     |
| 1                             | 0      |      | 1/3           | bias (de | fault) |        |         |       |       |               |      |     |     |
| 1                             | 1      |      |               | 1/4 bias | 6      |        |         |       |       |               |      |     |     |
| Duty2                         | Duty   | 1    | Duty0         |          |        | LC     | D Dut   | у     |       |               |      |     |     |
| 0                             | 0      |      | 0             |          |        | 1/     | 1 duty  | -     |       |               |      |     |     |
| 0                             | 0      |      | 1             |          |        | 1/     | 2 duty  |       |       |               |      |     |     |
|                               | 1      |      | 0             |          |        |        |         |       |       |               |      |     |     |
| 0                             |        |      |               |          |        |        |         |       |       |               |      |     |     |
| 0                             | 1      |      | 1             |          |        | 1/4 du | ty (def | ault) |       |               |      |     |     |

• If the programmed command is not defined, the function will not be affected.

## System Mode Command

This command controls the internal system oscillator on/off and display on/off.

| Function                                        | Byte | (MSB)<br>Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | (LSB)<br>Bit0 | Note | R/W | Def |
|-------------------------------------------------|------|---------------|------|------|------|------|------|------|---------------|------|-----|-----|
| System mode setting command                     | 1st  | 1             | 0    | 0    | 0    | 0    | 1    | 0    | 0             | —    | W   | _   |
| System oscillator and<br>Display on/off Setting | 2nd  | х             | х    | х    | х    | х    | х    | S    | E             | —    | W   | 00H |

Note:

| В | it | Internal System assillator |             |
|---|----|----------------------------|-------------|
| S | E  | Internal System oscillator | LCD Display |
| 0 | Х  | off                        | off         |
| 1 | 0  | on                         | off         |
| 1 | 1  | on                         | on          |

• Power on status: Display off and disable the internal system oscillator.



### Frame/PWM Frequency Setting Command

This command is used to select the LCD display frame frequency, the PWM frequency and the PWM level setting.

| Function          | Byte | (MSB)<br>Bit7 | Bit6     | Bit5   | Bit4          | Bit3                 | Bit2   | Bit1 | (LSB)<br>Bit0 | Note | R/W | Def |
|-------------------|------|---------------|----------|--------|---------------|----------------------|--------|------|---------------|------|-----|-----|
| Frequency command | 1st  | 1             | 0        | 0      | 0             | 0                    | 1      | 1    | 0             | —    | W   |     |
| Frequency setting | 2nd  | Х             | PWS      | х      | PF1           | PF0                  | х      | F1   | F0            | —    | w   | 02⊦ |
| Note:             |      |               |          |        |               | 1                    |        |      |               |      |     |     |
| Bit [1:0]         |      |               | LCD F    | rame F | reque         | ncy                  |        |      |               |      |     |     |
| F1, F0            | 1/1  | , 1/2, 1/4    | 1, 1/8 d | uty    |               | 1/3 c                | luty   |      |               |      |     |     |
| 00                |      | 85.3          | Hz       |        |               | 91                   | Hz     |      |               |      |     |     |
| 01                |      | 170.6         | 6 Hz     |        |               | 182                  | Hz     |      |               |      |     |     |
| 10                |      | 64 Hz (o      | lefault) |        | 68            | 3.3 Hz               | defaul | t)   |               |      |     |     |
| 11                |      | 128           | Hz       |        |               | 136.5                | 5 Hz   |      |               |      |     |     |
| Bit [4:3]         |      |               |          |        |               |                      |        |      |               |      |     |     |
| PF1, PF0          |      |               | P        |        | equen         | cy (f <sub>PWN</sub> | n)     |      |               |      |     |     |
| 00                |      |               |          | 8      | 35.3 Hz       | :                    |        |      |               |      |     |     |
| 01                |      |               |          |        | 128 Hz        |                      |        |      |               |      |     |     |
| 10                |      |               |          | 1      | 70.6 H        | Z                    |        |      |               |      |     |     |
| 11                |      |               |          | 2      | 256 Hz        |                      |        |      |               |      |     |     |
| PWS               |      |               | F        | PWM s  | tep selection |                      |        |      |               |      |     |     |
| 0                 |      |               |          |        |               | 64                   |        |      |               |      |     |     |
| 1                 |      |               | 128      |        |               |                      |        |      |               |      |     |     |

### Note:

If the LED driver is used for back light application, it is suggested to set the PWM frequency as the following table shown to avoid from the display flicker. If the LED driver is not used for back light application, there is no limitation for the PWM frequency selection.

| <b>Fuerra Fuerra</b> | PWM F              | requency            |
|----------------------|--------------------|---------------------|
| Frame Frequency      | PWM step= 64 steps | PWM step =128 steps |
| 64Hz                 | 85.3 Hz or170.6Hz  | 85.3 Hz or170.6Hz   |
| 85.3Hz               | 128Hz or 256Hz     | 128Hz or 256Hz      |
| 128Hz                | 170.6Hz            | invalid             |
| 170.6 Hz             | 256 Hz             | invalid             |

• Power on status: LCD Frame frequency is set to 64Hz and PWM frequency is set to 85.3Hz.



### **Blinking Frequency Command**

| Functio                  | Bit7                                                                                                                                                       |     | (MSB)<br>Bit7 | Bit6    | Bit5    | Bit4   | Bit3 | Bit2 | Bit1 | (LSB)<br>Bit0 | Note | R/W | Def |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|---------|---------|--------|------|------|------|---------------|------|-----|-----|
| Blinking Freq<br>command | uency                                                                                                                                                      | 1st | 1             | 0       | 0       | 0      | 1    | 0    | 0    | 0             | —    | w   | _   |
| Blinking Freq setting    | uency                                                                                                                                                      | 2nd | х             | Х       | Х       | Х      | Х    | х    | BK1  | BK0           | _    | w   | 00H |
| Note:                    |                                                                                                                                                            |     |               |         |         |        |      |      |      |               |      |     |     |
| В                        | it                                                                                                                                                         |     | DI            | akina   | Erogu   |        |      |      |      |               |      |     |     |
| BK1                      | BK                                                                                                                                                         | 0   | Ы             | nking   | Frequ   | ency   |      |      |      |               |      |     |     |
| 0                        | 0                                                                                                                                                          |     | Bli           | nking ( | off (de | fault) |      |      |      |               |      |     |     |
| 0                        | 1                                                                                                                                                          |     |               | 2       | 2Hz     |        |      |      |      |               |      |     |     |
| 1                        | 0                                                                                                                                                          |     |               | 1       | Hz      |        |      |      |      |               |      |     |     |
| 1                        | 1                                                                                                                                                          |     |               | 0.      | 5Hz     |        |      |      |      |               |      |     |     |
|                          | <ul><li>Power on status: Blinking function is switched off.</li><li>If the programmed command is not defined, the function will not be affected.</li></ul> |     |               |         |         |        |      |      |      |               |      |     |     |

### Internal Voltage Adjustment (IVA) Setting Command

The internal voltage (V<sub>LCD</sub>) adjustment can provide eight kinds of regulator voltage adjustment options by setting the LCD operating voltage adjustment command.

| Func                             | tion             | Byte      | (MSB)<br>Bit7 | Bit6    | Bit5    | Bit4                     | Bit3                       | Bit2    | Bit1 | (LSB)<br>Bit0 | Note | R/W | Def |
|----------------------------------|------------------|-----------|---------------|---------|---------|--------------------------|----------------------------|---------|------|---------------|------|-----|-----|
| Internal Voltag<br>Adjustment (I |                  | 1st       | 1             | 0       | 0       | 0                        | 1                          | 0       | 1    | 0             | _    | W   | _   |
| Internal Voltag                  | ge Adjust        | 2nd       | х             | x       | х       | VE                       | х                          | V2      | V1   | V0            | _    | W   | 00H |
| Note:                            |                  |           |               |         | 1       |                          |                            |         | I    |               | I    |     | 1   |
| VE                               |                  |           | Regu          | lator a | adjusti | ment                     |                            |         |      |               |      |     |     |
| 0                                | Off              | - bias vo | Itage is s    | supplie | ed from | NVLCE                    | ) pin (                    | default | :)   |               |      |     |     |
| 1                                | On -             | bias volt | age is sı     | upplied | from    | the int                  | ernalı                     | egulat  | or   |               |      |     |     |
| V2                               | V1               | V         | 0             | Re      | gulato  | or outp                  | out vo                     | ltage ( | (V)  |               |      |     |     |
| 0                                | 0                | (         | )             |         |         | • • • • • • • • •        |                            |         |      |               |      |     |     |
| 0                                | U U              |           |               |         |         |                          |                            |         |      |               |      |     |     |
| 0                                | 0                |           |               |         |         | 3.0                      |                            |         |      |               |      |     |     |
|                                  | -                |           |               |         |         |                          | 2V                         |         |      | -             |      |     |     |
| 0                                | 0                |           | )             |         |         | 3.2                      | 2V<br>3V                   |         |      | _             |      |     |     |
| 0                                | 0                | (         | )             |         |         | 3.2<br>3.3               | 2V<br>3V<br>4V             |         |      | -             |      |     |     |
| 0<br>0<br>0                      | 0<br>1<br>1      | (         | )<br>)<br>)   |         |         | 3.2<br>3.3<br>3.4        | 2V<br>3V<br>4V             |         |      | -             |      |     |     |
| 0<br>0<br>0<br>1                 | 0<br>1<br>1<br>0 |           | )             |         |         | 3.2<br>3.3<br>3.4<br>4.4 | 2V<br>3V<br>4V<br>4V<br>5V |         |      | -             |      |     |     |

isable the internal regulator.

• When the VLCD voltage is lower than 3.5V, it is recommended to disable the internal regulator so that the  $V_{\mbox{\tiny LCD}}$  voltage is directly connected to the internal Bias voltage generator.

- Caution: use the internal regulator when the "Regulator output voltage  ${<\,V_{\rm LCD}\,}{-}0.5V$  "



### LED Output1 Control Command

This command defines the LED0~LED7 data and control the corresponding LED PWM dimming function.

| Function                   | Byte                | (MSB)<br>Bit7                                     | В    | it6  | Bit5                                                                                                                | Bit4  | Bit3  | Bit2  | Bit1  | (LSB)<br>Bit0 | Note | R/W | Def |  |  |
|----------------------------|---------------------|---------------------------------------------------|------|------|---------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|---------------|------|-----|-----|--|--|
| LED output1 control        | 1st                 | 1                                                 |      | 0    | 0                                                                                                                   | 1     | 0     | 1     | 0     | 0             |      | W   | _   |  |  |
| LEDn PWM<br>enable control | 2nd                 | PWEN7                                             | PW   | EN6  | PWEN5                                                                                                               | PWEN4 | PWEN3 | PWEN2 | PWEN1 | PWEN0         |      | W   | 00H |  |  |
| LED0~LED7<br>output data   | 3rd                 | LED7                                              | LE   | D6   | LED5                                                                                                                | LED4  | LED3  | LED2  | LED1  | LED0          |      | W   | 00H |  |  |
|                            |                     |                                                   |      |      |                                                                                                                     |       |       |       |       |               |      |     |     |  |  |
| PWENn                      |                     | EDn PWM                                           | rol  |      | Note                                                                                                                |       |       |       |       |               |      |     |     |  |  |
| 0                          |                     | Off                                               |      |      | The LED output status will not be changed by System oscillator and LCD display On/Off control setting.              |       |       |       |       |               |      |     |     |  |  |
| 1                          |                     | On                                                |      |      | he LED output will be switched off when the device enters the tandby mode and turned on again after it is woken up. |       |       |       |       |               |      |     |     |  |  |
| LEDn                       |                     | LE                                                | Dn I | Data |                                                                                                                     |       |       |       |       |               |      |     |     |  |  |
| 0                          |                     |                                                   |      |      | ed off                                                                                                              |       |       |       |       |               |      |     |     |  |  |
| 1                          |                     | 0 – LEDn is switched off<br>1 – LEDn is turned on |      |      |                                                                                                                     |       |       |       |       |               |      |     |     |  |  |
| Note:                      | I                   |                                                   |      |      |                                                                                                                     |       |       |       |       |               |      |     |     |  |  |
|                            | 'n" ranges from 0~7 |                                                   |      |      |                                                                                                                     |       |       |       |       |               |      |     |     |  |  |

- Power on reset status: All LED output pins are set to a high level with a voltage of  $V_{\text{LCD}}$ .

• The LED and PWM registers and latches are cleared after a new configuration is written into the KX, KY and L fields in the SEG/KSL shared pin configuration setting command.



## LED Output2 Control Command

This command defines the LED8~LED11 data and control the corresponding LED PWM dimming function.

|                                 |        |                    |         |          |          | 1           | 1                           | 1           | [                     |          | 1     |     |
|---------------------------------|--------|--------------------|---------|----------|----------|-------------|-----------------------------|-------------|-----------------------|----------|-------|-----|
| Function                        | Byte   | (MSB)<br>Bit7      | Bit6    | Bit5     | Bit4     | Bit3        | Bit2                        | Bit1        | (LSB)<br>Bit0         | Note     | R/W   | Def |
| LED output2<br>control          | 1st    | 1                  | 0       | 0        | 1        | 0           | 1                           | 1           | 0                     | _        | W     |     |
| LEDn PWM<br>enable control      | 2nd    | x                  | x       | x        | х        | PWEN11      | PWEN10                      | PWEN9       | PWEN8                 | _        | W     | 00Н |
| LED8~LED11<br>output data       | 3rd    | х                  | x       | x        | х        | LED11       | LED10                       | LED9        | LED8                  | _        | W     | 00H |
|                                 |        |                    |         |          |          |             |                             |             |                       |          |       |     |
| PWENn                           |        | Dn PWM<br>ion Cont |         |          |          |             | Note                        |             |                       |          |       |     |
| 0                               |        | Off                |         |          |          |             | not be char<br>On/Off cont  |             |                       |          |       |     |
| 1                               |        | On                 |         |          | •        |             | tched off wh<br>ed on agair |             |                       |          |       |     |
| LEDn                            |        | LE                 | Dn Da   | ıta      |          |             |                             |             |                       |          |       |     |
| 0                               | (      | 0 – LEDn           | is sw   | itched o | ff       |             |                             |             |                       |          |       |     |
| 1                               |        | 1 – LED            | n is tu | rned on  |          |             |                             |             |                       |          |       |     |
| Note:                           |        |                    |         |          |          |             |                             |             |                       |          |       |     |
| • "n" ranges fr                 | om 8~1 | 11                 |         |          |          |             |                             |             |                       |          |       |     |
| Power on res                    |        |                    | ED out  | put pin  | s are se | t to a high | level with a                | a voltage c | of V <sub>LCD</sub> . |          |       |     |
| • The LED and<br>L fields in th |        | •                  |         |          |          |             | •                           | uration is  | written in            | to the K | X, KY | and |



### SEG/KSL Shared Pin Configuration Command

This command defines the segment, Key input, Key scan output and LED pin number on the shared pins. It is recommended that the SEG/KSL shared pin configuration should be changed when the LCD display is switched off. Otherwise, the unpredictable results will occur.

| Function                                         | Byte | (MSB)<br>Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | (LSB)<br>Bit0 | Note                                            | R/W | Def |
|--------------------------------------------------|------|---------------|------|------|------|------|------|------|---------------|-------------------------------------------------|-----|-----|
| Shared pin<br>configuration                      | 1st  | 1             | 0    | 0    | 0    | 1    | 1    | 1    | 0             | _                                               | W   | _   |
| LED pin number setting                           | 2nd  | х             | x    | x    | x    | L3   | L2   | L1   | L0            | L: LED pin setting                              | W   | 00H |
| Key input and Key scan output pin number setting | 3rd  | KX2           | KX1  | KX0  | KY4  | KY3  | KY2  | KY1  | KY0           | KX: Key output setting<br>KY: Key input setting | W   | 00H |

| L [3:0]   | LED pin number (N <sub>LED</sub> ) | LED Pin Configuration Descriptions |
|-----------|------------------------------------|------------------------------------|
| 0000      | 0                                  | No LED pin selected                |
| 0001      | 1                                  | LED0 selected                      |
| 0010      | 2                                  | LED0~LED1 selected                 |
| 0011      | 3                                  | LED0~LED2 selected                 |
| 0100      | 4                                  | LED0~LED3 selected                 |
| 0101      | 5                                  | LED0~LED4 selected                 |
| 0110      | 6                                  | LED0~LED5 selected                 |
| 0111      | 7                                  | LED0~LED6 selected                 |
| 1000      | 8                                  | LED0~LED7 selected                 |
| 1001      | 9                                  | LED0~LED8 selected                 |
| 1010      | 10                                 | LED0~LED9 selected                 |
| 1011      | 11                                 | LED0~LED10 selected                |
| 1100~1111 | 12                                 | LED0~LED11 selected                |

| KX [2:0] | Key Scan output pin<br>number (Ν <sub>κs</sub> ) | Key Scan Pin (KS) Configuration Descriptions |
|----------|--------------------------------------------------|----------------------------------------------|
| 000      | 0                                                | No KS pin selected                           |
| 001      | 1                                                | KS0 selected                                 |
| 010      | 2                                                | KS0~KS1 selected                             |
| 011      | 3                                                | KS0~KS2 selected                             |
| 100~111  | 4                                                | KS0~KS3 selected                             |



| KY [4:0]    | Key input pin number<br>(Ν <sub>κ</sub> ) | Key input Pin (K) Configuration Descriptions |
|-------------|-------------------------------------------|----------------------------------------------|
| 00000       | 0                                         | No Key input selected                        |
| 00001       | 1                                         | 1 Key input selected                         |
| 00010       | 2                                         | 2 Key input selected                         |
| 00011       | 3                                         | 3 Key input selected                         |
| 00100       | 4                                         | 4 Key input selected                         |
| 00101       | 5                                         | 5 Key input selected                         |
| 00110       | 6                                         | 6 Key input selected                         |
| 00111       | 7                                         | 7 Key input selected                         |
| 01000       | 8                                         | 8 Key input selected                         |
| 01001       | 9                                         | 9 Key input selected                         |
| 01010       | 10                                        | 10 Key input selected                        |
| 01011       | 11                                        | 11 Key input selected                        |
| 01100       | 12                                        | 12 Key input selected                        |
| 01101       | 13                                        | 13 Key input selected                        |
| 01110       | 14                                        | 14 Key input selected                        |
| 01111       | 15                                        | 15 Key input selected                        |
| 10000~11111 | 16                                        | 16 Key input selected                        |

Note:

- The maximum SEG/KSL shared pin number is 16, i.e.,  $(N_{LED}+N_{KS}+N_{K}+N_{SEG}) = 16$ . N<sub>SEG</sub>: Segment pin number, up to 16.
  - $N_{K}$ : Key input pin number, up to 16.
  - N<sub>KS</sub>: Key scan output pin number, up to 4.

N<sub>LED</sub>: LED output pin number, up to 12.

- The pin-shared function priority: LED > Key Scan output > Key input > Segment output.
- The LED data and Key data are cleared and INT output is changed to its inactive level after a new configuration is written into the KX, KY or L field in the SEG/KSL shared pin configuration setting command.
- Power on reset status: The shared pin is set as a segment output pin.
- If the programmed command is not defined, the function will not be affected



### • SEG/KSL Shared Pin Configuration example:

| Key Input/Output<br>number<br>setting         LED<br>number<br>setting         Seg51<br>KSL15         Seg52<br>KSL15         Seg525         Seg525         Seg52 | Shared | pins Config<br>setting | juration | SEG / KSL Shared pins |       |       |       |       |       |       |       |       |       |       |                |       |       |       |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------|----------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|-------|-------|-------|-------|
| train         train         train         base         base        <                                                                                                                                                                                                                                                                                                                                                                                                                           |        | ut/Output              | number   |                       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |       |
| 00000         00010         Serie         Series         Series <th>кх</th> <th>кү</th> <th></th> <th>Seg62_<br/>KSL4</th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                          | кх     | кү                     |          |                       |       |       |       |       |       |       |       |       |       |       | Seg62_<br>KSL4 |       |       |       |       |
| 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000b   | 00000b                 | 0000b    | Seg51                 | Seg52 | Seg53 | Seg54 | Seg55 | Seg56 | Seg57 | Seg58 | Seg59 | Seg60 | Seg61 | Seg62          | Seg63 | Seg64 | Seg65 | Seg66 |
| 00000         00010         6ep31         8ep32         8ep32         8ep34         8ep34         8ep35         8ep34         8ep34 <th< td=""><td>000b</td><td>00000b</td><td>0001b</td><td>Seg51</td><td>Seg52</td><td>Seg53</td><td>Seg54</td><td>Seg55</td><td>Seg56</td><td>Seg57</td><td>Seg58</td><td>Seg59</td><td>Seg60</td><td>Seg61</td><td>Seg62</td><td>Seg63</td><td>Seg64</td><td>Seg65</td><td>LED0</td></th<>                                                                                                        | 000b   | 00000b                 | 0001b    | Seg51                 | Seg52 | Seg53 | Seg54 | Seg55 | Seg56 | Seg57 | Seg58 | Seg59 | Seg60 | Seg61 | Seg62          | Seg63 | Seg64 | Seg65 | LED0  |
| 00000         00000         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         6400         <                                                                                                                                                                                                                                                                                                                                                                                                                           | 000b   | 00000b                 | 0010b    | Seg51                 | Seg52 | Seg53 | Seg54 | Seg55 | Seg56 | Seg57 | Seg58 | Seg59 | Seg60 | Seg61 | Seg62          | Seg63 | Seg64 | LED1  | LED0  |
| Norm         Norm <th< td=""><td>000b</td><td>00000b</td><td>0011b</td><td>Seg51</td><td>Seg52</td><td>Seg53</td><td>Seg54</td><td>Seg55</td><td>Seg56</td><td>Seg57</td><td>Seg58</td><td>Seg59</td><td>Seg60</td><td>Seg61</td><td>Seg62</td><td>Seg63</td><td>LED2</td><td>LED1</td><td>LED0</td></th<>                                                                                                                                              | 000b   | 00000b                 | 0011b    | Seg51                 | Seg52 | Seg53 | Seg54 | Seg55 | Seg56 | Seg57 | Seg58 | Seg59 | Seg60 | Seg61 | Seg62          | Seg63 | LED2  | LED1  | LED0  |
| 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000b   | 00000b                 | 0100b    | Seg51                 | Seg52 | Seg53 | Seg54 | Seg55 | Seg56 | Seg57 | Seg58 | Seg59 | Seg60 | Seg61 | Seg62          | LED3  | LED2  | LED1  | LED0  |
| 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000b   | 00000b                 | 0101b    | Seg51                 | Seg52 | Seg53 | Seg54 | Seg55 | Seg56 | Seg57 | Seg58 | Seg59 | Seg60 | Seg61 | LED4           | LED3  | LED2  | LED1  | LED0  |
| 0000b         00000b         10000         Seg15         Seg35         Seg35         Seg45         Seg55         Seg57         Seg45         LED         LED <thled< th=""> <thled< th=""> <thled< th=""></thled<></thled<></thled<>                                                                                                                                                                                                                                                                                                                                                                                                                          | 000b   | 00000b                 | 0110b    | Seg51                 | Seg52 | Seg53 | Seg54 | Seg55 | Seg56 | Seg57 | Seg58 | Seg59 | Seg60 | LED5  | LED4           | LED3  | LED2  | LED1  | LED0  |
| 0000         1001         Seg1         Seg2         Seg3         Seg4         Seg5         Seg5         Seg5         LED         LED </td <td>000b</td> <td>00000b</td> <td>0111b</td> <td>Seg51</td> <td>Seg52</td> <td>Seg53</td> <td>Seg54</td> <td>Seg55</td> <td>Seg56</td> <td>Seg57</td> <td>Seg58</td> <td>Seg59</td> <td>LED6</td> <td>LED5</td> <td>LED4</td> <td>LED3</td> <td>LED2</td> <td>LED1</td> <td>LED0</td>                                                                                                                                                                               | 000b   | 00000b                 | 0111b    | Seg51                 | Seg52 | Seg53 | Seg54 | Seg55 | Seg56 | Seg57 | Seg58 | Seg59 | LED6  | LED5  | LED4           | LED3  | LED2  | LED1  | LED0  |
| 00000         10100         Seg51         Seg51         Seg51         Seg51         Seg51         Seg51         LED         LED <thled< th=""> <thled< th="">         LED</thled<></thled<>                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000b   | 00000b                 | 1000b    | Seg51                 | Seg52 | Seg53 | Seg54 | Seg55 | Seg56 | Seg57 | Seg58 | LED7  | LED6  | LED5  | LED4           | LED3  | LED2  | LED1  | LED0  |
| 00000         10110         Seg51         Seg52         Seg54         Seg54         Seg54         Seg54         LED0                                                                                                                                                                                                                                                                                                                                                                                                                               | 000b   | 00000b                 | 1001b    | Seg51                 | Seg52 | Seg53 | Seg54 | Seg55 | Seg56 | Seg57 | LED8  | LED7  | LED6  | LED5  | LED4           | LED3  | LED2  | LED1  | LED0  |
| 00000         11000         Seg51         Seg52         Seg53         Seg53         Seg53         Seg53         Seg54         LED11         LED0         LED8         LED3         LED5         LED5         LED3         LED3 <thled3< th=""> <thled3< th="">         LED3</thled3<></thled3<>                                                                                                                                                                                                                                                                                                                                                                                                   | 000b   | 00000b                 | 1010b    | Seg51                 | Seg52 | Seg53 | Seg54 | Seg55 | Seg56 | LED9  | LED8  | LED7  | LED6  | LED5  | LED4           | LED3  | LED2  | LED1  | LED0  |
| 1000         01000         Seg51         Seg52         Seg53         Seg33         Seg33         Seg3                                                                                                                                                                                                                                                                                                                                                                                                                 | 000b   | 00000b                 | 1011b    | Seg51                 | Seg52 | Seg53 | Seg54 | Seg55 | LED10 | LED9  | LED8  | LED7  | LED6  | LED5  | LED4           | LED3  | LED2  | LED1  | LED0  |
| 1000         0100b         K15         K14         K13         K12         K11         K10         K8         K83         KS2         KS1         KS0         LED3         LED3 <thled3< th=""> <thled3< th=""> <thled3< th=""></thled3<></thled3<></thled3<>                                                                                                                                                                                                                                                                                                                                                                                              | 000b   | 00000b                 | 1100b    | Seg51                 | Seg52 | Seg53 | Seg54 | LED11 | LED10 | LED9  | LED8  | LED7  | LED6  | LED5  | LED4           | LED3  | LED2  | LED1  | LED0  |
| 0000b01100b01000bK15K14K13K12K11K10K19K8K70K6K5K4LEDLEDLEDLED001b0101bb1000bK15K14K13K12K11K10K9K8K70LEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLEDLED<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100b   | 00100b                 | 0100b    | Seg51                 | Seg52 | Seg53 | Seg54 | K11   | K10   | К9    | K8    | KS3   | KS2   | KS1   | KS0            | LED3  | LED2  | LED1  | LED0  |
| Online     Online     Non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100b   | 01000b                 | 0100b    | K15                   | K14   | K13   | K12   | K11   | K10   | К9    | K8    | KS3   | KS2   | KS1   | KS0            | LED3  | LED2  | LED1  | LED0  |
| 1 method1 metho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000b   | 01100b                 | 0100b    | K15                   | K14   | K13   | K12   | K11   | K10   | К9    | K8    | K7    | K6    | K5    | K4             | LED3  | LED2  | LED1  | LED0  |
| 1 $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ <td>001b</td> <td>00111b</td> <td>1000b</td> <td>K15</td> <td>K14</td> <td>K13</td> <td>K12</td> <td>K11</td> <td>K10</td> <td>К9</td> <td>KS0</td> <td>LED7</td> <td>LED6</td> <td>LED5</td> <td>LED4</td> <td>LED3</td> <td>LED2</td> <td>LED1</td> <td>LED0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 001b   | 00111b                 | 1000b    | K15                   | K14   | K13   | K12   | K11   | K10   | К9    | KS0   | LED7  | LED6  | LED5  | LED4           | LED3  | LED2  | LED1  | LED0  |
| 1000         1000b         1000b         K15         K14         K13         K12         K33         K52         K51         K50         LED7         LED6         LED5         LED4         LED3         LED2         LED1         LED3           000b         1000b         1000b         K15         K14         K13         K12         K11         K10         K9         K8         LED7         LED6         LED4         LED3         LED2         LED1         LED0           000b         1000b         1100b         K15         K14         K13         K12         K11         K10         K9         K8         LED7         LED6         LED4         LED3         LED2         LED1         LED0           0011b         100b         K15         K14         K31         KS0         LED1         LED1         LED3         LED7         LED6         LED5         LED4         LED3                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 010b   | 00110b                 | 1000b    | K15                   | K14   | K13   | K12   | K11   | K10   | KS1   | KS0   | LED7  | LED6  | LED5  | LED4           | LED3  | LED2  | LED1  | LED0  |
| 0000b $1000b$ $1000b$ $1100b$ $1100b$ $111b$ $111b$ $111b$ $1100b$ $111b$ $111b$ $1100b$ $110b$ $111b$ $111b$ $1100b$ $111b$ $111b$ $110bb$ $111b$ $111b$ $1100b$ $111b$ $111b$ $110bb$ $111b$ $1111b$ $111b$ $111b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 011b   | 00101b                 | 1000b    | K15                   | K14   | K13   | K12   | K11   | KS2   | KS1   | KS0   | LED7  | LED6  | LED5  | LED4           | LED3  | LED2  | LED1  | LED0  |
| 0001b $1100b$ $K15$ $K14$ $K13$ $K50$ $LE01$ $LE01$ $LE00$ </td <td>100b</td> <td>00100b</td> <td>1000b</td> <td>K15</td> <td>K14</td> <td>K13</td> <td>K12</td> <td>KS3</td> <td>KS2</td> <td>KS1</td> <td>KS0</td> <td>LED7</td> <td>LED6</td> <td>LED5</td> <td>LED4</td> <td>LED3</td> <td>LED2</td> <td>LED1</td> <td>LED0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100b   | 00100b                 | 1000b    | K15                   | K14   | K13   | K12   | KS3   | KS2   | KS1   | KS0   | LED7  | LED6  | LED5  | LED4           | LED3  | LED2  | LED1  | LED0  |
| 00010 $1100b$ $K15$ $K14$ $KS1$ $KS0$ $LE01$ $LE00$ $LE00$ $LE07$ $LE06$ $LE05$ $LE04$ $LE03$ $LE02$ $LE01$ $LE01$ $011b$ $0001b$ $1100b$ $K15$ $KS2$ $KS1$ $KS0$ $LE01$ $LE01$ $LE02$ $LE02$ $LE03$ $LE02$ $LE02$ $LE02$ $LE02$ $LE02$ $LE02$ $LE02$ $LE01$ $LE00$ $0001b$ $1100b$ $K15$ $KS2$ $KS1$ $KS2$ $LE01$ $LE01$ $LE02$ <t< td=""><td>000b</td><td>01000b</td><td>1000b</td><td>K15</td><td>K14</td><td>K13</td><td>K12</td><td>K11</td><td>K10</td><td>К9</td><td>K8</td><td>LED7</td><td>LED6</td><td>LED5</td><td>LED4</td><td>LED3</td><td>LED2</td><td>LED1</td><td>LED0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000b   | 01000b                 | 1000b    | K15                   | K14   | K13   | K12   | K11   | K10   | К9    | K8    | LED7  | LED6  | LED5  | LED4           | LED3  | LED2  | LED1  | LED0  |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 001b   | 00011b                 | 1100b    | K15                   | K14   | K13   | KS0   | LED11 | LED10 | LED9  | LED8  | LED7  | LED6  | LED5  | LED4           | LED3  | LED2  | LED1  | LED0  |
| ONDEONDEONDEK16K14K13K12LED1LED1LED0LED8LED7LED6LED5LED4LED3LED2LED1LED0001bb01111b0000bK15K14K13K12K11K10K9K8K7K6K5K4K3K2K1K50011bb01110b0000bK15K14K13K12K11K10K9K8K7K6K5K4K3K2K11K50011bb0100bK15K14K13K12K11K10K9K8K7K6K5K4K3K52K51K50010b0110b0000bK15K14K13K12K11K10K9K8K7K6K5K4K3K52K51K50010b0100b0000bK15K14K13K12K11K10K9K8K7K6K5K4K3K52K51K50010b0100b0000bK15K14K13K12K11K10K9K8K7K6K5K4K3K52K51K50010b0100b0000bK55K14K13K12K11K10K9K8K7K6K5K4K3K52K51K50010b0100b0000bK55K14K13K12K11K10K9K65K7 <t< td=""><td>010b</td><td>00010b</td><td>1100b</td><td>K15</td><td>K14</td><td>KS1</td><td>KS0</td><td>LED11</td><td>LED10</td><td>LED9</td><td>LED8</td><td>LED7</td><td>LED6</td><td>LED5</td><td>LED4</td><td>LED3</td><td>LED2</td><td>LED1</td><td>LED0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 010b   | 00010b                 | 1100b    | K15                   | K14   | KS1   | KS0   | LED11 | LED10 | LED9  | LED8  | LED7  | LED6  | LED5  | LED4           | LED3  | LED2  | LED1  | LED0  |
| 01111b         0000b         K15         K14         K13         K12         K11         K10         K9         K8         K7         K6         K5         K4         K3         K2         K1         K50           011b         0110b         0000b         K15         K14         K13         K12         K11         K10         K9         K8         K7         K6         K5         K4         K3         K2         K1         K50           010b         0110b         0000b         K15         K14         K13         K12         K11         K10         K9         K8         K7         K6         K5         K4         K3         K2         K51         K50           011b         0100b         K15         K14         K13         K12         K11         K10         K9         K8         K7         K6         K5         K4         K3         K2         K51         K50           011b         0100b         K15         K14         K13         K12         K11         K10         K9         K8         K7         K6         K5         K4         K3         K2         K51         K50           100b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 011b   | 00001b                 | 1100b    | K15                   | KS2   | KS1   | KS0   | LED11 | LED10 | LED9  | LED8  | LED7  | LED6  | LED5  | LED4           | LED3  | LED2  | LED1  | LED0  |
| 0110b         0100b         K15         K14         K13         K12         K11         K10         K9         K8         K7         K6         K5         K4         K3         K2         K51         K50           0110b         0100b         K15         K14         K13         K12         K11         K10         K9         K8         K7         K6         K5         K4         K3         K2         K51         K50           0110b         0100b         K15         K14         K13         K12         K11         K10         K9         K8         K7         K6         K5         K4         K3         K2         K51         K50           100b         0100b         K000b         K15         K14         K13         K12         K11         K10         K9         K8         K7         K6         K5         K4         K3         K52         K51         K50           100b         0100b         0000b         K55         Seg5         Seg5         Seg5         Seg5         Seg5         K7         K6         K5         K4         K3         K2         K1         K50           100b         0100b         Seg5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000b   | 00100b                 | 1100b    | K15                   | K14   | K13   | K12   | LED11 | LED10 | LED9  | LED8  | LED7  | LED6  | LED5  | LED4           | LED3  | LED2  | LED1  | LED0  |
| 1000         10100b         0000b         K15         K14         K13         K12         K11         K10         K9         K8         K7         K6         K5         K4         K3         K32         K31         K30           100b         0100b         0000b         K15         K14         K13         K12         K11         K10         K9         K8         K7         K6         K5         K4         K3         K52         K51         K50           100b         0100b         0000b         K15         K14         K13         K12         K11         K10         K9         K8         K7         K6         K5         K4         K3         K52         K51         K50           100b         0100b         0000b         K595         K565         K565         K56         K7         K6         K5         K4         K3         K52         K51         K50           100b         0100b         0000b         Seg57         Seg57         Seg58         K7         K6         K5         K4         K3         K2         K1         K60           1000b         0100b         Seg57         Seg57         Seg58         K7 <td>001b</td> <td>01111b</td> <td>0000b</td> <td>K15</td> <td>K14</td> <td>K13</td> <td>K12</td> <td>K11</td> <td>K10</td> <td>K9</td> <td>K8</td> <td>K7</td> <td>K6</td> <td>K5</td> <td>K4</td> <td>КЗ</td> <td>K2</td> <td>K1</td> <td>KS0</td>                                                                                                                                                                                                                                                          | 001b   | 01111b                 | 0000b    | K15                   | K14   | K13   | K12   | K11   | K10   | K9    | K8    | K7    | K6    | K5    | K4             | КЗ    | K2    | K1    | KS0   |
| 100b       01100b       0000b       K15       K14       K13       K12       K11       K10       K9       K8       K7       K6       K5       K4       K3       K52       K51       K50         100b       00100b       0000b       Seg51       Seg52       Seg53       Seg54       Seg55       Seg56       Seg57       Seg58       K7       K6       K5       K4       K53       K52       K51       K50         000b       0100b       0000b       Seg51       Seg52       Seg53       Seg56       Seg57       Seg58       K7       K6       K5       K4       K53       K52       K51       K50         000b       0100b       0000b       Seg51       Seg52       Seg54       Seg56       Seg57       Seg58       K7       K6       K5       K4       K3       K2       K1       K50         000b       0100b       0000b       Seg51       Seg52       Seg56       Seg57       Seg58       K7       K6       K5       K4       K3       K2       K1       K50         000b       Seg51       Seg52       Seg56       Seg56       Seg56       K5       K6       K5       K4       K3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 010b   | 01110b                 | 0000b    | K15                   | K14   | K13   | K12   | K11   | K10   | К9    | K8    | K7    | K6    | K5    | K4             | КЗ    | K2    | KS1   | KS0   |
| 100b         00100b         0000b         Seg51         Seg52         Seg53         Seg54         Seg55         Seg56         Seg57         Seg58         K7         K6         K5         K4         K3         K2         K1         K0           000b         0100b         0000b         Seg51         Seg53         Seg54         Seg55         Seg56         Seg56         K7         K6         K5         K4         K3         K2         K1         K0           000b         0100b         Seg51         Seg52         Seg54         Seg56         Seg56         K7         K6         K5         K4         K3         K2         K1         K0           0100b         0100b         Seg51         Seg52         Seg54         Seg56         Seg58         K7         K6         K5         K4         K3         K2         K1         K0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 011b   | 01101b                 | 0000b    | K15                   | K14   | K13   | K12   | K11   | K10   | K9    | K8    | K7    | K6    | K5    | K4             | КЗ    | KS2   | KS1   | KS0   |
| 000b         01000b         Seg51         Seg52         Seg53         Seg54         Seg55         Seg56         Seg57         Seg58         K7         K6         K5         K4         K3         K2         K1         K0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100b   | 01100b                 | 0000b    | K15                   | K14   | K13   | K12   | K11   | K10   | К9    | K8    | K7    | K6    | K5    | K4             | KS3   | KS2   | KS1   | KS0   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100b   | 00100b                 | 0000b    | Seg51                 | Seg52 | Seg53 | Seg54 | Seg55 | Seg56 | Seg57 | Seg58 | K7    | K6    | K5    | K4             | KS3   | KS2   | KS1   | KS0   |
| 000b 10000b 0000b K15 K14 K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 K0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 000b   | 01000b                 | 0000b    | Seg51                 | Seg52 | Seg53 | Seg54 | Seg55 | Seg56 | Seg57 | Seg58 | K7    | K6    | K5    | K4             | КЗ    | K2    | K1    | K0    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000b   | 10000b                 | 0000b    | K15                   | K14   | K13   | K12   | K11   | K10   | K9    | K8    | K7    | K6    | K5    | K4             | КЗ    | K2    | K1    | К0    |



16 ms ~ 32 ms

### Key Scan Control Command

This command defines the INT pin polarity and Key scan pulse width.

| Fun                 | ction                                                    | Byte                       | (MSB)<br>Bit7            | Bit6    | Bit5                | Bit4   | Bit3    | Bit2                  | Bit1          | (LSB)<br>Bit0 | Note    | R/W     | Def                |  |  |
|---------------------|----------------------------------------------------------|----------------------------|--------------------------|---------|---------------------|--------|---------|-----------------------|---------------|---------------|---------|---------|--------------------|--|--|
| Key scan<br>commanc |                                                          | 1st                        | 1                        | 0       | 0                   | 1      | 0       | 0                     | 0             | 0             |         | W       | _                  |  |  |
| Key scan<br>setting | pulse                                                    | 2nd                        | 2nd POL x x x x x KF1 KF |         |                     |        |         |                       |               |               |         | W       | 01H                |  |  |
| The KF fi           | The KF field is used to define the Key scan pulse width. |                            |                          |         |                     |        |         |                       |               |               |         |         |                    |  |  |
| KF1                 | KF0                                                      | Key S                      | can Puls                 | e Width | (t <sub>kpw</sub> ) | Key Sc | an Cycl | е (t <sub>кст</sub> ) | Key F         | Press De-     | -bounce | Time (1 | t <sub>кст</sub> ) |  |  |
| 0                   | 0                                                        | 1 ms 4 ms 4 ms 4 ms ~ 8 ms |                          |         |                     |        |         |                       |               |               |         |         |                    |  |  |
| 0                   | 1                                                        |                            | 2 m                      | าร      |                     |        | 8 ms    |                       | 8 ms ~ 16 ms  |               |         |         |                    |  |  |
| 1                   | 0                                                        |                            | 3 m                      | าร      |                     |        | 12 ms   |                       | 12 ms ~ 16 ms |               |         |         |                    |  |  |

16 ms

The POL bit is used to define the INT output pin polarity.

4 ms

| POL | INT Output Pin Polarity |
|-----|-------------------------|
| 0   | Active Low              |
| 1   | Active High             |

Note:

1

1

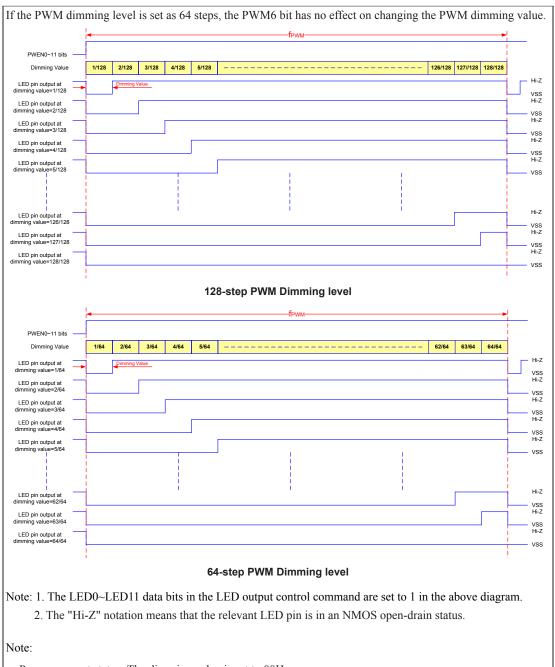
• Power on reset status: The key scan pulse width is set to 2 ms and the INT output level is set to high.



### **LED PWM Luminance Control Command**

This command is used to select the LED output pin and define the corresponding LED PWM luminance duty.

| Function                                | Byte | (MSB)<br>Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | (LSB)<br>Bit0 | Note | R/W | Def |
|-----------------------------------------|------|---------------|------|------|------|------|------|------|---------------|------|-----|-----|
| LED PWM<br>Luminance control<br>command | 1st  | 1             | 0    | 0    | 1    | 0    | 0    | 1    | 0             | _    | W   | _   |
| LED PWM output<br>selection             | 2nd  | x             | х    | х    | х    | LS3  | LS2  | LS1  | LS0           | _    | W   | 00H |
| PWM dimming value                       | 3rd  | х             | PWM6 | PWM5 | PWM4 | PWM3 | PWM2 | PWM1 | PWM0          | _    | W   | 00H |


The LS field is used to select the LED output pin with the PWM luminance function as the relevant PWM function is enabled.

| LS [3:0]  | LED Output Selected |
|-----------|---------------------|
| 0000      | LED0                |
| 0001      | LED1                |
| 0010      | LED2                |
| 0011      | LED3                |
| 0100      | LED4                |
| 0101      | LED5                |
| 0110      | LED6                |
| 0111      | LED7                |
| 1000      | LED8                |
| 1001      | LED9                |
| 1010      | LED10               |
| 1011      | LED11               |
| 1100~1111 | Invalid             |

The PWM field is used to define the selected LED output PWM dimming value.

| PWM [6:0] | Dimming Values | Note                                            |
|-----------|----------------|-------------------------------------------------|
| 0000000   | 1/128          | Lowest LED luminance.                           |
| 0000001   | 2/128          | _                                               |
| 0000010   | 3/128          | _                                               |
| 0000011   | 4/128          | —                                               |
| 0000100   | 5/128          | —                                               |
| :         | :              | :                                               |
| :         | :              | :                                               |
| :         | :              | :                                               |
| 0111101   | 62/128         | _                                               |
| 0111110   | 63/128         | _                                               |
| 0111111   | 64/128         | Highest LED luminance for 64-step PWM setting.  |
| 1000000   | 65/128         | _                                               |
| 1000001   | 66/128         | _                                               |
| :         | :              | :                                               |
| :         | :              | :                                               |
| :         | :              | :                                               |
| 1111100   | 125/128        |                                                 |
| 1111101   | 126/128        |                                                 |
| 1111110   | 127/128        |                                                 |
| 1111111   | 128/128        | Highest LED luminance for 128-step PWM setting. |



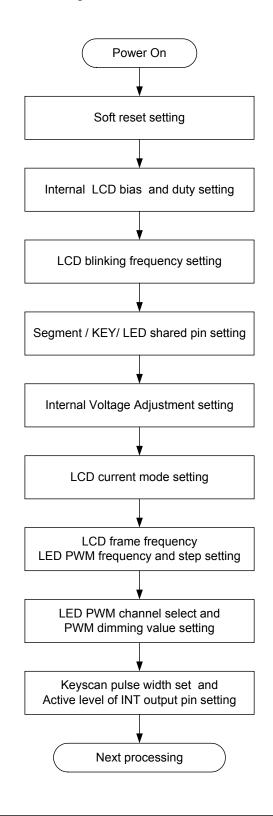


- Power on reset status: The dimming value is set to 00H.
- If the programmed command is not defined, the function will not be affected.



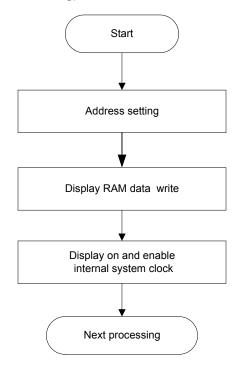
## LCD Driving Current Control Command

This command is used to Select the Current mode according to the characteristics of the LCD panel for achieving high display quality.


| Function                                                                                                                            | Byte | (MSB)<br>Bit7 | Bit6 | Bit5 | Bit4  | Bit3     | Bit2 | Bit1 | (LSB)<br>Bit0 | Note           | R/W | Def |  |
|-------------------------------------------------------------------------------------------------------------------------------------|------|---------------|------|------|-------|----------|------|------|---------------|----------------|-----|-----|--|
| LCD driving current<br>control                                                                                                      | 1st  | 1             | 0    | 0    | 1     | 1        | 0    | 0    | 0             | _              | W   | _   |  |
| Current mode select                                                                                                                 | 2nd  | 0             | 0    | 0    | 0     | 0        | P2   | P1   | P0            | _              | W   | 01H |  |
| P field is used to select the LCD charge current.         P [2:0]       Current mode       Current consumption (I <sub>LCD1</sub> ) |      |               |      |      |       |          |      |      |               |                |     |     |  |
| 000                                                                                                                                 | •    |               |      |      | High  | current  |      |      | X 1.8         |                |     |     |  |
| 001                                                                                                                                 |      |               |      | I    | Norma | curren   | t    |      |               | X 1.0 (default | )   |     |  |
| 010                                                                                                                                 |      |               |      |      | Low c | urrent 1 |      |      |               | X 0.67         |     |     |  |
| 011 Low current 2                                                                                                                   |      |               |      |      |       |          |      |      |               | X 0.50         |     |     |  |
| Note:                                                                                                                               |      |               |      |      |       |          |      |      |               |                |     |     |  |
| Power on reset status: normal current mode.                                                                                         |      |               |      |      |       |          |      |      |               |                |     |     |  |

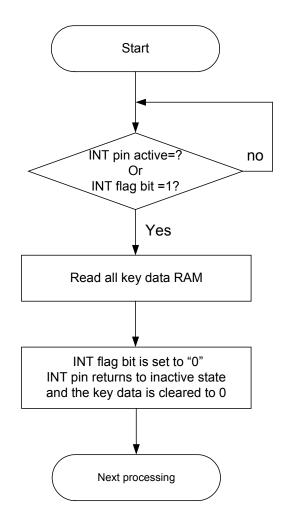


## **Operation Flow Chart**


Access procedures are illustrated below using flowcharts.

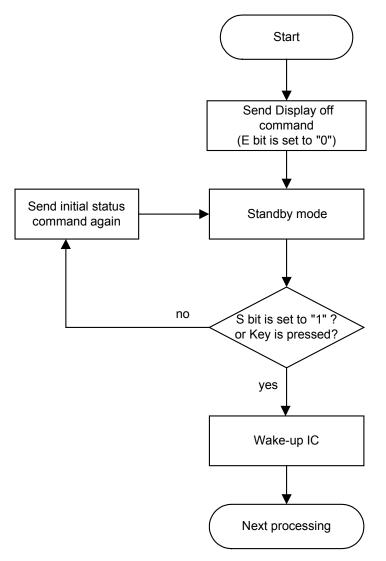
### Initialization






## Display Data Write (Address Setting)





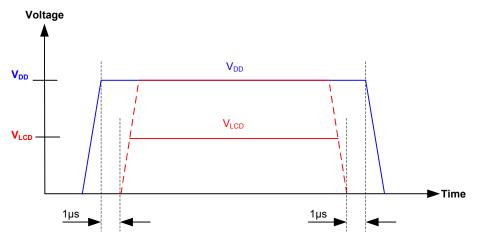

## Key Data Read





## Standby Mode Setting






## **Power Supply Sequence**


- If the power is individually supplied on the LCD and VDD pins, it is strongly recommended to follow the Holtek power supply sequence requirement.
- If the power supply sequence requirement is not followed, it may result in malfunction.

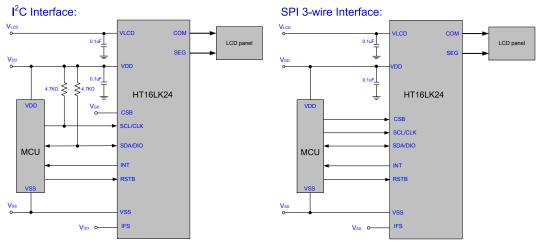
Holtek Power Supply Sequence Requirement:

- 1. Power-on sequence: Turn on the logic power supply  $V_{DD}$  first and then turn on the LCD driver power supply  $V_{LCD}$ .
- 2. Power-off sequence: Turn off the LCD driver power supply  $V_{LCD}$ . First and then turn off the logic power supply  $V_{DD}$ .
- 3. The Holtek Power Supply Sequence Requirement must be followed no matter whether the  $V_{LCD}$  voltage is higher than the  $V_{DD}$  voltage.
- When the  $V_{\mbox{\tiny LCD}}$  voltage is smaller than or is equal to  $V_{\mbox{\tiny DD}}$  voltage application



- When the  $V_{\mbox{\tiny LCD}}$  voltage is greater than  $V_{\mbox{\tiny DD}}$  voltage application

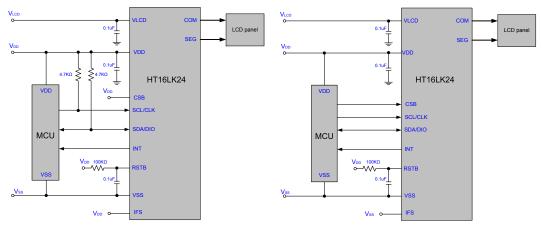





# **Application Circuit**

(1) The SEG/KSL shared pin configuration is 16 segment outputs.

| Config  | Shared Pins<br>Configuration Setting<br>Command |        | Duty | Key C          | Key Circuit  |        | COM    | SEG     | LCD panel     |               |        |         |
|---------|-------------------------------------------------|--------|------|----------------|--------------|--------|--------|---------|---------------|---------------|--------|---------|
| KX[2:0] | KY[4:0]                                         | L[3:0] |      | Output<br>(KS) | Input<br>(K) | Output | Output | Output  | COM<br>Output | SEG<br>Output |        |         |
|         |                                                 |        | 1/1  | none           | none         | none   | COM0   | SEG0~66 | COM0          | SEG0~66       |        |         |
|         |                                                 |        |      | 1              | 1/2          | none   | none   | none    | COM0~1        | SEG0~66       | COM0~1 | SEG0~66 |
| 000b    | 00000b                                          | 0000b  | 1/3  | none           | none         | none   | COM0~2 | SEG0~66 | COM0~2        | SEG0~66       |        |         |
|         |                                                 |        | 1/4  | none           | none         | none   | COM0~3 | SEG0~66 | COM0~3        | SEG0~66       |        |         |
|         | 1                                               |        | 1/8  | none           | none         | none   | COM0~7 | SEG4~66 | COM0~7        | SEG0~62       |        |         |


• The RSTB pin is connected to a MCU

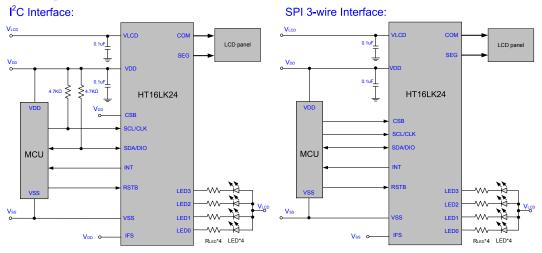


• RSTB pin is connected to external resistor and capacitor.

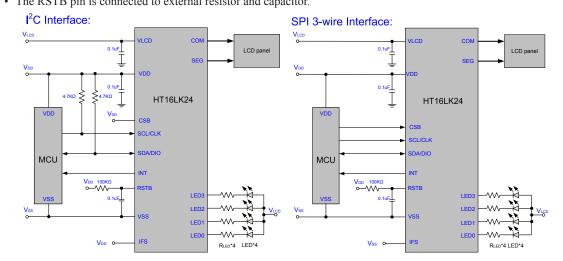







Note: If only the internal power on reset circuit is used, the RSTB pin must be connected to  $V_{\mbox{\tiny DD}}$ .




(2) The SEG/KSL shared pin configuration is 12 segment outputs and 4 LED outputs.

| Config  | Shared pins<br>Configuration setting<br>command |        | Duty | Key circuit    |              | LED    | СОМ    | SEG     | LCD panel     |               |         |
|---------|-------------------------------------------------|--------|------|----------------|--------------|--------|--------|---------|---------------|---------------|---------|
| KX[2:0] | KY[4:0]                                         | L[3:0] |      | Output<br>(KS) | Input<br>(K) | output | output | output  | COM<br>output | SEG<br>output |         |
|         |                                                 |        |      | 1/1            | none         | none   | LED0~3 | COM0    | SEG0~62       | COM0          | SEG0~62 |
|         |                                                 |        | 1/2  | none           | none         | LED0~3 | COM0~1 | SEG0~62 | COM0~1        | SEG0~62       |         |
| 000b    | 00000b                                          | 0100b  | 1/3  | none           | none         | LED0~3 | COM0~2 | SEG0~62 | COM0~2        | SEG0~62       |         |
|         |                                                 |        | 1/4  | none           | none         | LED0~3 | COM0~3 | SEG0~62 | COM0~3        | SEG0~62       |         |
|         |                                                 |        | 1/8  | none           | none         | LED0~3 | COM0~7 | SEG4~62 | COM0~7        | SEG0~58       |         |

• The RSTB pin is connected to a MCU.



• The RSTB pin is connected to external resistor and capacitor.




Note: If only the internal power on reset circuit is used, the RSTB pin must be connected to  $V_{\text{DD}}$ .



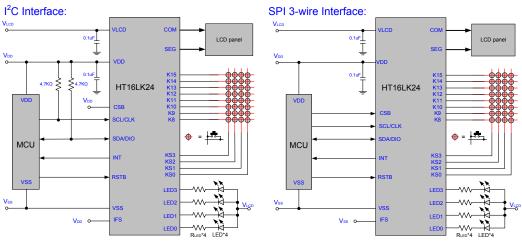
| Shared Pins<br>Configuration Setting<br>Command |         | Duty   | Key Circuit |                | LED          | COM    | SEG    | LCD Panel |               |               |         |         |
|-------------------------------------------------|---------|--------|-------------|----------------|--------------|--------|--------|-----------|---------------|---------------|---------|---------|
| KX[2:0]                                         | KY[4:0] | L[3:0] | ,           | Output<br>(KS) | Input<br>(K) | Output | Output | Output    | COM<br>Output | SEG<br>Output |         |         |
|                                                 |         |        |             |                | 1/1          | KS0~3  | K8~11  | LED0~3    | COM0          | SEG0~54       | COM0    | SEG0~54 |
|                                                 |         |        |             | 1/2            | KS0~3        | K8~11  | LED0~3 | COM0~1    | SEG0~54       | COM0~1        | SEG0~54 |         |
| 100b                                            | 00100b  | 0100b  | 1/3         | KS0~3          | K8~11        | LED0~3 | COM0~2 | SEG0~54   | COM0~2        | SEG0~54       |         |         |
|                                                 |         |        | 1/4         | KS0~3          | K8~11        | LED0~3 | COM0~3 | SEG0~54   | COM0~3        | SEG0~54       |         |         |
|                                                 |         |        |             | 1/8            | KS0~3        | K8~11  | LED0~3 | COM0~7    | SEG4~54       | COM0~7        | SEG0~50 |         |

• The RSTB pin is connected to a MCU.



• The RSTB pin is connected to external resistor and capacitor.

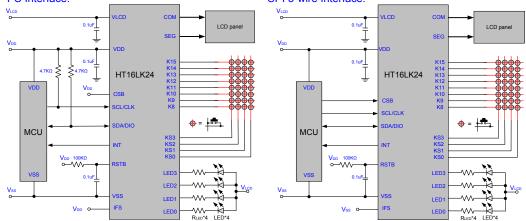
I<sup>2</sup>C Interface: SPI 3-wire Interface: 0.1uF VLC LCD CON /LCD CON 0 1uE LCD panel LCD pane Τ SEG 0.1uF 0.1 HT16LK24 HT16LK24 VDD VDD K11 K10 K9 K8 K11 K10 K9 K8 CSE CSB SCL/CLK SCL/CLK **\_** • = SDA/DIO • DA/DIO MCU MCU KS3 KS2 KS1 KS0 KS3 KS2 KS1 KS0 INT ΝТ VDD 100K VDD 100KC RSTB STE 1 LED LED Ň LED2 LEC ٧s /ss /ss LED LED IFS Ä IFS VDD 0-LED0  $\sim$ Vss LEDO w RLED\*4 LED\*4 RLED\*4 LED\*4


Note: If only the internal power on reset circuit is used, the RSTB pin must be connected to  $V_{\text{DD}}$ .



| Shared pins<br>Configuration setting<br>command |         | Key c  |     | circuit        | LED          |        | SEG    | LCD panel |               |               |         |
|-------------------------------------------------|---------|--------|-----|----------------|--------------|--------|--------|-----------|---------------|---------------|---------|
| KX[2:0]                                         | KY[4:0] | L[3:0] |     | Output<br>(KS) | Input<br>(K) | output | output | output    | COM<br>output | SEG<br>output |         |
|                                                 |         |        | 1/1 | KS0~3          | K8~K15       | LED0~3 | COM0   | SEG0~50   | COM0          | SEG0~50       |         |
|                                                 |         |        |     | 1/2            | KS0~3        | K8~K15 | LED0~3 | COM0~1    | SEG0~50       | COM0~1        | SEG0~50 |
| 100b                                            | 01000b  | 0100b  | 1/3 | KS0~3          | K8~K15       | LED0~3 | COM0~2 | SEG0~50   | COM0~2        | SEG0~50       |         |
|                                                 |         |        |     | 1/4            | KS0~3        | K8~K15 | LED0~3 | COM0~3    | SEG0~50       | COM0~3        | SEG0~50 |
|                                                 |         |        | 1/8 | KS0~3          | K8~K15       | LED0~3 | COM0~7 | SEG4~50   | COM0~7        | SEG0~46       |         |

(4) The SEG/KSL shared pin configuration is 4 LED outputs, 4 key scan outputs and 8 key inputs.


• The RSTB pin is connected to a MCU.



• The RSTB pin is connected to external resistor and capacitor.



SPI 3-wire Interface:



Note: If only the internal power on reset circuit is used, the RSTB pin must be connected to  $V_{\text{DD}}$ .




(5) The SEG/KSL shared pin configuration is 4 LED outputs and 12 key inputs.

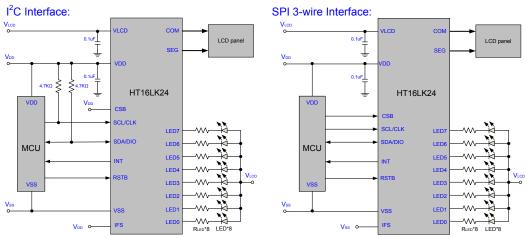
| Shared pins<br>Configuration setting<br>command |         | Duty   | Key | circuit        | LED<br>output | COM<br>output | SEG<br>output | LCD panel |               |               |         |
|-------------------------------------------------|---------|--------|-----|----------------|---------------|---------------|---------------|-----------|---------------|---------------|---------|
| KX[2:0]                                         | KY[4:0] | L[3:0] |     | Output<br>(KS) | Input<br>(K)  | output        | output        | output    | COM<br>output | SEG<br>output |         |
|                                                 |         |        | 1/1 | none           | K4~K15        | LED0~3        | COM0          | SEG0~50   | COM0          | SEG0~50       |         |
|                                                 |         |        |     | 1/2            | none          | K4~K15        | LED0~3        | COM0~1    | SEG0~50       | COM0~1        | SEG0~50 |
| 000b                                            | 01100b  | 0100b  | 1/3 | none           | K4~K15        | LED0~3        | COM0~2        | SEG0~50   | COM0~2        | SEG0~50       |         |
|                                                 |         |        |     | 1/4            | none          | K4~K15        | LED0~3        | COM0~3    | SEG0~50       | COM0~3        | SEG0~50 |
|                                                 |         |        |     | 1/8            | none          | K4~K15        | LED0~3        | COM0~7    | SEG4~50       | COM0~7        | SEG0~46 |

• The RSTB pin is connected to a MCU.



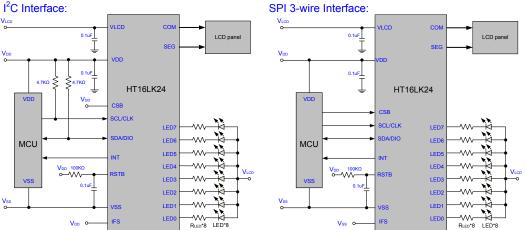
• The RSTB pin is connected to external resistor and capacitor.




Note: If only the internal power on reset circuit is used, the RSTB pin must be connected to  $V_{\text{DD}}$ .



(6) The SEG/KSL shared pin configuration is 8 segment outputs and 8 LED outputs.


| Shared pins<br>Configuration setting<br>command |         | Key<br>Duty |     | ircuit         | LED<br>output | COM<br>output | SEG<br>output | LCD panel |               |               |         |
|-------------------------------------------------|---------|-------------|-----|----------------|---------------|---------------|---------------|-----------|---------------|---------------|---------|
| KX[2:0]                                         | KY[4:0] | L[3:0]      | ,   | Output<br>(KS) | Input<br>(K)  | ουτρυτ        | ουιραι        | σαιραι    | COM<br>output | SEG<br>output |         |
|                                                 |         |             |     | 1/1            | none          | none          | LED0~7        | COM0      | SEG0~58       | COM0          | SEG0~58 |
|                                                 |         |             |     |                | 1/2           | none          | none          | LED0~7    | COM0~1        | SEG0~58       | COM0~1  |
| 000b                                            | 00000b  | 1000b       | 1/3 | none           | none          | LED0~7        | COM0~2        | SEG0~58   | COM0~2        | SEG0~58       |         |
|                                                 |         | -           |     | 1/4            | none          | none          | LED0~7        | COM0~3    | SEG0~58       | COM0~3        | SEG0~58 |
|                                                 |         |             |     |                | 1             | 1/8           | none          | none      | LED0~7        | COM0~7        | SEG4~58 |

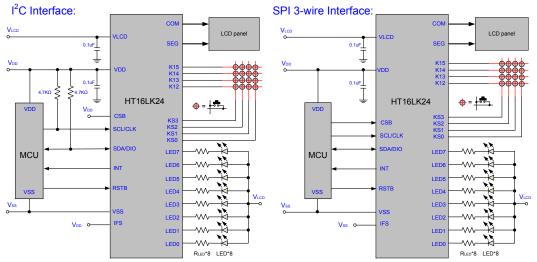
• The RSTB pin is connected to a MCU.



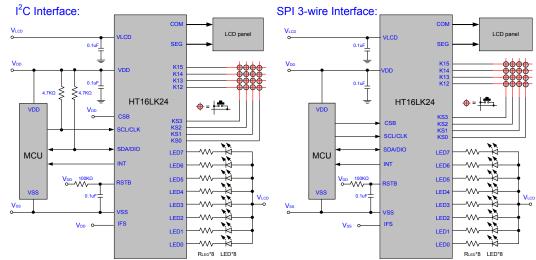
• The RSTB pin is connected to external resistor and capacitor.

I<sup>2</sup>C Interface:




Note: If only the internal power on reset circuit is used, the RSTB pin must be connected to  $V_{\text{DD}}$ .




| Shared pins<br>Configuration setting<br>command |         | Duty   | Key circuit |                |              | COM<br>output | SEG    | LCD panel |               |               |
|-------------------------------------------------|---------|--------|-------------|----------------|--------------|---------------|--------|-----------|---------------|---------------|
| KX[2:0]                                         | KY[4:0] | L[3:0] |             | Output<br>(KS) | Input<br>(K) | ουτρατ        | output | output    | COM<br>output | SEG<br>output |
|                                                 |         |        | 1/1         | KS0~3          | K12~15       | LED0~7        | COM0   | SEG0~50   | COM0          | SEG0~50       |
|                                                 |         |        |             | 1/2            | KS0~3        | K12~15        | LED0~7 | COM0~1    | SEG0~50       | COM0~1        |
| 100b                                            | 00100b  | 1000b  | 1/3         | KS0~3          | K12~15       | LED0~7        | COM0~2 | SEG0~50   | COM0~2        | SEG0~50       |
|                                                 |         | -      | 1/4         | KS0~3          | K12~15       | LED0~7        | COM0~3 | SEG0~50   | COM0~3        | SEG0~50       |
|                                                 |         |        | 1/8         | KS0~3          | K12~15       | LED0~7        | COM0~7 | SEG4~50   | COM0~7        | SEG0~46       |

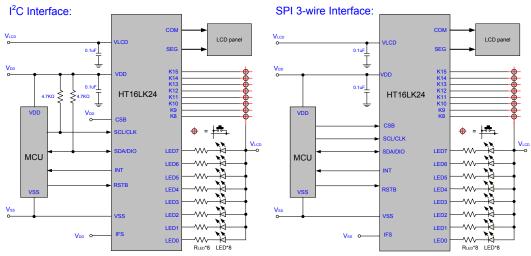
(7) The SEG/KSL shared pin configuration is 8 LED outputs, 4 key scan outputs and 4 key inputs.

• The RSTB pin is connected to a MCU.

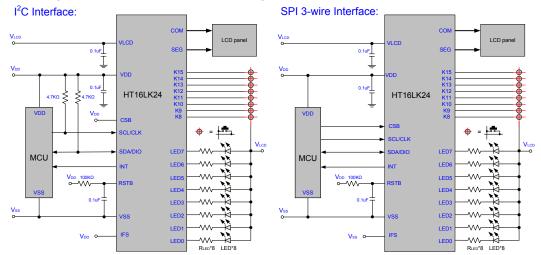


• The RSTB pin is connected to external resistor and capacitor.




Note: If only the internal power on reset circuit is used, the RSTB pin must be connected to  $V_{\text{DD}}$ .




#### (8) The SEG/KSL shared pin configuration is 8 LED outputs and 8 key inputs.

| Shared pins<br>Configuration setting<br>command |         | Duty   | Key circuit |                | LED          | COM<br>output | SEG<br>output | LCD panel |               |               |        |         |
|-------------------------------------------------|---------|--------|-------------|----------------|--------------|---------------|---------------|-----------|---------------|---------------|--------|---------|
| KX[2:0]                                         | KY[4:0] | L[3:0] | ,           | Output<br>(KS) | Input<br>(K) | output        | υτρατ         | output    | COM<br>output | SEG<br>output |        |         |
|                                                 |         |        |             |                | 1/1          | none          | K8~15         | LED0~7    | COM0          | SEG0~50       | COM0   | SEG0~50 |
|                                                 |         |        |             |                | 1/2          | none          | K8~15         | LED0~7    | COM0~1        | SEG0~50       | COM0~1 | SEG0~50 |
| 000b                                            | 01000b  | 1000b  | 1/3         | none           | K8~15        | LED0~7        | COM0~2        | SEG0~50   | COM0~2        | SEG0~50       |        |         |
|                                                 |         |        | 1/4         | none           | K8~15        | LED0~7        | COM0~3        | SEG0~50   | COM0~3        | SEG0~50       |        |         |
|                                                 |         |        | 1/8         | none           | K8~15        | LED0~7        | COM0~7        | SEG4~50   | COM0~7        | SEG0~46       |        |         |

• The RSTB pin is connected to a MCU.

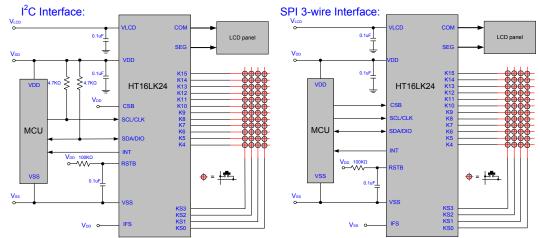


• The RSTB pin is connected to external resistor and capacitor.



Note: If only the internal power on reset circuit is used, the RSTB pin must be connected to  $V_{\mbox{\tiny DD}}$ 




(9) The SEG/KSL shared pin configuration is 4 key scan outputs and 12 key inputs.

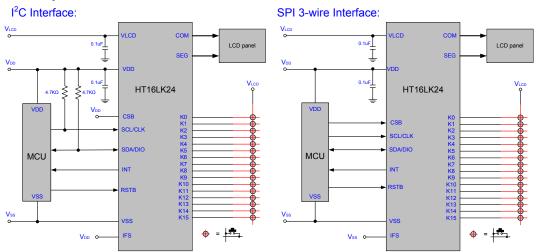
| Shared pins<br>Configuration setting<br>command |         | Key c  |     | ircuit         | LED COM      |        | SEG<br>output | LCD panel |               |               |        |         |
|-------------------------------------------------|---------|--------|-----|----------------|--------------|--------|---------------|-----------|---------------|---------------|--------|---------|
| KX[2:0]                                         | KY[4:0] | L[3:0] |     | Output<br>(KS) | Input<br>(K) | output | σαιραι        | ουιραι    | COM<br>output | SEG<br>output |        |         |
|                                                 |         | 0000b  | 1/1 | KS0~3          | K4~15        | none   | COM0          | SEG0~50   | COM0          | SEG0~50       |        |         |
|                                                 |         |        |     |                | 1/2          | KS0~3  | K4~15         | none      | COM0~1        | SEG0~50       | COM0~1 | SEG0~50 |
| 100b                                            | 01100b  |        | 1/3 | KS0~3          | K4~15        | none   | COM0~2        | SEG0~50   | COM0~2        | SEG0~50       |        |         |
|                                                 |         |        | 1/4 | KS0~3          | K4~15        | none   | COM0~3        | SEG0~50   | COM0~3        | SEG0~50       |        |         |
|                                                 |         |        |     |                | 1/8          | KS0~3  | K4~15         | none      | COM0~7        | SEG4~50       | COM0~7 | SEG0~46 |

<sup>•</sup> The RSTB pin is connected to a MCU.

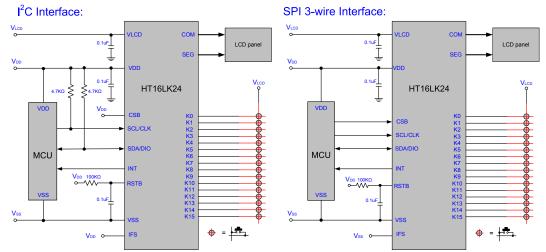


• The RSTB pin is connected to external resistor and capacitor.




Note: If only the internal power on reset circuit is used, the RSTB pin must be connected to  $V_{DD}$ .




| Shared pins<br>Configuration setting<br>command |         | Key<br>Duty |      | Key circuit    |              | LED COM | SEG<br>output | LCD panel |               |               |        |
|-------------------------------------------------|---------|-------------|------|----------------|--------------|---------|---------------|-----------|---------------|---------------|--------|
| KX[2:0]                                         | KY[4:0] | L[3:0]      | Duty | Output<br>(KS) | Input<br>(K) | output  | υτιραι        | συιραι    | COM<br>output | SEG<br>output |        |
|                                                 |         |             | 1/1  | none           | K0~15        | none    | COM0          | SEG0~50   | COM0          | SEG0~50       |        |
|                                                 |         |             |      |                | 1/2          | none    | K0~15         | none      | COM0~1        | SEG0~50       | COM0~1 |
| 000b                                            | 10000b  | 0000b       | 1/3  | none           | K0~15        | none    | COM0~2        | SEG0~50   | COM0~2        | SEG0~50       |        |
|                                                 |         |             | 1/4  | none           | K0~15        | none    | COM0~3        | SEG0~50   | COM0~3        | SEG0~50       |        |
|                                                 |         |             | 1/8  | none           | K0~15        | none    | COM0~7        | SEG4~50   | COM0~7        | SEG0~46       |        |

(10) The SEG/KSL shared pin configuration is 16 key inputs.

• The RSTB pin is connected to a MCU.



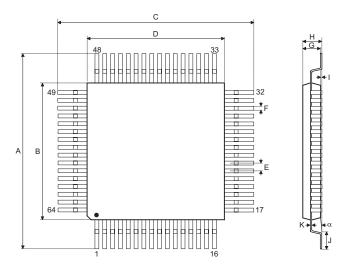
• The RSTB pin is connected to external resistor and capacitor.



Note: If only the internal power on reset circuit is used, the RSTB pin must be connected to  $V_{\text{DD}}$ .



# **Package Information**

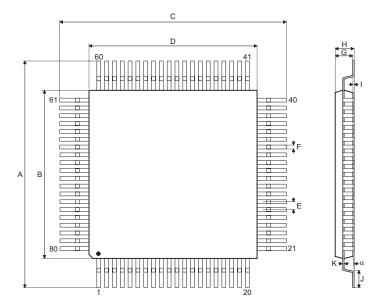

Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/Carton Information</u>.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- Packing Meterials Information
- Carton information



## 64-pin LQFP (7mm×7mm) Outline Dimensions




| Symbol |       | Dimensions in inch |       |
|--------|-------|--------------------|-------|
| Symbol | Min.  | Nom.               | Max.  |
| A      | _     | 0.354 BSC          | —     |
| В      | _     | 0.276 BSC          | —     |
| С      | _     | 0.354 BSC          | —     |
| D      | _     | 0.276 BSC          | —     |
| E      | _     | 0.016 BSC          | —     |
| F      | 0.005 | 0.007              | 0.009 |
| G      | 0.053 | 0.055              | 0.057 |
| Н      | _     | —                  | 0.063 |
| I      | 0.002 | —                  | 0.006 |
| J      | 0.018 | 0.024              | 0.030 |
| К      | 0.004 | _                  | 0.008 |
| α      | 0°    | _                  | 7°    |

| Symbol |      | Dimensions in mm |      |
|--------|------|------------------|------|
| Symbol | Min. | Nom.             | Max. |
| A      | —    | 9.00 BSC         | —    |
| В      | —    | 7.00 BSC         | —    |
| С      | —    | 9.00 BSC         | —    |
| D      | —    | 7.00 BSC         | —    |
| E      | —    | 0.40 BSC         | —    |
| F      | 0.13 | 0.18             | 0.23 |
| G      | 1.35 | 1.40             | 1.45 |
| Н      | —    | _                | 1.60 |
| I      | 0.05 | _                | 0.15 |
| J      | 0.45 | 0.60             | 0.75 |
| K      | 0.09 | —                | 0.20 |
| α      | 0°   | _                | 7°   |



## 80-pin LQFP (10mm×10mm) Outline Dimensions



| Symbol |       | Dimensions in inch |       |
|--------|-------|--------------------|-------|
| Symbol | Min.  | Nom.               | Max.  |
| A      | _     | 0.472 BSC          | _     |
| В      | —     | 0.394 BSC          | —     |
| С      | —     | 0.472 BSC          | —     |
| D      | _     | 0.394 BSC          | —     |
| E      | _     | 0.016 BSC          | _     |
| F      | 0.007 | 0.009              | 0.011 |
| G      | 0.053 | 0.055              | 0.057 |
| Н      | —     | —                  | 0.063 |
| I      | 0.002 | —                  | 0.006 |
| J      | 0.018 | 0.024              | 0.030 |
| K      | 0.004 | _                  | 0.008 |
| α      | 0°    | —                  | 7°    |

| Symbol |      | Dimensions in mm |      |
|--------|------|------------------|------|
| Symbol | Min. | Nom.             | Max. |
| A      | —    | 12.00 BSC        | —    |
| В      | —    | 10.00 BSC        | —    |
| С      | —    | 12.00 BSC        | —    |
| D      | —    | 10.00 BSC        | —    |
| E      | _    | 0.40 BSC         | —    |
| F      | 0.13 | 0.18             | 0.23 |
| G      | 1.35 | 1.4              | 1.45 |
| Н      | _    | —                | 1.60 |
| I      | 0.05 | —                | 0.15 |
| J      | 0.45 | 0.60             | 0.75 |
| K      | 0.09 | _                | 0.20 |
| α      | 0°   | _                | 7°   |

Copyright<sup>©</sup> 2015 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.