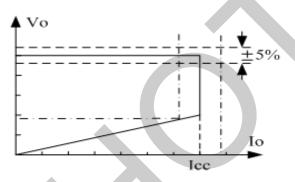
HT2800S


High Performance Primary Sensing Regulation Controller IC

Description

DTE

HT2800S is high performance primary sensing regulation and monolithic switchingmode power controller which is designed for small- power supply equipment with current mode control. Built- in accurate CV/CC control circuit. High integration design, a high performance power BJT and PFM controller and full protection circuits in single chip, to minimize external components and save the cost effectively. HT2800S can be simply designed a typical flyback switch converter, the unique driving technology promotes the characteristics of withstand voltage and achieves excellent converting efficiency

Fig. 1. CC vs CV Curve (Typ.)

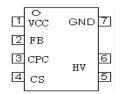
Features

- Built- in 700V power BJT
- PSR control, eliminates Opto- coupler and TL431
- Accurate CV/CC control
- Hysteresis over- temperature protection (OTP) circuit
- High efficiency and meet Level 6 efficiency standards
- Output voltage protection (OVP/UVLO)
- < 100 mW no- load consumption</p>
- Auto- Restart function
- Ultra-low start-up current
- Good EMC characteristic allows the simple EMC circuit

Application

- Intelligent mobile phone/small size tablet computer
- Digital cameras and other small digital products
- Power adapters for network products etc
- RCC solutions Replace.

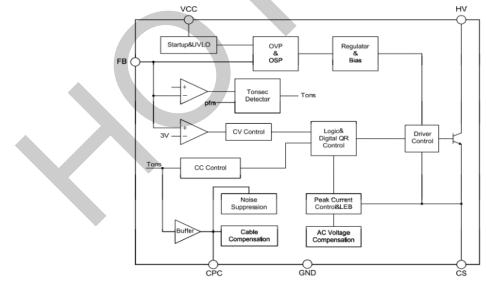
Typical Application Circuitry



High Performance Primary Sensing Regulation Controller IC

HT2800S

Pin Configuration


HT2800S is provided with SOP- 7 Package shown as below:

Pin Configuration

Pin #	Pin Name	Description		
1	VCC	Power supplying pin of the controller, In order to let the controller gain more Stable supply voltage, the external filter capacitor must use low equivalent im -pedance (Low ESR) of the electrolytic capacitor.		
2	FB	Output feedback pin, to detect the output condition through the auxiliary wind -ing voltage of the transformer		
3	CPC	To connect with a 100+nf capacitor, the pin will become output cable drop compensation pin		
4	CS	Connect external primary current sensing resistor RCS, the controller can detect the primary current through the external sense resistor. When the voltage on the resistor achieves the maximum value, the internal power BJT will be turn off immediately		
5-6	HV	To connect the collector of internal power BJT		
7	GND	The referring grounding pin of the controller		

Internal Function Block Diagram

HT2800S High Performance Primary Sensing Regulation Controller IC

Absolute Maximum Ratings

Vсво of Internal Transistor	700V
IC Peak Current:	200mA
VCC Pin Voltage	8.6V
FB Pin Voltage	7V
Others Pin Voltage	Vcc+0.3V
Operating Temperature (Tj)	0~ +150℃
Storage Temperature	-55~ +150℃
Lead Temperature	+260℃/ 10S
ESD (Human Body Mode)	3000V

Note 1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. Under "recommended operating conditions" the device operation is assured, but some particular parameter may not be achieved.

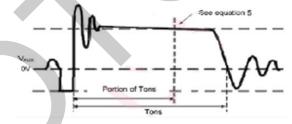
Electrical Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max	Unit
VDD UVLO Section						
Start- up Voltage	Vcc-ON	-	7.5	8.0	8.8	V
Shut down	Vcc-OFF	-)	3.0	3.3	3.5	V
Star-up Current	ISTART	-	-	0.2	1	uA
Operating Current	lcc		-	400	500	uA
Max. Operating Voltage	Vcc	-	-	-	8.5v	
Current Sense Section						
Maximum Current to CS PIN	lcs	-	3.4	4	5	uA
Current Sense Threshold Voltage	Vcs				510	mV
Leading Edge Blanking	TLEB	lc=1mA		500	-	nS
Feedback Input Section		•			•	
FB Reference Voltage	Vref-fb		2.85	2.9	2.95	V
Input Resistance of FB Pin	Rfb		1.2	1.5	2	MΩ
Feedback Threshold Voltage	Vfb				5	V
Internal Transistor						
Collector- Emitter Saturation Voltage	VCEsat	lc=50mA lb=10mA			0.5	V
Collector- Base Voltage	Vсво		700			V
OVER TEMPERATURE PROTEC	TION(OTP)					
Shutdown Temperature	TSHDN		135	140	145	°C
Temperature Hysteresis	THYS		125	130	135	°C

11280

Function Description

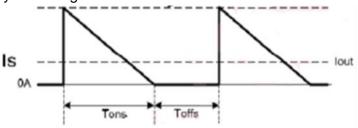
HT2800S is specially designed for the charger/adapter of small power digital products. To use PSR control technology to provide accurate (CV/CC) characteristics. The controller works in PFM mode and the switching frequency can be automatically adjusted as per the load. Optimized driving circuit greatly promotes withstand voltage of the power BJT and minimizes the switching loss, so as to make the circuit have excellent converting efficiency


Constant Voltage Operation (CV)

When the circuit is operates in CV area, FB will detect the output voltage when the power BJT turn-off through the sensing voltage by auxiliary winding of the transformer, to make the output voltage stabilized in the fixed value. In the turn-on period of the output rectifier diode D, it's given the output winding voltage and auxiliary winding voltage as follows

$$V_{AUX} = \frac{N_{AUX}}{N_{c}} \cdot (Vo + V_{d})$$

(Where Vaux : auxiliary winding voltage; Nb: subsidiary winding turns; NS: output winding turns; Vd : forward voltage drop of output rectifier diode)


FB will test the auxiliary winding voltage while the power BJT off-time to regulate the output voltage. In order to avoid the peak influence happens in power BJT turn-off resulting from the leakage inductance of the transformer, and considering the accuracy of sampling voltage, FB captures the auxiliary winding detection sampling points as below:

Constant Current Operation (CC)

HT2800S CC control circuit is requested the converter to operate in DCM. In CC operation mode, control circuit will fix the proportion between the Tons and Toffs generated by rectifier Diode. During Tons time, the primary energy of the transformer will be converted to the secondary winding, via the rectifier diode then charge the output capacitor and supply load simultaneously.

During Toffs period, the primary coil stores the energy, the output filter capacitor makes load discharge. In CC operation area, HT2800S switch frequency will follow the output load direct ratio control detected by FB Voltage

High Performance Primary Sensing Regulation Controller IC

112800

The secondary rectifier diode peak current is determined by the peak current of primary-side inductance which also affects the output current. The corresponding relation between the primary peak current and the secondary peak current is as follows--

$$Ipks = \frac{N_{p}}{N_{s}} \cdot Ipk$$

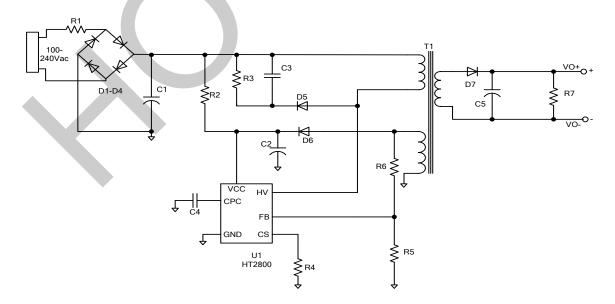
(Where IPк: primary peak current; NP: primary winding turns; NS: secondary winding turns; IPкs :secondary peak current)

And primary inductance peak current is determined by Pin 4 to RCS resistance, the primary inductance peak current and RCS resistance are in inverse proportion, so only need to adjust CS resistance to achieve different output currents. Output current lout and

Primary Current is given by the following equation--

$$Iout = \frac{1}{2} \cdot Ipks \cdot \frac{Tons}{Tons + Toffs}$$

(Where lout: Output current; Tons: secondary rectifier diode on-time; Toffs: secondary rectifier diode off-time)

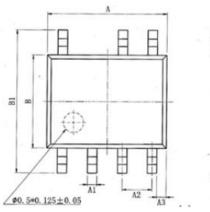

Cable Drop- out Compensation

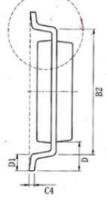
HT2800S is featured with output cable drop- out compensation circuit. When it outputs with different loads, this certain circuitry compensates cable voltage which is in fixed proportion with output voltage. The internal circuit will generate one cable drop compensation signal once a capacitor of 100nF is connected with CPC Pin

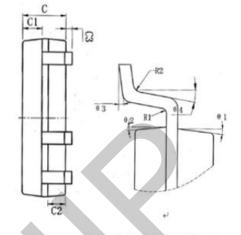
Protection Function

To assure a safe and reliable circuit in all application, HT2800S features multiple protection circuits covering OCP, OVP, FB open-loop protection etc. as integration. Once abnormality is been defected, Protection mode of all kinds is therefore triggered.

Note: Referential Replacement Circuitry of typical RCC Circuit

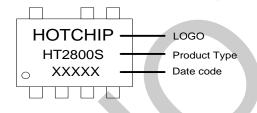



HT2800S


High Performance Primary Sensing Regulation Controller IC

Package Outline Dimension

SOP-7L



Size	Min. (mm)	Max(mm)	Size	Min. (mm)	Max. (mm)	
A	4.80	5.00	C3	0.05	0.20	
A1	0.356	0.456	C4.	0.203	0.233	
A2	1.27	TYP	D	1.0	5TYP .	
A3	0.34	5TYP	D1	0.40	0.80	
В	3.80	4.00	R1	0. 20TYP		
B1	5.80	6.20	R2	0. 20TYP		
B2	5.00	TYP	θ1.	17°	TYP4	
C	1.45	1.55	θ2	13° TYP4		
C1 0.55 0.65		θ 3	$0^{\circ} \sim 8^{\circ}$			
C2	0.55	0.65	θ4	$4^{\circ} \sim 12^{\circ}$		

Marking & Ordering Information

Package	Top Marking	Ordering	
SOP7 Pb-free	HT2800S	HT2800S	

IMPORTANT NOTICE

- ↔ HOTCHIP reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.hotchip.com.cn.
- HOTCHIP assumes no liability for the issues about the industrial standard, licenses and the right of the third party caused by the electric circuit and chart. The schematic is just for typical application, is not for the specialized mass production application.
- The export authorization from government is needed when the product or its derivative product do not agree with the Wassenaar Arrangement or other international agreement.
- Any copy of these information without our permission to print for other uses is forbidden.
- HOTCHIP's products are not authorized for use as critical components in life support devices or systems, such as motion machine, medical machine, security system, gas equipment, airplane or any other conveyance.
- HOTCHIP cannot avoid fault or losing efficacy, though we will do the best to improve the quality and reliability. The customers use the products should go through the security design, such as the redundant design, fire protection design, failure protection about the secondary disasters, fire or other related damage.
- \diamond HOTCHIP will continuously provide better products for the customers by all our heart.